
 الجمهورية الجزائرية الديمقراطية الشعبية
People's Democratic Republic of Algeria

ارة التعليم العالي والبحث العلميوز
Ministry of Higher Education and Scientific Research

 جـامـعــــة زيـــــان عـاشـــور بالـجـلـفـــــة
Ziane Achour University of Djelfa

ـــوجــيــــــــا ـــول ــوم و الـتـــكـنـ ــلـــــ ــــــة الــــعـ ـــــــيـ كـــل

Faculty of Science and Technology

Department: Civil Engineering

Order N°:….……. /2022

Defense authorization N°:……….…/2022

DOCTORAL THESIS

Doctoral of science

Presented by

BAKHTI Rachid

With a view to obtaining the doctoral of science diploma

Branch: Civil engineering

Topic

Build a computer Application for optimizing the damage calculations of concrete

material

Supported, on 03 /07 / 2022, before the jury composed of:

Last and first name Grade Institution of affiliation Designation

Mr. BADAOUI Mohamed MCA University Ziane Achour, Djelfa President

Mr. BENAHMED Baizid MCA University Ziane Achour, Djelfa Supervisor

Mr. HARICHE Lazhar MCA University Ziane Achour, Djelfa Examiner

Mr. DIF Fodil MCA University Ziane Achour, Djelfa Examiner

Mr. ARBAOUI Ahcene MCA University Akli Mohand Oulhadj, Bouira Examiner

Mr. ARIBI Chouaib MCA University Akli Mohand Oulhadj, Bouira Examiner

Djelfa University, FST - 2022

I

ACKNOWLEDGEMENTS

The author is indebted to Dr. Baizid Benahamed for his interest, guidance, and provision of

technical assistance during this research. Dr. Benahamed’s commitment and assistance were

limitless and this is greatly appreciated. Thanks are also extended to Dr. Laib Abdelghani from the

University of Bouira and Dr. Mohanad Alfach from the University of London for their valuable

time spent proofreading the published papers

I would like to express my very great appreciation to my thesis committee members, Dr.

BADAOUI Mohamed, Dr. HARICHE Lazhar, Dr. DIF Fodil , Dr. ARBAOUI Ahcene, and Dr.

ARIBI Chouaib for their valuable time.

II

To my parents, wife, and my children (Abdelbasset, Abderraouf, and Nour)

III

 ملخص

للنمذجة. ايعد تحليل العناصر المحدودة للخرسانة التالفة عملية معقدة للغاية من خلال حقيقة أن الخرسانة هي أكثر المواد تعقيدً

" باستخدام Concrete" مسمىتحت تطوير رنامج حاسوبي مفتوح المصدرومع ذلك ، فإن الهدف الرئيسي من العمل الحالي هو

نامج البرمادة الخرسانية في برمجةالمكعبة والأسطوانية. تم ذات الاشكال لنمذجة عينات الخرسانة "OOP" ثةالحدي تقنية البرمجة

للتعامل مع تدهور (Plastic Damage Model PDM)ن خلال الشكل الثاني من النموذج المشهور المطور م الحاسوبي

خلص من تم الت في هذا العمل جهاد بالإضافة إلى تأثيرات استعادة الصلابة تحت التحميل الدوري.الإالصلابة المرنة الناتج عن

حالتي في منحنيات اجهاد التوترن يد لتقدير كل منهج رقمي جدنموذج حيث تم اقتراح الت المطلوبة في لاماعملية معايرة المع

،  كلتا الحالتين. بالإضافة إلى القيم الافتراضية من لزاوية التمددمعامل تدهور الخرسانة في وكذا تطويرالانضغاط والشد

0/، والنسبة  والانحراف 0f fb cوالنسبة ، Kc تم تطويره وفقًا لتوصيات. تم اقتراح النهج الذي Model Code

 Vb.Net) باستخدام لغةVisual Studio 2022(تم ترحيله إلى Visual Studio 2019تم إنشاء الكود المطور في إطار

لتطوير برمجيكأسلوب OOPتم اختيار نموذج البرمجة .GUI لبناء المحرك وواجهة المستخدم الرسومية WinForms وتقنية

في البرنامج المطور من أجل تحسين Triangle.Net و OpenTk ، تم استخدام مكتبات في نفس الاتجاهة. رسانالخ برنامج

 .السرعة والجودة وإنشاء شبكات ثنائية الأبعاد للعينات الأسطوانية ، على التوالي كل من عملية الرسم في

 ت التلفلاماة ، الهيكل الخرساني ، معاللدونة الضرر للخرسانة ، طريقة العناصر المحدودكلمات مفتاحية:

IV

Abstract

Finite element analysis of damaged concrete is a very complicated process by the fact that

concrete is the most complex material to model in the analysis. However, the main aim of the

present work is to provide an open-source finite element computer code under the name “Concrete”

using the modern coding paradigm “Object-Oriented Programming” to model cubical and

cylindrical concrete samples. The concrete material was implemented in the developed code

through the second form of the famous constitutive low Plastic Damage Model (PDM) to handle

the elastic stiffness degradation induced by the plastic straining in addition to the stiffness recovery

effects under cyclic loading. The calibration process of the required parameters in the Damage

plastic model was eliminated in the present work where a new numerical approach was suggested

to auto-estimate each of; the stress-strain diagrams for the compressive and the tensile cases, in

addition to the damage parameters evolutions for both cases. Also, default values from the literature

were suggested for the dilation angle , the eccentricity , the ratio /0 0f fb c , and the ratio Kc . The

developed approach was developed in accordance with the Model Code recommendations.

The developed code was built under visual studio 2019 (migrated to visual studio 2022) using

the Vb.Net language and the WinForms technology to build the engine and the Graphical User

Interface GUI; respectively. The Object-Oriented Programming paradigm was selected as a coding

technique to develop Concrete software. In the same manner, the OpenTk and the Triangle.Net

libraries were used in the developed software in order to improve the drawing process in speed and

quality and generate 2D meshes for the cylindrical samples, respectively.

Key words: Concrete Damage Plasticity, finite element method, Concrete structure, damage

parameters

V

Table of Contents

List of Figures…………………………………………………………………………………1

List of Tables ………………………………………………………………………………….4

Introduction …………………………………………………………………………………...5

Chapter I : The constitutive models for concrete: Overview .. 9

I.1 Introduction .. 10

I.2 Linear and nonlinear elastic models ... 11

I.3 Plasticity models .. 13

I.4 Endochronic theory of inelasticity ... 15

I.5 Empirical models ... 15

I.6 Damage Models ... 18

I.7 Conclusion: .. 31

Chapter II : Finite element implementation of Damage Plastic Model 33

II.1 Introduction: ... 34

II.2 Oller implementation of PDM .. 35

II.3 Lee Implementation of PDM .. 38

II.4 Proposed finite element implementation of PDM .. 41

II.5 Conclusion: ... 54

Chapter III : Description of the finite element computer code “Concrete v2.0.0” 56

III.1 Introduction ... 57

III.2 Object-Oriented Programming Paradigm .. 58

III.3 Eight nodes brick element ... 61

III.4 Mesh generation .. 63

VI

III.5 OpenTK library ... 65

III.6 PDM Class description .. 65

III.7 Concrete V2.0.0 description .. 66

III.8 Conclusion ... 75

Chapter IV : Investigation of the inputs and the outputs of “Concrete v2.0.0” 77

IV.1 Introduction ... 78

IV.2 Validation of the proposed approach for computing the stress-strain diagrams and

the damage parameters evolutions ... 78

IV.3 Investigation of “Concrete v2.0.0” outcomes ... 81

IV.4 Mesh sensitivity .. 86

IV.5 Conclusion ... 89

Conclusion ………………………………………………………………………….……….91

References ………………………………………………………………………….………..94

Appendix ………………………………………………………………………….……….. 99

VII

1

List of Figures

Chapter I: The constitutive models for concrete: Overview

Figure 1.1 Yield surface in the deviatoric plane 21

Figure 1.2 Yield surface in plane stress 22

Figure 1.3 Implementation of DMP in “Concrete v2.0.0” 24

Figure 1.4 Response of concrete to uniaxial loading in tension 25

Figure 1.5 Response of concrete to uniaxial loading in compression 25

Figure 1.6 Parts of tension energy dissipated by damage 28

Figure 1.7 Parts of compressive energy dissipated by damage 28

Chapter II : Finite element implementation of Damage Plastic Model

Figure 2.1 The influence of the mesh size on the tensile stress -inelastic strain, Lubliner

approach

44

Figure 2.2 The influence of the mesh size on the compressive stress - inelastic strain,

Lubliner approach

44

Figure 2.3 The influence of the mesh size on the tensile stress -strain, Alfarah approach 45

Figure 2.4 The influence of the mesh size on the compressive stress - strain, Alfarah

approach

45

Figure 2.5 The influence of the mesh size on the tensile damage parameter 45

Figure 2.6 The influence of the mesh size on the compressive damage parameter 45

Figure 2.7 The influence of the mesh size on the Compressive stress vs compressive

strain curve, case: 25f MPacm

46

Figure 2.8 Response of concrete to uniaxial loading in compression 48

Figure 2.9 Response of concrete to uniaxial loading in tension 48

Figure 2.10 Proposed algorithm for evaluating ac , at , bc , andbt 50

Figure 2.11 Stress correction 52

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

Figure 3.1 Code source of Concrete v2.0.0. Screenshot 58

Figure 3.2 Concrete v2.0.0 architecture 60

Figure 3.3 Eight nodes brick element (C3D8) 62

Figure 3.4 2D mesh of circle shape 64

2

Figure 3.5 2D mesh of rectangle shape 64

Figure 3.6 Concrete v2.0.0. Screenshot N01 68

Figure 3.7 Concrete v2.0.0. Screenshot N02 68

Figure 3.8 Concrete v2.0.0. Screenshot N03 69

Figure 3.9 Concrete v2.0.0. Screenshot N04 70

Figure 3.10 Concrete v2.0.0. Screenshot N05 70

Figure 3.11 Concrete v2.0.0. Screenshot N06 71

Figure 3.12.a Concrete V2.0.0 outputs - Compressive stress-strain curve 71

Figure 3.12.b Concrete V2.0.0 outputs - Damage parameter curve 71

Figure 3.12.c Concrete V2.0.0 outputs - Tensile stress-strain curve 72

Figure 3.12.d Concrete V2.0.0 outputs - Compressive stress-strain (BAKHTI) 72

Figure 3.12.e Concrete V2.0.0 outputs - Compressive damage parameter curve (BAKHTI) 72

Figure 3.12.f Concrete V2.0.0 outputs - Tensile stress-strain curve (BAKHTI) 72

Figure 3.12.g Concrete V2.0.0 outputs - Tensile damage parameter curve (BAKHTI) 73

Figure 3.12.h Concrete V2.0.0 outputs - Compressive stress-strain (Alfarah) 73

Figure 3.12.i Concrete V2.0.0 outputs - Compressive damage parameter curve (Alfarah) 73

Figure 3.12.j Concrete V2.0.0 outputs - Tensile stress-strain curve (Alfarah) 73

Figure 3.12.k Concrete V2.0.0 outputs - Tensile damage parameter curve (Alfarah) 74

Figure 3.13 Concrete v2.0.0. Screenshot N07 75

Chapter IV: Investigation for the outcomes of Concrete v2.0.0

Figure 4.1 Validation of the auto-estimation of the compressive stress-strain curves 79

Figure 4.2 Validation of the auto-estimation of the tensile stress-strain curve, fck=32 MPa 79

Figure 4.3 Validation of the auto-estimation of the tensile stress-strain curve, fck=25 MPa 79

Figure 4.4 Validation of the auto-estimation of the tensile stress-strain curve, fck=20 MPa 79

Figure 4.5 Compressive Stress-strain curves for different compressive strength 80

Figure 4.6 Compressive damage parameter evolution 80

Figure 4.7 Tensile Stress-strain curves for different compressive strength 80

Figure 4.8 Tensile damage parameter evolution 80

Figure 4.9 Compressive stress-strain curve for fcm = 20MPa 84

Figure 4.10 Compressive stress-strain curve for fcm = 25MPa 84

Figure 4.11 Compressive stress-strain curve for fcm = 30 MPa 84

Figure 4.12 Compressive stress-strain curve for fcm = 35 MPa 84

3

Figure 4.13 Compressive stress-strain curve for fcm = 40 MPa 85

Figure 4.14 Tensile stress-strain curve for fcm = 20 MPa (ftm = 1.58 MPa) 85

Figure 4.15 Tensile stress-strain curve for fcm = 25 MPa (ftm = 1.99 MPa) 85

Figure 4.16 Tensile stress-strain curve for fcm = 30 MPa (ftm = 2.37 MPa) 85

Figure 4.17 Tensile stress-strain curve for fcm = 35 MPa (ftm = 2.71 MPa) 86

Figure 4.18 Tensile stress-strain curve for fcm = 40 MPa (ftm = 3.04 MPa) 86

Figure 4.19 Tensile stress-strain curve - Mesh sensitivity Example 01 87

Figure 4.20 Tensile stress-strain curve - Mesh sensitivity Example 02 87

Figure 4.21 Compressive stress-strain curve- Mesh sensitivity Example 01 88

Figure 4.22 Compressive stress-strain curve- Mesh sensitivity Example 02 88

Figure 4.23 Compressive stress-strain curve- Mesh sensitivity Example 03 88

4

List of Tables

Chapter I: The constitutive models for concrete: Overview

Table 1.1 Types of the yield functions 13

Table 1.2 Representation of damage 19

Table 1.3 Required parameters of DPM 24

Chapter II : Finite element implementation of Damage Plastic Model

Table 2.1 Default values of DPM parameters 43

Table 2.2 Values of 1c for different concrete strength (Model code) 47

Table 2.3 Values of coefficients ,, , a a bc t c andbt for different concrete strength –Part1 49

Table 2.4 Values of coefficients ,, , a a bc t c andbt for different concrete strength –Part2 49

Chapter III: Description of the finite element computer code “Concrete

v2.0.0”

Table 3.1 Fields used in the PDM Class 65

Table 3.2 Functions and Subroutines used in the PDM Class 66

Chapter IV: Investigation for the outcomes of Concrete v2.0.0

Table 4.1 The input data of Desayi and Krishan curve 83

Table 4.2 The input data of Thorenfeldt curve 84

Table 4.3 The input data for Concrete v2.0. 87

Introduction

5

Introduction

Introduction

6

Introduction

Concrete is one of the most important materials in construction, which present all around us, in

concrete bridges, dams, buildings. In fact , concrete is the most widely used building material in the

world, the global world production of this material in 2021 exceeding 10000 million cubic meters [1]

and the global world cement production capacity reaching 4470.3 million tons in 2018 [2]. Actually,

the use of concrete in construction worldwide is twice more than any other building material,

including wood, steel, plastic, and aluminum. Hence, it is very important to be able to model the

concrete material properly using the finite element method. However, concrete is the most complex

material to model in the analysis. Many research efforts were conducted on understanding the

behavior of concrete, and numerous papers were published on modeling concrete for numerical

simulations. When subjected to very small stresses, the material behaves linearly, and elastically, but

beyond certain threshold values, the cracking in tension will be observed, with thereafter tension

softening, crushing in compression, and all in a highly nonlinear manner. This complex comportment

of concrete must be simulated in general nonlinear analyses, for dynamic/ cyclic or static loading. To

capture this behavior for analysis purposes, many researchers have pursued a phenomenological

approach in which the material behavior of concrete is represented through multiple constitutive

models available in the literature. These models can be categorized as follow; the empirical models

[3]–[5], the linear and the nonlinear elastic models [6]–[12], the plastic models [13]–[17], the fracture

models [18], [19], the endochronic models [20]–[22], and the damage models [23]–[29]. In civil

engineering, a large number of FE programs were developed using various constitutive models in

order to identify the concrete behavior. These programs are mainly created by using the Procedural

Oriented Programming (POP) technique where each program collects a set of functions and

subroutines. The reliability of the POP paradigm in processing complex algorithms was

demonstrated. However, this approach does not address quality issues and program design. Programs

created via POP paradigm have intricate control strategies, and internal data representation, therefore,

these codes face difficulty in their maintenance and update process. In fact, the development of finite

element software is a very complicated process that takes long and hard work to provide a commercial

code. Hence, the main goal in developing a new FE Software is to keep maintenance, modification,

and updating as simple as possible, which the Object-Oriented Programming paradigm (OOP) can

easily offer

One of the most used models for concrete behavior was developed by Lubliner et al [26] under

the name Plastic Damage Model (PDM). On one hand, the PDM suggested by Lubliner considers the

elastic stiffness degradation caused by the plastic straining (for both cases tension and compression),

Introduction

7

but unfortunately on the other hand, the suggested form cannot address the cyclic/dynamic loading.

To overcome this issue, Lee and Fenves [28] developed a second form of the PDM where several

modifications in the initial form were suggested. The initial form of the PDM was implemented in a

standard finite element program for the first time by Oller et al [30] using the Procedural Oriented

Programming (POP) technique. Later, Lee and Fenves [31] suggested a return-mapping algorithm to

implement the recent form of the PDM. Also, Ahmed et al [32] implemented the second form of the

PDM using a novel stress decomposition. The PDM was implemented in the finite element code

ABAQUS under the name Concrete Damaged Plasticity Model (CDPM). The use of CDPM in

ABAQUS requires several parameters which are: the stress-inelastic strain diagrams and the damage

parameters evolution for compression and tension cases, the ratio cK , the eccentricity, the ratio

0 0/b cf f , the dilation angle , and the viscosity parameter. The calibration of these parameters with

experimental data complicates the use of the CDPM in ABAQUS which deeply diminishes its

efficiency.

The aim of this work is to develop a computer code under the name “Concrete” to model

cylindrical and cubical concrete samples using the PDM as a constitutive model with minimum

numbers of required parameters. This work provides in the first chapter a full overview of the

constitutive models available in the literature, where a detailed description of several categories of

models was provided namely; the empirical models, the linear and the nonlinear elastic models, the

plastic models, the fracture models, the endochronic models, and the Damage models.

The second chapter of this thesis provides an overview of two well know finite element

implementations of the PDM which were developed by Oller and Lee respectively. A new numerical

methodology was delivered in this chapter to compute the compressive and the tensile stress-strain

curves and the damage parameters evolutions in accordance with the Model Code recommendations

[33]. The developed numerical approach is based mainly on Lubliner formulas [26] and Alfarah

formulas[23]. Furthermore, default values were suggested for each; the ratio cK , the eccentricity,

the ratio 0 0/b cf f , and the dilation angle . A full description of the proposed finite element

implementation of the PDM was delivered in this chapter where a new closed-form solution of the

plastic multiplier was provided, in addition to the derivative of each; the yield function with respect

of stresses, the derivative of the yield function with respect of inelastic strain, and the derivative of

the potential function with respect of stresses.

Introduction

8

The third chapter presents the user manual of the second version of “Concrete”, in addition to

the used coding paradigm, and the used libraries. Also, a detailed description of the PDM class was

provided in this chapter including the required fields, functions, and subroutines, in addition to the

used algorithms. Finally, the last chapter presents a complete validation of the developed computer

code “Concrete v2.0.0” by comparing its outcomes (stress-strain curves) with experimental evidence

and with analytical solutions. Likewise, the suggested methodology for computing the stresses and

the damage parameters evolution was examined through a comparative study with solutions from the

literature. Also, the mesh sensitivity was examined in this chapter

Chapter I: The constitutive models for concrete: Overview

9

Chapter I : The constitutive models for
concrete: Overview

Chapter I: The constitutive models for concrete: Overview

10

I.1 Introduction

Concrete is one of the most used materials in the construction field. In fact, the use of concrete

is twice time more than the use of all other construction materials. Thus, the pervasive use of this

material dictates a thorough understanding of the real behavior of concrete. As demonstrated in the

literature, the concrete stress-strain behavior under uniaxial compression or tension loading is

nonlinear. Therefore, simulating the concrete behavior with linear models in the numerical modeling

using FEM leads to inaccurate results which makes the non-linear models an unavoidable key to

minimize the error margin. An accurate solution for a concrete structural problem depends mainly on

the used constitutive model that must be describe the real behavior of concrete. In fact, the concrete

behavior is very complicated since it is not the same in the compression and the tension cases. It can

be said that perhaps impossible to find any phenomenological approach can describe all the possible

variations of concrete characteristics.

Several constitutive models were developed in the few last decades in order to simulate the

complex behavior of concrete. These models are classified according to Babu et al [34] in seven

categories. The first one is the empirical models [3]–[5] where the constitutive equations are mainly

developed basing on the outcomes of the experimental tests. The second category based on the Hook’s

low and baptized the linear elastic models [6]–[8]. The third is called the nonlinear elastic models

[9]–[12] which are mainly characterized by the nonlinear stress-strain relationship. The forth category

adopt the plasticity theory to describe the concrete behavior [13]–[17]. The category number five

called the fracture models [18], [19] where the models are based on the concept of propagation of

microcracks. In the aim of eliminating the yield function complexity, anther category of models was

developed under the name endochronic models [20]–[22], but in the few last decades the development

of this type of models has no more supported by the scientific community. Finally the last category

of models is the damage models [23]–[29] where the constitutive equations consider the damage

parameters evolution and the loss of cohesion.

One of the most innovative models for concrete was developed by Lubliner et al [26] under the

name Plastic Damage Model (PDM), and upgraded by Lee and Fenves [28] to overcome the inability

of handling the cyclic / dynamic loading. The recent form of this model was exploited in several

research works. For instance, Javanmardi and Maheri [35] used Lee and Fenves form to predict the

crack propagation paths. Also, Bilal et al [32] suggested a novel stress decomposition using the work

of Lee and Fenves. Similarly, Poliotti and Bairán [36] developed a new constitutive plastic-damage

model with evolutive dilatancy. The second form of this model was implemented in the finite element

Chapter I: The constitutive models for concrete: Overview

11

code ABAQUS in the late of ‘90s under the name Concrete Damaged Plasticity Model (CDPM). The

package software ABAQUS has been widely used in the numerical modeling of concrete using

CDPM. For instance Silva et al [37] used CDPM to simulate the concrete damage. Likewise, Ren et

al [38] used the CDPM in the numerical simulation of prestressed precast concrete bridge deck panels.

Furthermore, Othman and Marzouk [39] used it to simulate ultra-high performance fibre reinforced

concrete material under impact loading rates at different damage stages. The CDPM has been widely

used in the concrete numerical modeling where the following parameters are required:

- The stress-inelastic strain diagram for compression.

- The stress-inelastic strain diagram for tension.

- The ratio of the second stress invariants on tensile and compressive meridians (Kc).

- The eccentricity ().

- The ratio of biaxial compressive yield stress to uniaxial compressive yield stress. (

/0 0f fb c)

- The dilation angle in the p-q plane ().

- The viscosity parameter.

- The compressive damage parameter evolution.

- The tensile damage parameter evolution.

The main inconvenience of CDPM is that the outcomes are strongly depend on these parameters,

values. Thus, all parameters must be calibrated with experimental tests. Furthermore, both of the high

complexity and sensitivity of the calibration process deeply diminishes the CDPM efficiency.

This chapter presents a full description for each of the linear and nonlinear elastic models,

Plasticity models, endochronic models, empirical models, and the damage models

I.2 Linear and nonlinear elastic models

The linear elastic model is the simplest constitutive model for modeling the concrete behavior.

This constitutive law presumes that there is a linear relationship between stress and strain governed

by the Hooke law and the stress tensor is generated only by the elastic strain (the plastic part equal to

zero). In the linear elastic model, concrete is treated as linear elastic until it reaches ultimate strength.

For concrete under tension, since the failure strength is small, linear elastic model is quite accurate

and sufficient to predict the concrete behavior till failure. Linear elastic stress-strain relation can be

written as:

 .D  (1.1)

Chapter I: The constitutive models for concrete: Overview

12

Where D represents the constitutive matrix given by:

1D 2D 3D

D E

1 0

1 0
1

1
0 0

2

E
D







 
 
 

    
 
 

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

2(1)(1 2)
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

E
D

  
  
  



 




 
 

 
 
 

 
     

 
 
  
 

Both linear and nonlinear elastic materials are characterized by the elastically return to the

“unloaded” state after loading but the main difference between them is the stress-strain relationship

is linear for the linear elastic materials and more complex in the nonlinear case (the stress-strain

relationship is nonlinear). In fact the nonlinear elastic models represent an extension of linear elastic

models. Since the stress-strain relationship for concrete is nonlinear, the linear elastic model cannot

provide accurate outcomes and the error margin becomes significant particularly for the compressive

case. For the nonlinear case, two approaches can be used to model the nonlinear elastic materials.

The first approach is the tangential stiffness method where the stiffness degradation is considered as

failure is approached and the global stiffness matrix must be evaluated for each iteration. The second

approach called the constant stiffness method in which the global stiffness matrix is evaluated once

only in the iteration beginning. In this approach, the non-linearity is considered by iteratively

modifying the loads vector.

Several criteria are available in the literature to define the failure for linear and nonlinear elastic

models. The most reputed ones are defined through several independent control parameters (one until

five parameters). Menetrey and Willam [40] developed one of the most sophisticated failure criteria

basing on the work of Hoek and Brown with some modifications. The failure criteria suggested by

Menetrey and Willam takes the following form:

' ' '

¨
(, ,) 1.5 (,) 0

6 3c c c

p p
f p m r e c

f f f

  
  

      
    

 (1.2)

Where
1

3

I
  is the hydrostatic stress invariant. p is the deviatoric stress invariant. is the

deviatoric polar angle and (,)r e is an elliptic function.

Chapter I: The constitutive models for concrete: Overview

13

I.3 Plasticity models

Plasticity models were largely used in the few last decades to simulate the concrete behavior

using the finite element method. In this category of models, the incremental strain can be divided to

elastic and plastic parts. Two cases can be raised, the first one is when the plastic part of the

incremental strain takes a value equal to zero which means that the stress state lies inside/ or in the

yield surface (typically corresponds to purely elastic response which detected when the yield function

takes a negative/zero value). The second case correspond the stress state is inaccessible (outside the

yield surface which detected when the yield function takes a positive value).

In the literature, two kinds of the yield functions were developed. The first one is the yield

functions that influenced by the hydrostatic pressure and the second one is that completely

independent of the hydrostatic pressure. Bridgman demonstrated that hydrostatic pressure has a

negligible effect on the yield point for large number of materials such as concrete which has a

behavior influenced by the effect of hydrostatic pressure. For instance, table 1.1 summarizes various

well-known yield functions from both kinds. A number of models were developed specifically for

concrete such as Menetrey and Willam [40] and Ottosen [41] where several modifications into the

plasticity theory were suggested to compute the strain and the stress.

Table 1.1: Types of the yield functions
Type Yield function
Pressure independent - Tresca

- Von-Mises
- Rankine

Pressure dependent - Mohr-Coulomb
- Drucker-Prager
- Mises-Schleicher

As explained previously, in the plasticity theory the total strain increment is the sum of the elastic

part and the plastic part of strain increment, so the total strain increment can be written as:

     pe       (1.3)

Where the plastic component can be evaluated according to flow rule by:

  Gp d 



 


 (1.4)

With d  is the plastic multiplier and G is the potential function. The incremental stress can be

evaluated from the incremental elastic strain according to following relationship:

Chapter I: The constitutive models for concrete: Overview

14

   [] eD   (1.5)

Where []D represent the elastic constitutive matrix.

By using Eqs (1.3),(1.4) , and (1.5), the incremental stress can be evaluated by:

   [] []
G

D Dd  


 





 (1.6)

For concrete material, Han and Chen [42], Dvorkin et al. [43] suggested to use the Drucker-

Prager yield function as potential function in order to evaluate the plastic strain, the potential function

suggested by Han and Chen [42], Dvorkin et al. [43] takes the following form:

1 2G I J C   (1.7)

Where:

 Coefficient that can be calculated by

1

3 (1)
p

p
v








 

with
p
v is the volumetric part of the plastic strain that equal to the second invariant of

stress tensor

1I first invariant of stress tensor

2J second invariants of deviatoric stress tensor

C constant

Vermeer and de Borst [44] used the constitutive model of Mohr-Coulomb to provide a new

potential function where the main modification is substituting the internal friction angle  by the

dilatancy angle  . The potential function suggested by Vermeer and de Borst [44] is given by:

1
2

sin sin
sin (cos)

3 3

I
G J

     (1.8)

Where:

 Lode angle
 Dilatancy angel

Chapter I: The constitutive models for concrete: Overview

15

I.4 Endochronic theory of inelasticity

The main challenge in the plasticity models is finding the suitable correlations of the yield and

the potential functions. To overcome this issue, another type of models was developed which did not

require the existence of the yield function. This type of models is based on the concept of endochronic

(or intrinsic) time calculated based on strain or stress and can be used to evaluate the structure damage.

This model was initiated in 1971 by Valanis [45] to handle metals material and extended in 1976 by

Bazant and Bhat [22] to address concrete material. In 1986 Reddy and Gopal [46] suggest a new form

of this model in order to simulate the fibre reinforced concrete structures.

The major inconvenience of the Endochronic model is its complexity and a large number of the

required parameters for the development and the application of this model, which significantly limit

its use. Consequently, in the few last decades, this model has no more supported by the scientific

community.

The intrinsic time ξ introduced by endochronic theory is given by:

0 ()

d

f

 


  (1.9)

Where ()f  is the history-dependent material function takes values greater than zero and 0d  .

The typical constitutive equation for endochronic theory with pseudo-time measure ξ takes the

following formula:

'
'

0

() kl
ij ijklE

 
  




 
 (1.10)

I.5 Empirical models

In this category, the constitutive law is obtained from a series of experiments tests, where the

experimental outcomes are used to develop functions described the material behavior. The big

challenge in developing an empirical model is how to obtain the experimental data, especially after

the peak point. In fact, the test process for compression and tension cases is very complicated and

requires sophisticated equipment. Most testing machines use increasing loads instead of deformations

to record the stress-strain curves for the standard compression/tensile tests, resulting in uncontrolled

sudden failure after peak load. The experimental stress-strain curves are evaluated following the

specimen’s shape and height-to-width ratio, which differ from a country to another according to the

adopted standard. The specimen shape can significantly affect the stress-strain evolution, in particular

the ultimate strain in compression, relevant peak load and the value of the descending arm of strain.

Chapter I: The constitutive models for concrete: Overview

16

According to the European standard’s, the concrete stress-strain curves both in compression and

tension are evaluated based on a cylindrical specimen with a diameter-to-height ratio equal to 1/2,

e.g. specimens with dimensions 160x320 mm

Several research tried to provide correlations between the stress and the strain for both cases

compression and tension. Desayi and Krishan [47] suggested the following formula to describe the

stress strain relationship in the compression case:

21 ()
p

E 





 (1.11)

Where σ, ε are stress and strain tensors, E is Young’s modulus, εp is strain at peak stress.

In the same manner, Saenz[5] proposed the next correlation:

21 (2)() ()
p p p

E
E

E

  
 


  

 (1.12)

Where Ep is Young’s modulus at peak stress

Also, Smith and Young [48] suggested the following formula:

pE




 



 (1.13)

Furthermore, Richard and Abbott [49] proposed a three parameter stress-strain relation given as:

1
1

1

0

(1 ())
p

n n

E
E

E


 




 


 (1.14)

Where
pE is plastic modulus, 0 is a reference plastic stress,

1 pE E E  and n is a shape parameter

of stress-strain curve

Another simple form suggested by Mohamad Ali et al [50] is similar to the form proposed by Carreira

and Chul [51] given by:

Chapter I: The constitutive models for concrete: Overview

17

0

0

0

1 (1)()

R

R 








 

 (1.15)

Where
1

R

R
 



And R is a material parameter depends on the shape of the stress-strain curve takes value equal to 1.9

according to Mohamad Ali et al [50]. The material parameter can be estimated by

0

cE
R

E
 . (1.16)

With 0E is the concrete elasticity modulus and cE represent max. stress / strain at max. stress

Carreira and Chu [52] proposed a stress-strain relation for reinforced concrete in tension given by:

'

'

'1 ()

t

t

t



 
 



 

 (1.17)

Where
t is the stress that corresponds to the strain  , '

t represents the maximum stress, '
t

represents the strain corresponding to the maximum stress '
t ,  is a parameter depends on the

shape of the stress-strain diagram.

An equivalent uniaxial stress-strain relations was provided by Chen [6] for biaxial and triaxial stress

conditions of concrete. In the case of biaxial compression stress, Chen [6] suggest the following

formula:

0

0 21 (2) ()

iu

iu iu

s ic ic

E
E

E




 
 


  

 (1.18)

With:

0E Initial tangent modulus of elasticity

ic
S

ic

E





Secant modulus at the maximum (peak) compressive stress

ic Equivalent uniaxial strain corresponding to peak compressive principal stress

iu Equivalent uniaxial strain

Chapter I: The constitutive models for concrete: Overview

18

For triaxial tension and compression case, Chen [6] suggest the next formula:

0

2 301 (2) (2 1)() ()

iu

iu iu iu

s ic ic ic

E
E

R R R
E




  
  


     

 (1.19)

With

0

2

(1)

(1)

ic

if ic

ic if
s

if

E

R
E


 
 




 


 (1.20)

With ,if if  represent the coordinates of several points on the descending branch of the stress-

equivalent strain curve

I.6 Damage Models

Damage models are often used to describe the concrete behavior in tension and compression.

Continuum damage mechanics was suggested by Kachanov in the late ‘50s for creep related problems

and was applied to the progressive failure of materials. The earlier form of this category of models

was suggested by Dougill [53], [54], and define the plastic deformation through the flow rule and the

stiffness degradation is modeled by fracturing theory. Later, a recent form of damage models was

suggested using of a set of state variables computing the internal damage provided by an external

load. Table 1.2 presents the damage parameters state in several constitutive models available in the

literature. The main idea of these models is that the local damage in the concrete material can be

represented by damage variables that are related to the tangential stiffness matrix. Various categories

of damage models can be found in the literature such as elastic damage, plastic damage (Ju [55],

Lubliner et al [26] Lee et al. [28]), and damage model using bounding surface concept (Voyiadjis

[56]). In the late ‘80s, Krajcinovic [57] suggested using the damage mechanics to model accurately

the strain-softening response of concrete. Similarly, Lubliner et al [26] suggested substituting the

hardening variable in the overall form of classical plasticity by the plastic damage variable to describe

the strain-softening response of concrete for both cases compression and tension.

Chapter I: The constitutive models for concrete: Overview

19

Table 1.2: Representation of damage (Singh [58])

Damage variable as References

Scalar Kachnov [59], Rabotov [60], Simo and Ju [61], [62],

Ju [63] , Lemaitre [64]–[66], Chaboche [67], [68]

Vector Krajcinovic and Foneska [69], Krajcinovic [70]

Second rank tensor Kachanov, Dragon and Mroz, Cordebois and Sidoroff

Fourth order tensor Chaboche [71], Ortiz [72]

Eight order tensor Chaboche

Strain tensor Bazant and Kim [11], Nicholson [73]

I.6.1 Damage Plastic Model

I.6.1.1 General description

One of the famous damage models is provided by Lubliner et al [26] under the name Plastic

Damage Model for concrete. The main concept of this model is to substitute the hardening variable

in the overall form of classical plasticity by the plastic damage variable which varies between two

values (0 and 1), where the zero value represents the undamaged concrete and the value of one

represents the totally damaged concrete with full loss of cohesion. The fundamental equations of this

model are:

I.6.1.1.a The Yield function

max max

1
(3 3)

1
F p J c    


     


 (1.21)

With 𝛼, 𝛽 and 𝛾 are dimensionless parameters given by:

0 0

0 0

(1) / (2 1)b b

c c

f f

f f
    (1.22)

    0

0

1 1 c

t

f
R withR

f
       (1.23)

max max3(1 / (2 1))oct octr r    (1.24)

Chapter I: The constitutive models for concrete: Overview

20

Here:

J Deviatoric stress,

p

Mean stress,

max

The maximum principal effective stress,

0

0

b

c

f

f

The ratio of biaxial and uniaxial compressive yield strengths. According to Wu
and Faria [74], /

0 0
f f
b c

takes a value between 1.10 and 1.20. In ABAQUS [75],

the default value is 1.16,

0tf

The initial uniaxial tensile yield stress,

c

Cohesion,

max
octr

Constant takes a value of 0.65 according to Oller et al [30],

X 

Macaulay bracket and takes the form:

2

X X
X


 

I.6.1.1.b The potential function:

A non-associated potential plastic flow was suggested by Lubliner et al [26], where the potential

function G takes the same form of the classical Mohr-Coulomb yield function with substituting the

friction angle by the dilation angle . It takes the following form:

sin sin
 s (cos)

3
G p in J

     (1.25)

Where:

J Deviatoric stress,
p Mean stress,
 The dilation angle,
 Lode angle.

The main weakness of the yield function and the potential function suggested by Lubliner et al

[26] is their inability to handle the dynamic loading. Hence, a second form of this model was

developed by Lee and Fenves [28] to address the dynamic loading. The following modifications were

proposed:

Chapter I: The constitutive models for concrete: Overview

21

The Yield function

- Substituting cohesion “ c ” by effective compressive cohesion stress c

- New formulas for  parameter and zero value for  parameter. In our work  parameter will

be considered, these parameters are given by:

    1 1c

t

  


    (1.26)

 3 1

2 1
c

c

K

K






 (1.27)

Where:

cK The ratio of second stress invariants on tensile and compressive meridians.

For Mohr-Coulomb yield surface, Kc takes a value of 0.7 [23].

c The effective compressive cohesion stress

t The effective tensile cohesion stress

As a result, the second form of the yield function suggested by Lee and Fenves [28] is written as:

 max max

1
3 3

1 cF p J     


     


 (1.28)

In order to extend the yield function suggested by Lee and Fenves [28] to handle the triaxial

compression stress states, Zhang et al [76] proposed the next correlation for the yield function:

2 1 max 0 max 1 max max

1 max 0 max

3 () () ()
()

1 () () c

J H H I k
F k

H H

       


   
        

  
 (1.29)

 Figure 1.1: Yield surface in the deviatoric plane

Chapter I: The constitutive models for concrete: Overview

22

With

0 (0)

() (0)

1 (0)

x

H x x

x
 


 
 

 ,    ()

()
 1 1c

t

c k

c k
      ; and

t

c

k
k

k

 
  
 

Typical yield surfaces are shown in Figure 1.1 on the deviatoric plane and in Figure 1.2 for plane

stress conditions.

The potential function

By using the Drucker-Prager hyperbolic function, a new formula for the potential function was

developed by Lee and Fenves [28] given by:

0
2 2 (tan) 3 tantG J p     (1.30)

Here,

0t The uniaxial tensile stress at failure,

 The flow potential eccentricity (0.1 in ABAQUS).

According to the Model Code recommendations [33], the value of 0t is related to the concrete grade:

Figure 1.2: Yield surface in plane stress

Chapter I: The constitutive models for concrete: Overview

23

For concrete grade ≤ C50

2 /3
0 0.3016 t tm ckf f   (1.31)

For concrete grade > C50

  0 2.12 ln 1 0.1 8t tm ckf f     (1.32)

With ckf is the characteristic value of concrete compressive strength,

Following ABAQUS user manual [75], the default value of the flow potential eccentricity is 0.1.

This value indicates that the material has the same dilation angle over a wide range of confining

pressure stress values. Values of the flow potential eccentricity that are greater than 0.1 provides more

curvature to the flow potential, which means that the dilation angle increases more rapidly as the

confining pressure decreases. Values of the flow potential eccentricity that are significantly less than

the default value may lead to convergence problems according to ABAQUS user manual [75].

The estimation of the yield function “F” and the potential function “G” values is a step key in the

finite element implementation of any non-linear constitutive model. For instance, Figure 1.3 shows

the necessary steps adopted in the implementation of DPM for static loading.

To implement DPM, the following steps must be followed:

- Calculation of the yield function value in order to identify the material state which is

elastic behavior if F < 0, plastic (or elastoplastic) behavior if F = 0 and impossible

situation if F > 0. (The derivative of the yield function is used only to correct the stress

state for F>0)

- Calculation of the potential function value and the derivative of the potential function

to evaluate the plastic strain.

The required parameters to identify the yield function F and the potential function G are

summarized in Table 1.3

I.6.1.2 Estimation of the effective tensile and the effective compressive cohesion stress

In order to evaluate the value of the yield function, the parameters , ,  and must be identified

using Eq(1.22) and Eq(1.27) for  and , respectively. From Eq(1.26), the estimation of  is related

to the values of each; the effective tensile and the effective compressive cohesion stresses that can be

estimated by:

Chapter I: The constitutive models for concrete: Overview

24

Table 1.3: Required parameters of DPM

Parameter Default value/Estimation methodology

 The uniaxial tensile stress at failure

 The eccentricity

 The dilation angle

 The ratio of the second stress invariants on tensile and compressive meridians

The ratio of biaxial compressive yield stress to uniaxial compressive yield stress.

 The compressive stress

 The tensile stress

 The compressive damage parameter

 The tensile damage parameter

For each load increments

Estimate the stiffness matrix [𝐾]

Evaluate the residual load vector (repeat

until reaching convergence)

Find displacements increment by solving

For each element and each Gauss point

Estimate the strain, the stress vectors, and
the value of the yield function F

If F >0 then correct the

stress tensor, evaluate the

plastic strain, internal

force, and update stress

and strain then go to the

next Gauss point. (The

potential function G is

required)

If F≤0 then
update

stress and
strain then
go to the

next Gauss
point

Figure 1.3: Implementation of DMP in “Concrete v2.0”

0t



cK

0 0/b cf f

c

t

cd

td

Chapter I: The constitutive models for concrete: Overview

25

1

1

t
t

t

c
c

c

d

d





  

 
 

 (1.33)

Where

cd the compressive damage parameter

td the tensile damage parameter

c the compressive stress

t the tensile stress

The compressive and tensile stresses can be evaluated from the stress-strain curves as shown in

Figures 1.4 and 1.5.

To generate the stress-strain curves, two main alternatives can be used:

 User data: where the user supplied either the stress-inelastic strain data or the stress-

strain data.

 Auto-estimation: where the stress-inelastic strain data or the stress-strain data are auto-

evaluated basing on the characteristic value of concrete compressive strength.

I.6.1.2.a User data

In this approach, the stress-strain or the stress-inelastic strain curve is supplied by the user as a

set of points. The strain-inelastic strain correlations are given by:

Figure 1.4: Response of concrete to
uniaxial loading in tension

 1 2

Figure 1.5: Response of concrete to
uniaxial loading in compression

1 2 3

Chapter I: The constitutive models for concrete: Overview

26

0

0

ck t
t t

in c
c c

E

E

 

 

  

  


 (1.34)

Where E0 is the initial undamaged stiffness, ck
t is the tensile inelastic strain (the cracking strain),

in
c is the compressive inelastic strain (crushing strain).

Also, the damage parameters in this approach can be estimated by:

- For the tensile damage parameter, Hafezolghorani et al [77] suggested a simple correlation

takes the following form:

0

1

t t tm

t
t t tm

tm

d if

d if
f

 
  

 

   

 (1.35)

- For the compressive damage parameter, Hafezolghorani et al [77] and Yu et al [78]

suggested the following correlation:

0

1

c c cm

c
c c cm

cm

d if

d if
f

 
  

 

   

 (1.36)

Finally, the damage parameter can be evaluated as:

  1 1 1 t c c td s d s d    (1.37)

Where 𝑠௖ and 𝑠௧ are the stress state evaluated by:

  
 

*
11

*
11

1- 1-

1-

c c

t t

s h r

s h r





 



 (1.38)

Where

ch and th are weighting factors that varying between 0 and 1

 *
11r  is the unit step. For uniaxial loading:   11*

11
11

1 0

0 0

if
r

if







  
 (1.39)

In the case of multiaxial loading conditions, the computing of the damage parameter is based

on the same formula with replacing the unit step function  *
11r  by the multiaxial stress weight

factor  r  which given by:

Chapter I: The constitutive models for concrete: Overview

27

   

3

1
3

1

 ;0 1
i

i

i
i

r r


 






  



 (1.40)

Another formula of the damage parameter provided by Demin and Fukang [79] takes the

following form:

0

1d
E




  (1.41)

I.6.1.2.b Auto-estimation

Several research works were provided to auto evaluate the stress-strain diagrams and the stress-

inelastic strain and the damage parameters evolution. Lubliner et al [26] suggested a simple approach

for auto computing the stress- inelastic strain both in tension and in compression cases. According to

Lubliner et al [26], the relations of stress- inelastic strain both in tension and in compression are given

by:

 

 

0

0

2
1

2
1

in in
c c c c

c c c c

ck ck
t t t t

t t t t

b b
f a e a e

b b
f a e a e

 

 

       
  


        

 (1.42)

Where 0cf and 0tf are the compressive and tensile stresses that correspond respectively to zero

crushing (0in
c ) and zero cracking (0ck

t ).

, , c t ca a b , and tb are dimensionless coefficients evaluated from the correlation of

tensile/compressive energies per unit of volume dissipated by damage along entire deterioration

process (See Figures 1.6-1.7), which are given by:

0

0

 d

 d

in
c c c

ck
t t t

g

g

 

 





 

 




 (1.43)

By replacing the tension and compression stresses of Eq (1.42) in Eq (1.43), the following

formula is obtained:

 

 

0

0

 1 0.5

 1 0.5

c
c c

c

t
t t

t

f
g a

b

f
g a

b

  

  


 (1.44)

Chapter I: The constitutive models for concrete: Overview

28

Since /c ch eqg G L and /t F eqg G L , the coefficients cb and tb take the following form:

 0 1 0.5 c eq
c c

ch

f L
b a

G
  (1.45)

 0 1 0.5 t eq
t t

F

f L
b a

G
  (1.46)

Where:

chG The crushing energy per unit area.

FG The fracture energy per unit area.

eqL The mesh size (finite element characteristic length). For a brick element, the mesh

size value is computed as the volume divided by the largest face area.

According to Alfarah et al [23], by zeroing derivatives of c and t in Eq (1.42) with respect to

the compressive and tensile inelastic strains, respectively, the maximum values cmf and tmf are

obtained by:

   2 2

0 01 1
;

4 4
c c t t

cm tm
c t

f a f a
f f

a a

 
  (1.47)

As result, the coefficients ca and ta take the next forms:

2

0 0 0

2 2cm cm cm
c

c c c

f f f
a

f f f

 
   

 
 (1.48)

Figure 1.7: Parts of compressive energy
dissipated by damage

Figure 1.6: Parts of tension energy
dissipated by damage

Chapter I: The constitutive models for concrete: Overview

29

2

0 0 0

2 2tm tm tm
t

t t t

f f f
a

f f f

 
   

 
 (1.49)

To compute the damage parameters evolution, Lubliner et al [26] suggested the following

correlation:

0

0

1
 d

1
 d

in
c

ck
t

in
c c c

c

ck
t t t

t

d
g

d
g





 

 

 

 





 (1.50)

A second approach for computing the stress-strain diagrams can be found in the literature

suggested by Alfarah et al [23] where for the uniaxial compression loading, Alfarah et al [23] (same

approach of Kratzig and Polling [29]) divided the stress-strain diagram into three parts as follow

(Figure 1.5):

- First part which is linear (until 0cf):

(1) 0c cE  (1.51)

- Second part that between 0cf and cmf :

2

(2)

()

1 2

c c
ci

cm cm
c cm

cm c
ci

cm cm

E
f

f

E
f

 



 






 
  
 

 (1.52)

- Third part after cmf :

122

(3) 2 2

fc cm cm c c
c c cfcm cm

   
  



      
 

 (1.53)

Where ciE is the modulus of deformation of concrete for zero stress.

 

2

2

0

 ;

2 0.5 (1)

pl
cm cm c

c in
c

ch cm
cm cm

eq

f
b

G f
f b b

L E

  




 
 

   
  

 (1.54)

chG The crushing energy per unit area.

eqL The mesh size (characteristic length).

pl
c The compressive plastic strain.

in
c The compressive inelastic strain

Chapter I: The constitutive models for concrete: Overview

30

For the tension case, Alfarah et al [23] suggested to split up the stress-strain curve into two part

as shown in Figure 1.4, where the stresses can be evaluated by:

- First part until tmf :

(1) 0t tE  (1.55)

- Second part after tmf :

 2
23 3

(2) 1 11 () 1c

w
c

w c
t tm

c c

w w
f c e c e

w w





          
 (1.56)

With:

w is the crack opening, given by  t tm eqw L   (1.57)

cw is the crack opening at fracture, given by 5.14 F
c

tm

G
w

f
 (1.58)

FG : The fracture energy by unit area. According to the Model code recommendations [33] FG takes

the following form:

0.180.073 F cmG f (1.59)

1c and 2c are dimensionless coefficients. According to Hordijk [80] 1c and 2c take values equal to

3 and 6.93 respectively.

Alfarah et al [23] suggested a closed-form expression for the damage parameters given by:

 

 

2

2

1
1 2 1

2

1
1 2 1

2

in in
c c c c

ck ck
t t t t

b b
c c c

c

b b
t t t

t

d a e a e
a

d a e a e
a

 

 

 

 

       

       

 (1.60)

According to Alfarah et al [23], the coefficients ca and ta are evaluated by considering

0 0.4 c cmf f and 0 t tmf f (using the Model code recommendations). As results, the values of ca and

ta are 7.873 and 1, respectively. The coefficients cb and tb are estimated according to Eqs (1.45)

,(1.46)

In brief, Alfarah et al suggested a new algorithm in the aim to compute the stress-strain curves

and damage parameters evolution that can be summarized in the following steps (All stress values

are in MPa):

a- Enter each of; the concrete compressive strength ckf , the mesh size eqL , and the initial value of b

is equal to 0.9.

Chapter I: The constitutive models for concrete: Overview

31

b- Evaluate the compressive/tensile stress strength by: 8cm ckf f  and 2/30.3016 tm ckf f

c- State the strain at compressive stress strength as 0.0022cm 

d- Evaluate the initial tangent modulus of concrete deformation 1/310000 ci cmE f and the undamaged

modulus of deformation 0 0.8 0.2
88

cm
ci

f
E E

   
 

.

e- Compute the crushing/fracture energy (N/mm) as

2

 cm
ch F

tm

f
G G

f

 
  
 

 and FG from Eq(1.59)

f- Compute the critical crack opening from Eq(1.58)

g- Build the compressive stress-strain curve using Eqs (1.51), (1.52), and (1.53).

h- Build the tensile stress-strain curve using using Eqs (1.55),(1.56)

i- Compute the coefficients b c and bt by Eqs(1.45),(1.46) using the default values of ca and ta (

7.873ca  and 1ta ).

j- Compute the compressive/tensile damage parameters using Eq(1.60).

k- Calculate the compressive and tensile plastic strains:

 0 1
pl in c c
c c

c

d

E d


  


 (1.61)

 0 1
pl ck t t
t t

t

d

E d


  


 (1.62)

l- Calculate the average value of the ratio b using Eq(1.54) and compare it with the assumption in

step A. Repeat until reaching convergence.

I.7 Conclusion:

This chapter describes various categories of concrete constitutive models that can be used for

modeling concrete behavior, each of linear and nonlinear elastic models, plasticity models,

endochronic model, empirical models, and damage models were described in detail where the

following points can be outlined:

 The linear elastic models provide accurate results for an elastic material subjected to small

strains which is not the case of concrete material where the strain values can be important.

Also for nonlinear elastic models, it can address the large strain but shows a major failure in

the case of non-elastic materials.

Chapter I: The constitutive models for concrete: Overview

32

 The category of plasticity models can perfectly address small and large strains of both elastic

and plastic cases but on the other hand, two main inconveniences can be observed. The first

is the non-ability of handling the concrete degradation (the damage evolution) which provides

a large margin of error specifically after the peak point (on the stress-strain curve), the second

is that the concrete behavior is not the same for tension and compression cases. As result, the

use of plasticity models to describe the behavior of damaged concrete structures provides

inaccurate outcomes.

 For complexity reasons, the endochronic model is no more supported by the scientific

community. Furthermore, on the first hand, the use of this model for concrete needs several

improvements specifically to evaluate the step time, but on the other hand, more suitable

models can be found in the literature to describe the concrete behavior without the need to an

additional improvement.

 The only suitable category of models that can be used to model damaged concrete structures

is the Damage Plastic Models for several logical reasons, which are; first, the ability to address

small and large strain, second, this category of models can be used to address the plasticity of

concrete material, the third reason is that can be used to handle the concrete degradation, and

so to evaluate the damage parameters, the fourth is the compatibility in the compression and

the tension cases. As result, the development of “Concrete” will be based mainly on this type

of models as demonstrated in the next chapter

Chapter II: Finite element implementation of Damage Plastic Model

33

Chapter II : Finite element implementation of
Damage Plastic Model

Chapter II: Finite element implementation of Damage Plastic Model

34

II.1 Introduction:

The finite element implementation of the plastic damage model is a very complicated process

due to the complexity of the related calculation such as the estimation of the plastic strain where the

plastic multiplier must be identified. The two most common implementations of PDM were provided

in the ’90s by Oller et al [30] and Lee and Fenves [31] where both forms of the PDM were coded.

The first form of the PDM was implemented by Oller et al [30] using the yield function and the

potential function provided by Lubliner et al [26]. The general procedure of the implementation

process was delivered in the work of Oller et al [30] where the authors provided the estimation process

of each; the plastic damage variables, the evolution of the internal variable of the cohesion, the

internal friction angle, dilatancy angle, and the stiffness degradation. Unfortunately, the key steps for

the development of our computer code are not provided in this work, especially the closed-form

solutions of the plastic multiplier, the derivatives of the yield function and the derivative of the

potential function. In the late ’90s, Lee and Fenves [31] suggested a return mapping algorithm in

order to implement the second form of the PDM where the yield function and the potential function

provided by the same authors in [28] were used. The full description of the implementation process

of the second form of PDM was delivered in the work of Lee and Fenves [31] where they provided

the estimation process of the plastic damage variables and the closed-form solution of the plastic

multiplier in addition to the evaluation process of the tangent stiffness matrix. The algorithm provided

in this work was used in the famous finite element code ABAQUS under the name Concrete Damage

Plasticity Model (CDPM). In the other hand, the use of the CDPM requires multiple parameters

namely; the stress-inelastic strain diagram for compression and tension cases, the damage parameters

evolution for compression and tension cases, the ratio of the second stress invariants on tensile and

compressive meridians, the eccentricity, the ratio of biaxial compressive yield stress to uniaxial

compressive yield stress, and the dilation angle. The outcomes of ABAQUS strongly depend on the

values of these parameters. Thus, all parameters must be calibrated with experimental tests.

Furthermore, both the high complexity and sensitivity of the calibration process deeply diminish the

CDPM efficiency. Few research works addressed this problem with the aim to reduce the number of

parameters needed in the calibration process and identify their typical values. Szczecina and Winnicki

[81] recommended the values of 0.0001 and 5 degrees as typical values for the viscosity parameter

and the dilation angle, respectively. In a related study, the same authors [82] advised assessing the

dilation angle and the fracture energy in compliance with the results obtained from Strut-and-Tie

method and laboratory tests. Sümer and Aktaş [83] proposed a closed-form solution for evaluating

the compressive damage parameter. As well as Demir et al. [84] examined the role of the viscosity

Chapter II: Finite element implementation of Damage Plastic Model

35

parameter in the numerical simulation of RC deep beams and concluded that 0.0005 is the typical

value for the viscosity parameter. Likewise, Bhartiya et al [85] employed a new algorithm to evaluate

the dilation angle. In a different manner, experimental results were exploited from Silva et al [86] to

calibrate the dilation angle , the eccentricity , the ratio /0 0f fb c , the ratio Kc , and the viscosity

parameter μ.

Important research efforts were employed to avoid the problems due to the complexity and the

sensitivity of the calibration process of both the stress-inelastic strain and the damage parameters

diagrams. Thus, Lubliner et al [26] proposed a closed-form solutions for both of; the stress-inelastic

strain and the damage parameters. Similarly, closed-form solutions were developed by Alfarah et al

[23] to compute the damage parameters and generate the stress-strain diagrams. Differently, Behnam

et al [87] developed an analytical approach to evaluate the damage parameters evolution in terms of

corresponding inelastic strains. Moreover, they elaborated an analytical approach to estimate the

stress-strain diagram under compressive loading. Likewise, Yangjian et al [88] exploited an analytical

approach to compute the stress-strain diagrams. Additionally, the authors created closed-form

solutions to calculate the damage parameters evolution. While Bhartiya et al [85] used a new

algorithm to evaluate the stress-strain diagrams.

In order to facilitate the use of the second form of the PDM, several enhancements in the finite

element implementation of PDM were suggested in this chapter to minimize the number of the

required parameters and to provide closed-form solutions for each of the plastic multiplier, the

derivative of the yield function with respect to the stress tensor, the derivative of the yield function

with respect to the compressive inelastic strain, and the derivative of the potential function with

respect to the stress tensor. Furthermore, a full description of the finite element implementation of

the PDM has been provided in this chapter including the used algorithms and the coding technique

II.2 Oller’s implementation of PDM

In 1990, Oller et al [30] published the first finite element implementation of PDM where the

developed code handle the complex behavior of concrete using the classical plasticity theory provided

an adequate yield function to simulate the tension and the compression responses of concrete. Thus,

the cracking paths can be detected through the local damage effect, which is estimated by the

evolution of the damage parameters in tension and compressions cases. This work described perfectly

the estimation process of each; the plastic damage variables, the evolution of the internal variable of

cohesion, and the internal friction angle. The work of Oller used the first form of the plastic damage

model which can not address the dynamic loading.

Chapter II: Finite element implementation of Damage Plastic Model

36

II.2.1 Fundamental equations:

The total strains increment can be divided into elastic and plastic parts, according to the next

correlation:

1 p e p
eD        (2.1)

With: eD is the elastic constitutive matrix

In order to calculate the plastic strain increment, Oller suggested using the flow rule which can be

defined for the general case of non-associated plasticity as:

p G
d d g  




  


 (2.2)

Where d is the plastic multiplier and g is the plastic flow vector that presents the derivative of the

potential function with respect to the stress tensor. Unfortunately, both the closed-form solutions of

the plastic multiplier and the derivative of the potential function are not provided in the work of Oller

The incremental stress can be evaluated by:

epD    (2.3)

With epD represents the elastoplastic constitutive matrix given as:

e e
ep

e

e

G F
D D

D D
F G

D A

 

 

                     
               

 (2.4)

Where A is the hardening/Softening parameter evaluated according to Potts and Zdravkovic [89] by

the next formula

 1
T

F
A k

k
   
 

 (2.5)

For perfect plasticity the derivative of the yield function F

k

 
  

 takes a value equal to zero which

provides zero value for the parameter A. Otherwise, the estimation of parameter A can be performed

by:

Chapter II: Finite element implementation of Damage Plastic Model

37

 
  1

T
p

p

kF
A

k


 
      

where
 
 p

k
const







 (2.6)

II.2.2 Definition of the compressive and the tensile Plastic Damage Variables

For uniaxial tension and compression tests, Oller et al [30] suggested using Lubliner’s [26] formulas

in order to evaluate the compressive and the tensile damage variables. For the tensile case, the damage

variable can be estimated by:

0

1 t
ck

t t t
t

k d
g

   (2.7)

For the compressive case, the damage variable can be estimated by:

0

1 t
in

c c c
c

k d
g

   (2.8)

With tg and cg are the specific plastic works, defined by the areas presented in Figures 1.6 and 1.7

For a multiaxial stress state, Oller et al [30] suggested the following formula to evaluate the damage

variables (written in terms of principal stress and plastic strain):

3

1

(, ,) ()p p
k ki i

i

k h k c h  


     (2.9)

With:

3 3

* *1 1
* *

1 1
; ;

i i
i i

ki i i t t c c
t c t c

h g g g g
g g

 
 

 
 


    

 

Where c and t denote values obtained from uniaxial compression and tension tests, respectively.

II.2.3 Estimation of the stiffness degradation:

Considering the stiffness degradation effects required revaluating the elastic secant constitutive

matrix D following two internal variables: the elastic and the plastic degradation variables. Oller et

al [30] suggested using the simplest assumption for elastic degradation based on a simple isotropic

degradation variable
ed where the secant constitutive matrix is modified by:

0() (1)e eD d d D  (2.10)

Chapter II: Finite element implementation of Damage Plastic Model

38

Where 0D represents the initial stiffness matrix and
,0

1
ee wd e   . With ,0ew is the square of the

undamaged energy norm of the strain and  is a constant.

For plastic degradation, a simple one-parameter model has also been used in the work of Oller. The

plastic degradation takes place only in the softening branch and the stiffness is then proportional to

the cohesion. The secant constitutive matrix is thus given by:

() (1) ()p p eD d d D d  (2.11)

Where 1p
peak

c
d

c
 

Where c is the actual value of cohesion and
peakc is the maximum cohesion value reached.

II.3 Lee’s Implementation of PDM

Based on the second form of the plastic damage model, Lee and Fenves al [31] suggested a new

return-mapping algorithm for the finite element implementation of the PDM. The developed

algorithm can be used for a broader range of plastic-damage models. A new numerically stress

computation scheme was suggested for plane stress problems where rather than solving a multi-

dimensional iteration problem (where each of the plastic multiplier and two principal stresses are

typical independent unknowns), the dimensionless scalar variable is evaluated iteratively to overcome

the complexity and numerical difficulties occurring in multi-dimensional iterations. Also, the limits

of the scalar variable are derived to deliver a thinner range of iterations which reduce significantly

the required number of iterations to achieve the convergence of the algorithm

II.3.1 Fundamental equations:

a- The correlations between the stress  and the effective stress 

(1)d   (2.12)

0 () 2 () ()p p pD I              (2.13)

Where d represents the damage variable, 0D represents the initial stiffness matrix,  is the total

strain and p is the plastic strain which can be estimated according to the Drucker-Prager plastic flow

rule as:

Chapter II: Finite element implementation of Damage Plastic Model

39

()p
p

G s
d d I

s
   




   


 (2.14)

With 2 1 12 p pG J I s I     (2.15)

 and  represent Lame’s constants evaluated by / (2(1))E  and / ((1)(1 2))E    ,

respectively.

b- Loading-unloading conditions

The Loading-unloading conditions are expressed in terms of the yield function and the plastic

multiplier by:

0

0

0

F

d

d F











 (2.16)

c- The damage evolution law

The damage evolution law is defined by a function of the damage variable and the principal

effective stress

(,)k d H k   (2.17)

II.3.2 Stress computation

For a given value of the damage variable, the effective stress is calculated in such a way the

plastic consistency condition must be satisfied (F=0), where a discrete version of the yield function

is written as:

 
1 1 max max1 1 1 1 1 1 1

3
(,) () (())() (1)

2
c

n nn n n n n nF k I s H c                (2.18)

For three dimensional or plane strain cases, Eq (2.14) can be evaluated using the next correlation

  1
1

1 1

1
()

3

tr
trp

n ptr tr
n n

I
d I

s s
   

 

 
    
  

 (2.19)

With tr donates the trial stress tensor.

Chapter II: Finite element implementation of Damage Plastic Model

40

According to Lee and Fenves al [31], the return-mapping equation for the principal effective stress is

given by:

  0 0
1 1 1 0

1 1

2
(3)
3

trtr tr
t

n n n ptr tr
n n

I
d K I

s s

 
      

 

 
    
  

 (2.20)

For three dimensional or plane strain cases , the following correlation to evaluate the plastic multiplier

is suggested:





11 1 1 1 1

10 0 0 1 1 1 1 1 0

2
() () (1)

3

9 6 2 / () () / 3 3

tr
tr tr c

n n n n

tr
tr tr tr

p n n n n p

I s c
d

K s I s K

   


      

   

   

   


        

 (2.21)

With 
max1 1(())n nH   

II.3.3 Plane stress formulation

According to Lee and Fenves [31], the plane stress version of the return-mapping equation is

given by:

  
 1 1

01 1 0 0
1 1

2 (2 2)
3

tr
n

n n p
n n

I
d K I

s s

      
 

 

 
    
 
 

 (2.22)

Where  (1 2) / (1)     and  0 0 / (2(1))K E  

In this case, the plastic multiplier can be evaluated according to the next formula:


  

2
1 2 1

0 0

(2 3)(1)1
()

6(2)(1) 6 (3 2 2)

c
n

p

c
d

K

     
       

  


    
 (2.23)

With

      
1 2 11 2 1 1(); (3) (3 2) 2 (1)
tr tr tr

tr c
nI c                   (2.24)

Applying the condition 0d  in Eq(2.23), the value of  will be in the range:

max(0,min(,)) min(1,max(,))a b a b      (2.25)

Where

Chapter II: Finite element implementation of Damage Plastic Model

41



 

2
2 2 1 1

1

0

0 0

4 (2 3)(1)

2

3 6
1

6(2) 2 6

c
na

b

p

c

K

    







   

    


 
 

 (2.26)

II.4 Proposed finite element implementation of PDM

In order to minimize the number of the required parameter in the finite element implementation

of the PDM, the auto-estimation strategy was used in our computer code for computing the stress-

strain diagrams and the damage parameters evolutions. Also, default values were suggested for each

of the following parameters; the dilation angle , the eccentricity , the ratio /0 0f fb c , and the ratio

Kc . Two main approaches were described in chapter I in order to auto-estimate the stress-strain

diagrams and the damage parameters evolutions using Eqs (1.45),(1.46),(1.54). Following these

equations, the mesh size value affects the stress-strain diagrams and the damage parameters

evolutions. Therefore, to examine the mesh size influence on the stress-strain curves and the damage

parameters evolution suggested by Alfarah et al [23] and Lubliner et al [26] , both approaches were

implemented in the computer code “Concrete v2.0.0” where these diagrams were generated based on

multiple mesh size values. In addition, to overcome the mesh size sensitivity, a new numerical

approach is suggested to estimate the stress-strain diagrams and the damage parameters evolution in

accordance with the Model Code recommendations [33]. In this approach, the stress-inelastic strain

was evaluated according to Lubliner et al [26] formulas, and the damage parameters evolution was

estimated according to Alfarah et al [23] formulas. The main aim of this section is to provide a finite

element class to model concrete behavior using PDM as a constitutive model and the Object-Oriented

Programming paradigm (OOP) as a coding technique. In this section, the closed-form solutions of

each; the plastic multiplier, the derivative of the yield function with respect of stresses, the derivative

of the yield function with respect of inelastic strain, and the derivative of the potential function with

respect of stresses are provided. Furthermore, a detailed description of the suggested class is delivered

in this section, including the required, functions, subroutines, and fields, in addition to the used

algorithms. The PDM class was developed as a key part of our computer software “Concrete” with

the objective of modeling damaged concrete structures with a minimum number of required

parameters.

Chapter II: Finite element implementation of Damage Plastic Model

42

II.4.1 The proposed Algorithm to implement PDM

Several approaches were developed to solve nonlinear finite element problems like the constant

stiffness method, the tangent stiffness method, the visco-plastic method, the Newton-Raphson

method, the modified Newton-Raphson method. In our computer code “Concrete v2.0.0”, the

simplest approach (constant stiffness method) was used to implement the PDM. According to the

used approach, the finite element implementation process of the PDM can be summarized as follows:

a- Apply the load increment   F
i



b- Calculate the displacement increment. For static loading, the following system must be

solved     
j

K U
I

   (2.27)

For the first iteration (j=1)    F
ij

  

c- For each Gauss integration point evaluate the strain increment according to

     B U
i I

   (2.28)

d- Evaluate the stress increment according to     
i i

D    (2.29)

e- If (,) 0in inF
i c c

        ; integration points stay elastic, go to step g:

f- The integration points reached the plastic surface. The stress must be corrected

g- Update the stress and the strain tensors

h- Calculate the residual load      1
r

j
j    

,

where:    Tr B dV
i

V
  (2.30)

i- If 1j
TOL

F
i

 



goto step “b”

According to the described algorithm, two key steps must be achieved, the first one is the

estimation of the value of the yield function for a given stress tensor and the second one is the

correction of the stress tensor for points outside the yield surface. As described in Chapter I, the

estimation of the yield function required multiple parameters that are illustrated in Table 1.3 and take

the default values illustrated in Table 2.1. The most significant parameters are :

Chapter II: Finite element implementation of Damage Plastic Model

43

- The effective compressive cohesion stress

- The effective tensile cohesion stress

Table 2.1: Default values of DPM parameters

Parameter Default value/Estimation methodology
 Eqs.(1.31),(1.32)

 0.1 According to [75]

 130 According to [44] and 50 According to [81]

 0.67 According to [75] / 0.7 According to [23]

 1.16 According to [75]

 See the following sections

 See the following sections

 See the following sections

 See the following sections

The auto-estimation of the stresses and the damage parameters suggested by Alfarah [23] and

Lubliner [26] based mainly on the values of four coefficients which are , ,c c ta b a and tb . These

coefficients are related to the mesh size value according to Eqs (1.48),(1.45),(1.49), and (1.46), which

affects the stresses and the damage parameters values as demonstrated in the next section.

II.4.2 Influence of the mesh size on the damage parameters and the stress-strain diagrams

In order to examine the mesh size influence on the stress-strain curves and the damage parameters

evolution suggested by Alfarah et al [23] and Lubliner et al [26], both approaches were implemented

in our finite element code “Concrete v2.0.0” where the stress-strain curves and the damage parameters

evolution were generated following multiple mesh size values. Figures: 2.1-2.6 were generated by

“Concrete v2.0.0” to demonstrate the influence of the mesh size on:

- The compressive and the tensile stress-strain curves

- The damage parameters evolution for the compressive and the tensile cases.

For Lubliner’s [26] approach, three values of the mesh size (200, 300, and 700 mm) were selected

to examine their influence on the stress-inelastic strain curves. Figures 2.1 and 2.2 present the

compressive and the tensile stress- inelastic strain curves generated according to Lubliner et al [26]

approach for the same concrete compressive strength (25 MPa). For each mesh size value (200, 300,

and 700 mm) the coefficients , ,c c ta b a and tb were calculated based on Eqs (1.48),(1.45),(1.49), and

(1.46), respectively. From these figures, it is observed that the mesh size value strongly affects the

0t



cK

0 0/b cf f

c

t

cd

td

Chapter II: Finite element implementation of Damage Plastic Model

44

stress-strain curve shape where the peak points of all compressive stress-strain curves approach the

same compressive strength value while the inelastic strain value for each peak point is different.

For Alfarah [23] approach, four values of the mesh size were selected (50, 100, 200, and 400

mm) to demonstrate its influence on the stress-strain curves and the damage. Several observations

can be outlined based on the figures 2.3-2.6:

- The third part of the compressive stress-strain curve and the second part of the tensile

stress-strain curve are strongly influenced by the mesh size value.

- The compressive and tensile damage parameters evolutions are related to the mesh size

value.

- The value of the effective compressive cohesion stress c introduced in the yield

function depends on the values of the compressive stress and the compressive damage

parameter.

- The damage parameters are not compatible with the stress-strain diagrams in both cases

compression and tension stresses. This conclusion is based on the fact that the formulas

of the damage parameters used in Alfarah method and presented in Eq (1.60) are derived

from the stress-strain formulas developed by Lubliner (Eq. (1.42)) while the used stress-

strain diagrams are based on other formulas

Figure 2.1: The influence of the mesh size on
the tensile stress -inelastic strain, Lubliner approach

Figure 2.2: The influence of the mesh size on the
compressive stress - inelastic strain, Lubliner approach

Chapter II: Finite element implementation of Damage Plastic Model

45

As result, the mesh size value will affect the outcomes of Alfarah approach (displacements,

stress, and strain) for various logical reasons, which are:

- The value of β parameter delivered in the yield function depends on the effective

compressive and tensile cohesion stress values. Therefore, it depends on both the values

of the compressive and tensile stresses and the compressive and tensile damage

parameters.

Te
ns

ile
 d

am
ag

e
pa

ra
m

et
er

 d
t

Le
q=

40
0

Le
q=

20
0

m m

Le
q=

10

0 m

Le
q=50 mm

Figure 2.5: The influence of the mesh
size on the tensile damage parameter

0 40 80 120 160 200 240

ɛ c (x10 -4)

0

0,2

0,4

0,6

0,8

1

Co
m

pr
es

siv
e

da
m

ag
e

pa
ra

m
et

er
 d

c

Le
q=

40
0 m m

Le
q=

20
0 mm

Le
q=

10
0 mm

Le
q=50 mm

Figure 2.6: The influence of the mesh size on the
compressive damage parameter

0 1 2 3 4 5 6 7 8 9 10

ɛ t x10 -4

0

0,4

0,8

1,2

1,6

2

2,4

Leq=400 mm

Leq=200 mm

Leq=100 mm

Leq=50 mm

Figure 2.3: The influence of the mesh size on
the tensile stress -strain, Alfarah approach

0 10 20 30 40 50 60

ɛ c (x10 -4)

0

4

8

12

16

20

24

28

Leq=50 mm
Leq=100 mm

Figure 2.4: The influence of the mesh size on the
compressive stress - strain, Alfarah approach

Chapter II: Finite element implementation of Damage Plastic Model

46

II.4.3 The proposed approach for computing the damage parameters evolutions and the stress-

strain diagrams

II.4.3.1 General description

The estimation of the stress-strain diagrams and the damage parameters evolution according to

Eqs (1.42), (1.60), respectively depend mainly on the values of the coefficients , ,c c ta b a and tb

evaluated according to Eqs (1.48),(1.45), (1.49) and (1.46).As demonstrated previously, the values of

these coefficients are deeply related to the mesh size value which affects the stresses and the damage

parameters values. To overcome this issue and to evaluate the stress-inelastic strain curves according

to Lubliner formulas and the damage parameters evolution in terms of inelastic strain according to

Alfarah formulas, it is observed that by computing coefficients , ,c c ta b a and tb according to Eqs

(1.48),(1.45), (1.49) and (1.46) for the same concrete compressive strength and different mesh size

values, the peak points of all compressive stress-strain curves approach the same compressive

strength value while the strain value for each peak point is different (Figure 2.7), so it is suggested

computing these coefficients in such a way the peak point will have the same strain and stress as

delivered in the Model Code recommendations [33]. The main objective is to develop an algorithm

that computes the previous coefficients that provide a peak point value equal to the peak point

delivered in the model code recommendations. This algorithm computes the coefficients , ,c c ta b a

and tb according to the following steps:

Figure 2.7: Mesh size effect on the Compressive

stress vs compressive strain curve, case:

Chapter II: Finite element implementation of Damage Plastic Model

47

- Evaluate ca and ta by substituting 0cf with 0.4 cmf in Eq (1.48) and 0tf with tmf in Eq

(1.49). The values of ca and ta are 7.873 and 1, respectively

- Computing the coefficients cb and tb where the peak point has the same compressive

strength and the same strain for compressive strength delivered in the Model Code

recommendations [33]. Table 2.2 presents the strain values at peak stress for different

concrete strength values according to the Model Code recommendations [33].

Table 2.2: Values of 1c for different concrete strength (Model code [33])

𝑓௖௞(MPa) 12 16 20 25 30 35 40 45 50 55 60 70 80 90

𝑓௖௠(MPa) 20 24 28 33 38 43 48 53 58 63 68 78 88 98

𝜀௖ଵ(‰) 1.8 1.9 2.0 2.1 2.2 2.25 2.3 2.4 2.45 2.5 2.6 2.7 2.8 2.8

II.4.3.2 Stress-strain diagrams

In order to evaluate the stress-strain diagram under uniaxial compression loading, the diagram

has been divided into two segments as shown in Figure 2.8 where:

- In the first (linear) segment (till 0fc), the compressive stress can be evaluated according to

Hook’s law

- In the second segment, the compressive stress and the compressive strain can be estimated

by:

 0

0

2
1

in in
c c c c

c c c c

in c
c c

b b
f a e a e

E

 

 

         

  


 (2.31)

In the same manner, the estimation of the stress-strain diagram under uniaxial tensile loading

based on the decomposition suggested in Figure 2.9 where:

- In the first (linear) segment (till ftm), the tensile stress can be computed through Hook’s law

- In the second segment, the tensile stress the tensile strain can be estimated by:

 0

0

2
1

ck ck
t t t t

t t t t

ck t
t t

b b
f a e a e

E

 

 

         

  


 (2.32)

Chapter II: Finite element implementation of Damage Plastic Model

48

II.4.3.3 Damage parameters evolution

In order to evaluate the compressive damage parameter evolution in terms of corresponding

strain, the diagram has been divided into two parts, in which:

- In the first part, the compressive damage parameter value equal to zero

- In the second segment, the compressive damage parameter can be estimated according to:

 

0

1 2
1 2 1

2

in in
c c c c

c c c
c

in c
c c

b b
d a e a e

a

E

 

 

          

  

 (2.33)

The same procedure can be used to compute the tensile damage parameter evolution in terms of

the corresponding strain:

- In the first part, the tensile damage parameter value equal to zero

- In the second segment, the tensile damage parameter is evaluated by:

 

0

1 2
1 2 1

2

ck ck
t t t t

t t t
t

ck t
t t

b b
d a e a e

a

E

 

 

          

  

 (2.34)

According to the Model Code recommendations [33], it is allowable to replace 0 fc by 0.4 fcm and

replace 0ft by ftm in Eqs (1.48), (1.49), respectively, to obtain the values of ca and ta , which are

7.873 and 1, respectively. The values of the coefficients cb and tb , are estimated according to the

algorithm described in the next section.

Figure 2.9: Response of concrete to

uniaxial loading in tension

1 2

Figure 2.8: Response of concrete to
uniaxial loading in compression

fc0

1 2

Chapter II: Finite element implementation of Damage Plastic Model

49

II.4.3.4 The proposed algorithm for computing the coefficients ac,bc,at and bt

The main idea of the present algorithm is to determine the coefficient cb in such a way the peak

point of the compressive stress-strain curve will have the same compressive strength and the same

strain at compressive strength delivered in the Model Code recommendations [33]. The values of the

strain at the peak stress delivered in the Model Code for different concrete strength values are

summarized in table 2.2. In the model code recommendation, the strain values are estimated according

to the following formula:

0.31 30.5 2 .8 1 0
1

f x
c cm

   (2.35)

Where cmf is the compressive strength in MPa. According to the Model Code recommendations

[33], the compressive strength can be estimated by:

 8 cm ckf f  (2.36)

In order to estimate coefficient tb , we suggest computing the mesh size based on Eq (1.45) by:

 0 1 0.5
c ch

eq
c c

b G
L

f a


 (2.37)

By substituting Eq (2.37) in Eq (1.46), we can evaluate coefficient tb without the need to the

mesh size value. The coefficient tb is given by:

0

0

1 0.5

1 0.5
t ch t

t c
c F c

f G a
b b

f G a





 (2.38)

Table 2.3: Values of coefficients , ,a a bc t c and bt for different concrete strength –Part1

𝑓௖௞(MPa) 12 16 20 25 30 35 40

𝑎௖ 7.873 7.873 7.873 7.873 7.873 7.873 7.873

𝑏௖ 637.077 636.468 638.065 641.894 646.876 652.439 658.218

𝑎௧ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑏௧ 6122.778 6059.292 6107.316 6240.193 6412.655 6604.052 6803.804

Table 2.4: Values of coefficients , ,a a bc t c and bt for different concrete strength –Part2

𝑓௖௞(MPa) 45 50 55 60 70 80 90

𝑎௖ 7.873 7.873 7.873 7.873 7.873 7.873 7.873

𝑏௖ 663.972 669.533 674.783 679.639 687.945 698.146 794.836

𝑎௧ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

𝑏௧ 7005.913 7206.661 7403.612 7595.106 7957.263 8334.567 9769.134

Chapter II: Finite element implementation of Damage Plastic Model

50

The proposed algorithm illustrated in Figure 2.10 (All stress values are in MPa) was implemented

in our computer code “Concrete v2.0.0” in order to examine the generated stress-strain diagrams and

the damage parameters evolution. The values of coefficients , ,c t ca a b and tb are summarized in tables

2.3 and 2.4 for different concrete strengths.

II.4.4 The incremental stress and strain calculation:

In the plasticity theory, the total strains increment  can be divided into elastic e and

plastic p parts, as follows:

The input data are the concrete compressive strength , the error tolerance (Tol), and the

initial step bstep. Initial assumption is bstep = 10

Calculate the compressive stress strength according to Eq (46) and which is equal
to

Calculate the initial tangent modulus of deformation of concrete and the

undamaged modulus of deformation

State the coefficients as , and put

Calculate the value of the strain at the peak stress () according to Eq (2.35)

Evaluate the inelastic strain at the peak stress () from Eq (2.31)

Compute the new value of by adding 𝑏௦௧௘௣ (). The initial value of
equal to zero)

Calculate the new value of the compressive stress according to Eq (2.31)

Update the old value of the compressive stress

If the new value 𝜎௖ is less than the old value then:

1. Revaluate

2. Revaluate the new value according to Eq (2.31)

3. Evaluate the new step by

Repeat until

Figure 2.10: Proposed algorithm for evaluating , and

Compute according to Eq (2.38)

Chapter II: Finite element implementation of Damage Plastic Model

51

     pe       (2.39)

Where the plastic component can be evaluated according to the flow rule as:

  1(1)() ()i iG Gp d   
 

        
 (2.40)

Where d is the plastic multiplier and  is a parameter that depends on the type of time integration

used.

For ω = 0 the integration is called explicit in which the derivative of the potential function is

evaluated at point A (figure 2.11). In this case, the plastic strain can be estimated using the following

schemes:

- Modified Euler

- Single-step modified Euler

- Dormand-Prince

- Runge-Kutta integration

For ω = 1 the integration is called implicit which means that the derivative of the potential

function must be computed at point B (figure 2.11) where the following schemes can be used to

estimate the plastic strain:

- Single-Step Backward Euler Scheme

- Backward Euler Return Scheme

- Return algorithm proposed by Ortiz & Simo (1986)

- Return algorithm proposed by Borja & Lee (1990)

In our computer code, the single-step Backward Euler scheme was selected to evaluate the plastic

strain. In this algorithm, the plastic strain is evaluated at point B (figure 2.11) by the following

correlation:

  Gp d 



 


 (2.41)

The incremental stress  can be estimated from the incremental elastic strain  e and the

elastic constitutive matrix []D according to the next formula:

   [] eD   (2.42)

Chapter II: Finite element implementation of Damage Plastic Model

52

By using Eqs (2.39), (2.41), and (2.42), the incremental stress  takes the following form:

   [] []
G

D Dd  


 





 (2.43)

In plastic condition, the stress state in each integration point must always remain on the edge of

the elastic domain (F=0). The Kuhn Tucker plasticity consistency condition is given by [90]:

0, 0, 0, 0F d d F d dF      (2.44)

By differentiating Eq (1.28) with respect to time, and using the chain rule of differentiation, the

consistency condition becomes as follows [35]:

0
F F indF cin

c

 
 

 
    
 

 (2.45)

From Eqs (2.43) and (2.45), the plastic multiplier d can be evaluated according to the next

correlation:

  

 

TF F inD cin
cd

TF G
D

 
 



 

        


    
       

 (2.46)

Figure 2.11: Stress correction

Chapter II: Finite element implementation of Damage Plastic Model

53

The finite element implementation of the PDM model required the identification of the plastic

multiplier which needs the estimation of each:

a- The derivative of the yield function with respect of stresses,

b- The derivative of the yield function with respect of the inelastic compression strain,

c- The derivative of the potential function with respect of stresses.

II.4.4.1 The derivatives of the yield function:

In order to evaluate the plastic multiplierd, each of the derivative of the yield function with

respect of stresses and the derivative of the yield function with respect to the compressive inelastic

strain should be calculated. To evaluate the derivative of the yield function with respect of stresses,

the Chain rule was used where the derivative becomes:

F F p F J

p J  
    

 
    

 (2.47)

Here:

p: Mean stress,

J: Deviatoric stress,

To evaluate the derivative of the yield function with respect to stress tensor, each term in Eq(2.47)

must be determined.
p





 and
J





are model-independent evaluated by Potts and Zdravkovic [89] as

follows:

 1
 1 1 1 0 0 0
3

p T






 (2.48)

 1
2 2 2

2

TJ
p p p

x y z xy xz yzJ
     




   


 (2.49)

F

p




 and
F

J




can be evaluated according to:

3

1

F

p







 
 (2.50)

3

1

F

J 



 

 (2.51)

Chapter II: Finite element implementation of Damage Plastic Model

54

The derivative of the yield function with respect to the compressive inelastic strain can be

determined by:

(1)
F max c
in in

tc c

 

 


 

 
 (2.52)

With

(/ (1)) (1)(2)

0
2((2 2))

inb
c cd a a a b e

c c c c c c cf
cin in inb

c c c ca e a
c c


 

  

    
 

 
 

 (2.53)

II.4.4.2 The derivative of the potential function:

The second step in the estimation of the plastic multiplier d is to determine the derivative of

the potential function where the Chain rule was used. The derivative of the potential function with

respect to the stress tensor becomes:

G G p G J

p J  
    

 
    

 (2.54)

As we have seen previously p





and J





 can be determined according to Eqs(2.48),(2.49)

respectively. The estimation of
G

p




and
G

J




 is based on:

tan
G

p





 (2.55)

3

2 2(tan) 3
0

G J

J J
t

  




 

 (2.56)

II.5 Conclusion:

In this chapter, the full procedure of the finite element implementation of the PDM was delivered,

in addition to a new methodology to minimize the number of the required parameters. Only the

compressive concrete strength is required to model a concrete sample for both cases compression and

tension. Each of the stress-inelastic strain diagrams and the damage parameters evolution for

compression and tension cases, the ratio of the second stress invariants on tensile and compressive

meridians, the eccentricity, the ratio of biaxial compressive yield stress to uniaxial compressive yield

Chapter II: Finite element implementation of Damage Plastic Model

55

stress, and the dilation angle were auto-estimated and default values were suggested in this chapter.

Also, the mesh size influence was eliminated in the proposed approach for computing the damage

parameters evolutions and the stress-strain diagrams.

The stress-strain curves and the damage parameters evolution in tension and compression states

were calculated in accordance with the Model Code recommendations. The main advantage of this

approach is that the use of the Damage Plastic Model is no longer related to the complicated

calibration process of the stress-strain and the damage parameters evolution with experimental tests.

In fact, the only parameter needed in the developed approach is the concrete compressive strength

value.

The plastic strain estimation process has been described in this chapter, where the closed-form

of the plastic multiplier, the derivative of the yield function with respect of stresses, the derivative of

the yield function with respect of the inelastic compression strain; and the derivative of the potential

function with respect of stresses were provided

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

56

Chapter III : Description of the finite element
computer code “Concrete v2.0.0”

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

57

III.1 Introduction

In order to achieve the aim of the present work, a new finite element computer code under the

name “Concrete” was built to model damaged concrete structures with the minimum number of

required parameters. For the first version of “Concrete 1.0.0”, the visual studio 2019 was used to

build the App using visual basic.Net (Figure 3.1), and for the second version “Concrete v2.0.0”, the

code was migrated to the last version of visual studio (visual studio 2022) in order to benefit from

their recent features. Also, several third-party libraries were employed to accomplish multiple tasks

such as the drawing process, meshing process, the user graphical interface, and performing the math

calculations. The Triangle.Net library was used in our computer code to generate 2D mesh, this well-

known library was developed by Woltering [91] as a port of the Triangle program made by Shewchuk

under MIT licensing. In the same manner, a second library under the name Open Toolkit “OpenTK”

[92] was used in “Concrete v2.0.0” to handle the drawing process with a high level of efficiency, this

library gives the developer the ability to access the graphics card and perform the drawing with a high

level of speed and quality. The Open Toolkit is distributed under the permissive MIT/X11. Also,

Ribbon WinForms [93] is the third library that was used in our code in order to add a Ribbon to our

computer code and so, improve the graphical user interface of “Concrete v2.0.0”. The last library that

was used in “Concrete v2.0.0” is Math.Net Numerics [94] which is covered under the terms of the

MIT license. This library was used with the aim to help the developer to carry out the math

calculations.

To improve the quality of “Concrete 2.0.0”, the Object-Oriented Programming (OOP) paradigm

was selected to use as a coding technique where instead to decompose the main program into a

collection of variables, data structures, and subroutines, the program was decomposed into “Objects”

that expose behavior and data using interfaces. This strategy helps us to improve the code quality

where we can benefit from modern technology to getting a modern design, increase programs

performance, debugging and error handling, and update managing.

In the computer code “Concrete v2.0.0”, the second form of the plastic damage model was

selected as constitutive law to simulate the real behavior of concrete material. The implementation

process of the PDM in “Concrete v2.0.0” was described in chapter II, where the only required

parameter to use PDM is the compressive concrete strength. The stress-strain diagrams and the

damage parameters evolutions were auto-calculated through our new approach. Moreover, typical

values for the ratio of biaxial and uniaxial compressive yield strengths, The ratio of second stress

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

58

invariants on tensile and compressive meridians, the flow potential eccentricity, and the dilation angle

were selected from the literature.

“Concrete v2.0.0” was developed under visual studio with vb.net based on OOP and the finite

element fundamentals, it was developed to model cubical and cylindrical concrete structures. The

eight-node brick element (C3D8) was used in our code to discretize and analyze the continuum. The

current version enables the users to analyze structures with linear material properties and nonlinear

material properties using PDM constitutive model.

III.2 Object-Oriented Programming Paradigm

In the literature, the coding of linear and nonlinear finite element methods is mainly based on the

Procedure Oriented Programming (POP) paradigm that appeared in the late 1950s with the

programming languages ALGOL 58 and ALGOL 60, where the main idea is to divide the main

programs into smaller self-contained program segments such as block structures and subroutines.

With this technique, the FE application made great strides in the 1970s and 1980s, when a large

amount of software was developed. Unfortunately, the POP demonstrated a huge failing in terms of

software design, management of recent technology, code updating, and maintenance. With the

development of a new programming paradigm called Object-Oriented Programming (OOP), a large

Figure 3.1: Code source of Concrete v2.0.0. Screenshot

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

59

number of trade codes were raised such as PLAXIS, ABAQUS, ROBOBAT, SAP. In fact, the OOP

was initiated for the first time in the late 1960s by the Norwegian developers O. J. Dahl and K.

Nygaard [95] who developed a new programming language called SIMULA (SIMUlation

LAnguage), based on the assumption that the main program should be modeled around objects rather

than procedures. In fact, they invented the idea of "classes" in order to develop objects sharing similar

characteristics. Therefore, these objects could communicate and make requests to each other. The

OOP paradigm is based on four concepts:

- Encapsulation: grouping the data and the methods working with it within one unit;

- Abstraction: Objects only reveal internal mechanisms relevant to the use of other

objects, masking any unnecessary implementation code;

- Inheritance: is a mechanism whereby a class acquires the property (fields and methods)

of another class;

- Polymorphism: the object can take many forms. The most common use of this concept

in OOP occurs when a parent class reference is used to refer to a child class object.

The main difference between POP and OOP is that the first approach aims to decompose the

program into a collection of variables, data structures, and subroutines, while the second approach

consists of decomposing the program into “Objects” that expose behavior and data using interfaces.

Therefore, the most important difference is that POP uses procedures to operate on data structures,

while OOP groups the two together. As a result, using OOP improves the code organization and

increases the maintainability and reusability of the source code.

In the FE coding, several research projects have already suggested using the OOP paradigm, in

which various programming languages were employed such as C++, Java, Matlab. In the early ‘90s,

Forde et al [96] explained the possible solutions that object-oriented programs offer in the FE

problems. Similarly, Mackie [97] described an object-oriented implementation of the finite element

method and demonstrated its advantages. Likewise, Dubois-Pelerin et al [98] used the prototyping

language Smalltalk for the OOP implementation of the finite element method. Later Kumar [99]

suggested the implementation of OOP to the FEM for engineering analysis using C++. Also, Phillipe

D.Alves et al [100] exploited the OOP to the generalized finite element method. Also, Benjamin et al

[101] used the OOP to provide an FE toolbox within the Matlab environment.

In this work, the FE implementation of the PDM was performed through OOP paradigm. The

architecture of “Concrete v2.0.0” shown in Figure 3.2 illustrates four classes used in its development

which are the “Global Structure” class, “Brick Eight Nodes” class, “Node” class, and the “PDM”

Class. In fact, the main class “Global Structure” holds several fields, subroutines, and functions in

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

60

order to model the structure such as the meshing process, computing the global stiffness matrix, load

vector, and solving the system...etc. Also, the Global Structure contains a list of elements, each

element is based on the Brick Eight Nodes class to evaluate the element stiffness matrix, the stress

vector, and the strain vector based on:

- The position of each node, which can be found in the list of nodes where each node

represents a node object.

- The material behavior (found in the PDM Class).

User

Graphic

Interface

Engine
Global

Structure

Brick Eight

Nodes

Node

PDM Class

Figure 3.2: Concrete v2.0.0 architecture

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

61

III.3 Eight nodes brick element

In order to discretize cubical and/or cylindrical concrete samples, a 3D element must be selected

from various choices namely: the eight-node brick element (linear), the twenty-node brick element

(parabolic), the six-node tetrahedron element (linear), and the ten-node tetrahedron element

(parabolic). In the present work, the eight-node brick element (C3D8) was chosen for various logical

reasons, which are: the displacement inside the element can be found through linear interpolation,

and the low calculation cost of the C3D8 compared to the twenty-node brick element

 In our code, the C3D8 element is fully integrated using 2x2x2 Gauss integration points. The

node and the integration points are numbered following the convention of figure 3.3. The shape

functions matrix of this element takes the following form:

 
0 0

0 0

0 0

v

u

w

N

N N

N

 
   
  

 (3.1)

Where 1 2 3 4 5 6 7 8u v wN N N N N N N N N N N     

1

2

3

4

5

6

7

8

1
(, ,) (1)(1)(1)

8
1

(, ,) (1)(1)(1)
8
1

(, ,) (1)(1)(1)
8
1

(, ,) (1)(1)(1)
8
1

(, ,) (1)(1)(1)
8
1

(, ,) (1)(1)(1)
8
1

(, ,) (1)(1)(1)
8
1

(, ,)

N x y z x y z

N x y z x y z

N x y z x y z

N x y z x y z

N x y z x y z

N x y z x y z

N x y z x y z

N x y z

   

   

   

   

   

   

   

 (1)(1)(1)
8

x y z























  

 (3.2)

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

62

The stiffness matrix of this element is calculated according to:

      
T

e
v

K B D B dv  (3.3)

Where  D represents the stress-strain matrix, takes the following form:

 

1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 1(1)

1 2(1)(1 2) 0 0 0 0 0
2(1)

1 2
0 0 0 0 0

2(1)

1 2
0 0 0 0 0

2(1)

E
D

 
 

 
 

 
 

 








 
   
 
  
 
 
  

     
 

  
 

  
  

 (3.4)

And the matrix  B is calculated as follows;

1 2

3 4

5 6

7 8

Figure 3.3: Eight nodes brick element (C3D8)

2

3

5 6

8 7

1

4

x

y
z

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

63

    B N  with  

0 0

0 0

0 0

0

0

0

x

y

z

y x

z y

z x

 
  

 
 
 

 
 

     
  
   
  
   
   

 (3.5)

III.4 Mesh generation

As known, Mesh generation is the process of dividing the whole structure into a set of defined

elements. Usually, for one-dimensional structures, each of bar or beam element with two or three

nodes can be used to discretize the continuum. For 2D structures, both triangle and quadrilateral

elements with three, four, six, and eight nodes can be used to generate the mesh. For our computer

software, we need to discretize both cubical and cylindrical elements using the C3D8 element as

mentioned previously.

In Concrete v2.0.0 , the meshing subroutines are affiliated to the Global structure class where

two main subroutines can be found to ensure the meshing of both supported shapes namely the

cylindrical shape and the cubical shape. The first subroutine called “GenerateMeshCylindre” ensures

the meshing of the cylindrical shape. This subroutine goes through the 2D discretization of the

cylinder section (circle) provided by the Triangle.Net library as illustrated in figure 3.4 to generate

the 3D mesh. This subroutine executes the following steps:

- Calculate the cylinder section and generate the polygon that represents the section

(circle)

- Generate 2D mesh of the section

- Delete the double quadrilaterals elements

- Build the levels for a given distance

- Generate the 3D mesh

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

64

The second subroutine called “GenerateMeshCube” ensures the meshing of cubical shape. In the

same way of GenerateMeshCylindre subroutine, this subroutine goes through the 2D discretization

of the cubical section (rectangle) as illustrated in figure 3.5 to generate the 3D mesh. This subroutine

follows the next instructions:

- Calculate the cubic section and generate the rectangle

- Using CalculatePointsCube subroutine, calculate the nodes list that is used to generate

the 2D mesh of the rectangle

- Generate the 2D mesh

- Delete the double quadrilaterals elements

- Build the levels for a given distance

- Generate the 3D mesh

Figure 3.4: 2D mesh of circle shape

Figure 3.5: 2D mesh of rectangle shape

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

65

Both subroutines GenerateMeshCylindre and GenerateMeshCube are presented in the appendix.

III.5 OpenTK library

The Open Toolkit is a set of fast, portable, low-level C# bindings for OpenGL, OpenGL ES,

OpenAL, and OpenCL. It runs on all major platforms and powers hundreds of Apps, games, and

scientific research programs. Practically, the OpenTk can be used on the multiple technologies such

as WPF, WinForms, Xamarin, Avalonia, WinUI, and UWP.

 Since OpenGL is a graphics API and not a platform of its own, it requires a language to operate

in and the language of choice is C++. Therefore a decent knowledge of the C++ programming

language is required to master OpenGL which is unfortunately unenviable in the .net Framework.

Luckily, OpenTK gives us the possibility to operate OpenGL inside the .net Framework environment,

which offers us the ability to draw the elements with a high level of speed and quality. The main

subroutines that are used to draw 2D and 3D elements are delivered in the appendix

III.6 PDM Class description

The PDM Class was developed as part of our academic finite element code “Concrete v2.0.0” in

order to model damaged concrete structures. The design of this class is mainly based on several fields,

functions; and subroutines that are required to implement the PDM. These fields are mainly used to

evaluate the value of the yield function "F" and the value of the potential function "G". Therefore,

each parameter used in Eqs (1.28), (1.22), (1.26), (1.27), and (1.30) has a correspondence filed in the

PDM class (Table 3.1).

Also, it is essential to evaluate each of; the yield function, the derivatives of the yield function,

the potential function, and the derivative of the potential function in order to identify the material

behavior and the plastic strain (F<0 signified that the current integration point is elastic and F>0

signified that the plastic yielding is indicated and ∆𝜎 is incorrect). Hence, the PDM Class includes

the functions and the subroutines summarized in Table 3.2 (The code source of the PDM class is

presented in the Appendix).

Table 3.1: Fields used in the PDM Class

Field Description
E The initial undamaged stiffness E0.

v Poisson Ratio 

fb0_fc0 The ratio of biaxial and uniaxial compressive yield strengths /0 0f fb c

Kc The ratio of second stress invariants on tensile and compressive meridians Kc

Excent The flow potential eccentricity 

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

66

SigmaT0 The uniaxial tensile stress at failure 0t .

PsiAngle The dilation angle 

fck The compressive strength of concrete f c k
.

ac

Dimensionless coefficients ,, , a a bc t c andbt.
at

bc
bt

SigmaC Compressive stress value c for a given compressive inelastic strain

SigmaT Tensile stress value t for a given tensile inelastic strain

dc Compressive damage parameter value dc for a given compressive inelastic strain

dt Tensile damage parameter value dt for a given tensile inelastic strain

d Damage parameter value d

Table 3.2: Functions and Subroutines used in the PDM Class

Function / Subroutines Name Description

YieldFunctionEstimation
This function returns with the value of the yield function for a given
stress tensor.

DerivativeYieldFunctionStress
This function returns with the value of the derivative of the yield
function with respect to the stress tensor for a given stress tensor.

DerivativeYieldFunctionStrain
This function returns with the value of the derivative of the yield
function with respect to the compressive inelastic strain for a given stress
tensor.

DerivativePotentialFunction
This function returns with the value of the derivative of the potential
function for a given stress tensor

DamageParametres

This subroutine calculates according to Alfarah approach, Bakhti
approach, and user data approach the following parameters:

- The tensile stress for a given inelastic strain;
- The compressive stress for a given inelastic strain;
- The tensile damage parameter for a given inelastic strain;
- The compressive damage parameter for a given inelastic strain.
- The damage parameter

DLambda This function returns with the value of the plastic multiplier.

ParamatersCDP

This function is inherited from Base class and returns with the values of:
- Alfa parameter
- Beta Parameter
- Gamma parameter

FindInelasticStrain This function returns with the inelastic strain value.

PlasticStressImplicit This function returns with the plastic strain tensor.

III.7 Concrete V2.0.0 description

Concrete v2.0.0 is a Windows App developed under visual studio using vb.Net coding language.

The OOP technology was used in order to improve the design quality of our computer code. The first

version of this code was developed only to model cylindrical and cubical elements considering the

concrete as elastic liner material. Otherwise, considering the concrete material as linear elastic

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

67

material provides inaccurate results and shows a major weakness regarding the degradation process

of concrete. To overcome these issues, the second version was developed to simulate the real behavior

of concrete and improve the predicting of the concrete degradation in both cases tension and

compression. In the user interface graphic, two main tabs are available, the first one is the Geometry

tab, where the following tasks are available:

- List of buttons number “1“is used to choose the shape of the concrete sample. Two shapes are

available, the cubical one and the cylindrical one (Illustrated in figure 3.6)

- List of buttons number “2” allows the user to input the shape dimensions. For the cubical

case, the user can input the length; the width, and the height of the sample. For the cylindrical

shape, each of; the height and the diameter must be entered. In addition, the drawing factor

must be inputted. (Illustrated in figure 3.6)

- List of buttons number “3” provides the ability to reinforce the concrete by adding layers of

composite materials to the concrete sample. This feature will be available in the third version

of Concrete software. (Illustrated in figure 3.6)

- Button “4” is used to generate the mesh (Figure 3.7)

- Button “5” allows the user to broaden an existing mesh. This button cannot be used before

generating the mesh. (Figure 3.7)

- Button “6” allows the user to squeeze an existing mesh. This button cannot be used before

generating the mesh. (Figure 3.7)

- List of buttons number “7” allows the user to select the drawing mode namely the 3D model

or the 2D model (Figure 3.8)

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

68

1 2

Figure 3.6: Concrete v2.0.0. Screenshot N01

3

4 5 6

Figure 3.7: Concrete v2.0.0. Screenshot N02

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

69

The second tab available in our computer code is the Calculation tab, where the linear and the

nonlinear calculations (using PDM) are available. In addition to the output button, the following tasks

are available in the calculation tab:

- List of buttons number “8” is used to model concrete samples for linear analysis. The button

calculation is used to start the calculation process (Figure 3.9). The following parameters are

required to perform the calculation:

 The Young modulus

 Poisson’s ratio.

- List of buttons number “9” is used to model concrete samples for nonlinear analysis using the

plastic damage model. The user can choose the compressive case or the tensile case. Also, the

user can input the compressive stress strength via the textbox fcm (Figure 3.10). Default values

are suggested for the following parameters:

 /
0 0

f f
b c

 The ratio of biaxial and uniaxial compressive yield strengths (default value

equal to 1.16)

Figure 3.8: Concrete v2.0.0. Screenshot N03

7

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

70

 cK The ratio of second stress invariants on tensile and compressive meridians (default

value equal to 0.67)

Figure 3.9: Concrete v2.0.0. Screenshot N04

8

Figure 3.10: Concrete v2.0.0. Screenshot N05

9

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

71

  The flow potential eccentricity (default value equal to 0.1)

  The dilation angle (default value equal to 5 degrees)

 Poisson’s ratio (default value equal to 0.2)

Figure 3.11: Concrete v2.0.0. Screenshot N06

10

11

Figure 3.12.a: Concrete V2.0.0 outputs -

Compressive stress-strain curve

Figure 3.12.b: Concrete V2.0.0 outputs - Damage

parameter curve

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

72

Figure 3.12.c: Concrete V2.0.0 outputs - Tensile

stress-strain curve

Figure 3.12.d: Concrete V2.0.0 outputs - Compressive

stress-strain (BAKHTI)

Figure 3.12.e: Concrete V2.0.0 outputs -

Compressive damage parameter curve (BAKHTI)

Figure 3.12.f: Concrete V2.0.0 outputs - Tensile

stress-strain curve (BAKHTI)

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

73

Figure 3.12.g: Concrete V2.0.0 outputs - Tensile

damage parameter curve (BAKHTI)

Figure 3.12.h: Concrete V2.0.0 outputs - Compressive

stress-strain (Alfarah)

Figure 3.12.i: Concrete V2.0.0 outputs -

Compressive damage parameter curve (Alfarah)

Figure 3.12.j: Concrete V2.0.0 outputs - Tensile

stress-strain curve (Alfarah)

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

74

- Button “10” allows the user to display the following curves (Figure 3.11):

 Compressive stress-strain (Figure 3.12.a)

 Damage-parameter curve (Figure 3.12.b)

 Tensile: stress-strain (Figure 3.12.c)

 Compressive DPM Model Curve according to the author’s approach (Figure 3.12.d)

 Compressive Damage Parameter Curve: Bakhti (Figure 3.12.e)

 Tensile CDP Model Curve: Bakhti (Figure 3.12.f)

 Tensile CDP Damage Parameter Curve: Bakhti (Figure 3.12.g)

 Compressive CDP Model Curve: Alfarah (Figure 3.12.h)

 Compressive Damage Parameter Curve: Alfarah (Figure 3.12.j)

 Tensile CDP Model Curve: Alfarah (Figure 3.12.j)

 Tensile Damage Parameter Curve: Alfarah (Figure 3.12.k)

- List box “11” displays the displacements of each node (Figure 3.11).

Figure 3.12.k: Concrete V2.0.0 outputs - Tensile

damage parameter curve (Alfarah)

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

75

- Menu “12” (Figure 3.13) allows the user to create a new project, save and open an existing

project and a quick access for:

 Generate mesh

 Broaden an existing mesh

 Squeeze an existing mesh

 Model concrete samples for linear analysis

 Model concrete samples for non-linear analysis using PDM

 Display results

III.8 Conclusion

In this chapter, a full description of the new computer code “Concrete v2.0.0” was provided. The

used coding paradigm was described in this chapter where the main advantage is improving the design

quality of our computer code. In addition, the architecture of Concrete v2.0.0 was provided where the

developed code is based on four classes which are the “Global Structure” class, “Brick Eight Nodes”

class, “Node” class, and the “PDM” Class. Also, the used element was delivered where the closed

forms of each; the shape functions, the stress-strain matrix, and the stiffness matrix were provided.

The mesh generation process of the cylindrical shapes and the cubical shapes was described in this

Figure 3.13: Concrete v2.0.0. Screenshot N07

12

Chapter III: Description of the finite element computer code “Concrete v2.0.0”

76

chapter, in addition to several subroutines and functions that are employed in our software, each of;

the manual calculations of the 2D meshing and the Triangle.Net calculation were also provided. In

the same manner, the drawing process through the OpenTK library was presented in this chapter,

where multiple subroutines are presented.

A full description of the PDM Class was delivered as part of our academic finite element code

“Concrete v2.0.0”. The design of this class is mainly based on multiple required fields, functions; and

subroutines to implement the plastic damage model. These fields, functions, and subroutines are

delivered in tables 3.1 -3.2. In the same manner, the user interface graphic of “Concrete v2.0.0” was

described in this chapter where all the required tools/buttons in our computer code were demonstrated,

the reader can easily run the software simply by following the delivered description of the software.

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

77

Chapter IV : Investigation of the inputs and
the outputs of “Concrete v2.0.0”

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

78

IV.1 Introduction

In order to validate our computer software, a comparative study between the developed approach

(proposed approach for computing the stress-strain diagrams and the damage parameters evolution)

and stress-strain curves from the literature is provided in this chapter in addition to comparing the

outcomes of Concrete v2.0.0 with experimental evidence and analytical approaches. Also, this

chapter provides numercical study to examine the mesh sensitivity. For the auto estimation of the

stress-strain curves, the outcomes of our approach were compared with the following solutions:

- The experimental stress-strain curves of Mohamad Ali et al [50],

- The stress-strain curves generated according to Alfarah correlations [23],

- The stress-strain curves generated according to Thorenfeldt correlations [102].

Furthermore, a comparison was preseted between the compressive and tensile stress-strain curves

generated by “Concrete v2.0.0”with multiple compressive and tensile stress-strain correlations from

the literature. For the compressive case, five values of the concrete compressive strength were

selected (20, 25, 30, 35, and 40 MPa), for comparing with the stress-strain correlations of :

- Lubliner [26],

- Desayi and Krishan [47],

- Kratzig and Polling [29],

For the tensile case, same values of compressive strength were used for comparing with the

outcomes of Lubliner correlations [26] and the outcomes of Thorenfeldt correlations [102]. The mesh

sensitivity was examined through three cases of the mesh densities which are; 27 elements, 64

elements, and 125 elements (for a cubic sample with the following dimensions: 250 mm long, 250

mm wide, and 250 mm high).

For the compressive case, the outcomes of Concrete v2.0.0 were compared with the experimental

data provided by Watanabe et al [103] and with the closed-form solution suggested by Kratzig and

Polling [29]. For the tensile case, the outcomes of Concrete v2.0.0 were compared with experimental

data provided by B. Ahmed et al [32] and with the outcomes of the Thorenfeldt approach [102].

IV.2 Validation of the proposed approach for computing the stress-strain
diagrams and the damage parameters evolutions

In order to validate the proposed approach for computing the stress-strain curves and the damage

parameters evolutions, the stress-strain curves generated by “Concrete v2.0.0” according to the

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

79

present approach were compared with experimental results for the compression case and with closed-

form solutions for the tension case, the results are illustrated in figures 4.1, 4.1, 4.3, and 4.4.

Figure 4.1 shows the compressive stress-strain curves of experimental tests provided by

Mohamad Ali et al [50] and the outcomes of the proposed approach for different compressive

strengths ckf (8.7, 17.3, 19.7 and 24 MPa). From this figure, it is observed that for every sample, both

curves are very close, which proves the efficiency of the presented approach.

Figures 4.2, 4.3 and 4.4 show the tension stress-strain curves generated by “Concrete v2.0.0”

(according to the proposed algorithm) and the outcomes of the analytical solution of Alfarah [23] and

the analytical solution of Thorenfeldt [102]. The tension stress-strain curves generated according to

Alfarah formulas were calculated for a cubic sample with the following dimensions: 100 mm long,

100 mm wide and 100 mm high.

0 1 2 3 4 5 6

ɛ t x10 -4

0

0,4

0,8

1,2

1,6

2

2,4

2,8

3,2

Thoronfeldt
Alfarah
Proposed approach

Figure 4.1: Validation of the auto-estimation
of the compressive stress-strain curves

Figure 4.2: Validation of the auto-estimation of the
tensile stress-strain curve, fck=32 MPa

0 4 8 12 16 20 24 28 32

ɛ c (x10 -4)

0

4

8

12

16

20

24

28

32

36

.7 Mpa
8=kcf

.3 MPa

71=kcf .7 MP

91=kcf

4 MP
2=kcf

Experimental tests - Mohamad Ali
Proposed approach

0 1 2 3 4 5 6 7 8

ɛ t x10 -4

0

0,4

0,8

1,2

1,6

2

2,4

2,8

Thoronfeldt
Alfarah
Proposed approach

0 1 2 3 4 5 6 7 8

ɛ t x10 -4

0

0,4

0,8

1,2

1,6

2

2,4

Thoronfeldt
Alfarah
Proposed approach

Figure 4.3: Validation of the auto-estimation of
the tensile stress-strain curve, fck=25 MPa

Figure 4.4: Validation of the auto-estimation of
the tensile stress-strain curve, fck=20 MPa

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

80

The tension stress-strain curves generated according to the approach of Thorenfeldt are linear up

to the uniaxial tensile strength, then determined by:

 0.7 1000 t
tm

t tm
t

f




 
  

 
 (4.1)

0 20 40 60 80 100 120 140

ɛ c (x10 -4)

0

10

20

30

40

50

60
fck=20 MPa
fck=30 MPa
fck=40 MPa
fck=50 MPa

0 10 20 30 40 50 60 70 80 90 100

ɛ c (x10 -4)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

fck=20 MPa
fck=30 MPa
fck=40 MPa
fck=50 MPa

Figure 4.5: Compressive Stress-strain curves for
different compressive strength

Figure 4.6: Compressive damage parameter
evolution

0 1 2 3 4 5 6 7 8 9 10

ɛ t x10 -4

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

fck=20 MPa
fck=30 MPa
fck=40 MPa
fck=50 MPa

0 1 2 3 4 5 6 7 8 9 10

ɛ t x10 -4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

fck=20 MPa
fck=30 MPa
fck=40 MPa
fck=50 MPa

Figure 4.7: Tensile Stress-strain curves for
different compressive strength

Figure 4.8: Tensile damage parameter evolution

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

81

Figures 4.2, 4.3, and 4.4 show that the proposed approach gives similar results to Alfarah

approach at the beginning, then, they start to move gradually away until they reach the Thorenfeldt

outcomes at the end of the curve. Figures 4.5, 4.7 illustrate the compressive and the tensile stress-

strain diagrams generated according to the proposed approach.

Figures 4.6, 4.8 illustrate the compressive and the tensile damage parameters evolution generated

according to the present approach. The curves were generated for four concrete strengths ckf (20, 30,

40, and 50 MPa).

Figure 4.5 illustrates compressive strength effect on the compressive stress-strain curves. The

maximum values increased with the augmentation of the compressive strength, while the effect of

compressive strength on the compressive damage parameter evolution is negligible for compressive

strain c higher than 60 x10-4.

From Figure 4.7, it is observed that the curves can be divided into three parts. The curves are

quite close to each other in the first part which represents the linear behavior of concrete, until they

reach the peak points, where the maximum differences values are obtained. Then the curves begin to

get closer to each other in the second part, until they assemble in the third part. Similarly, the tensile

curves presented in Figure 4.8 consist of three parts. In the first part, it is observed that the curves

begin converging and reach a point of intersection. In the second part, it is noticed that the curves

begin to converge and reach the maximum values, then started to get closer to each other until

reaching the third part where the curves assemble. Moreover, it is observed that the concrete strength

influence on the tensile damage parameter evolution is very limited.

The stress-strain diagrams and the damage parameters evolution generated according to the

developed approach are completely independent of the mesh size (Leq) value. This conclusion is

based on the fact that the stresses and the damage parameters values are mainly correlated to the

coefficients ,, , c t ca a b and tb according to Eq (1.42) and Eq (1.60), respectively. Furthermore, these

coefficients are evaluated without the mesh size value (as demonstrated in figure 2.10).

IV.3 Investigation of “Concrete v2.0.0” outcomes

This section aims to compare the compressive stress-strain and the tensile stress-strain curves

generated by our computer code with multiple compressive and tensile stress-strain correlations from

the literature. For the compressive case, five values of concrete strengths (20, 25, 30, 35, and 40 MPa)

are selected to compare the outcomes of Concrete v2.0.0 with three stress-strain correlations for the

compressive case namely:

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

82

- Desayi and Krishan [47] (Section I.5),

- Kratzig and Polling [29] (Section I.6.1.2.b),

- Lubliner et al [26] (Section I.6.1.2.b).

For the tension case, Lubliner et al [26] and Thorenfeldt et al [102]stress-strain correlations are

carefully chosen to validate the outcomes of “Concrete v2.0.” for the same values of concrete

strengths. Young’s modulus and the strain value at peak stress for each value of concrete strength are

delivered in Table 4.2.

For Kratzig and Polling [29] correlation, all curves are calculated based on mesh size equal to

300 mm. The Model Code Recommendations [33] was used to calculate the following parameters:

- The initial tangent modulus of deformation of concrete 1 / 310000 E fci cm (4.2)

- The undamaged modulus of deformation 0.8 0.20 88

fcmE Eci
 

   
 

 (4.3)

- The compressive stress that corresponds to zero crushing 0 0.4c cmf f (4.4)

- The value of the strain at the peak stress 0 .31 30 .5 2 .8 1 0cm cmf x   (4.5)

- The crushing/fracture energy (N/mm)

2

 cm
ch F

tm

f
G G

f

 
  
 

where 0.180.073 F cmG f (4.6)

Table 4.2 summarizes the values of the peak tensile stress and the strain at the peak tensile stress

for each value of concrete strength that are required to evaluate the stress value according to

Thorenfeldt correlation. For Lubliner correlations, we used the values of coefficients , ,c t ca a b and

tb that were calculated by Bakhti et al [104] and presented in Table 2.2 and Table 2.3. Also,

according to this approach, the compressive and tensile stress-strain curves were divided into two

parts. The first one represents the linear segment where the stress is evaluated according to Hooke’s

law. The second one represents the non-linear part where the stress is evaluated according to

Lubliner’s formulas.

Figures 4.9-4.13 present the compressive stress-strain curves generated by Concrete v2.0.0

together with the stress-strain curves generated according to the correlations of Lubliner, Desayi and

Krishan, and Kratzig and Polling. From these figures, the following observations can be outlined:

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

83

- The curves generated by Concrete v2.0.0 are completely in harmony with the stress-strain

curve generated according to Lubliner Formula, this observation can be justified by the fact

that the used hardening function in the implementation of PDM is identical to Lubliner

formulas.

- For the concrete strengths less than 25 MPa, The outcomes of “Concrete v2.0.0” are partially

in harmony with the stress-strain curve generated according to Kratzig formula. For values

more than 25MPa and by using the decomposition of Kratzig, we observed that the curves

of Concrete v2.0.0 move away from Kratzig curve depending on the concrete strengths,

especially in the third part.

- Using the decomposition of Kratzig, the outcomes of “Concrete v2.0.0” are partially in

harmony with the stress-strain curve generated according to Desayi formula in the first and

the second parts. For the third part, the difference between both curves is significant.

Figures 4.14-4.18 present the tensile stress-strain curves generated by “Concrete v2.0.0” together

with the stress-strain curves generated according to the correlations of Lubliner and Thorenfeldt.

From these figures, the following notes can be outlined:

- The outcomes of “Concrete v2.0.0” are in harmony with the stress-strain curve generated

according to Lubliner formula which can be justified by the adopted hardening function

which is the Lubliner formula.

- Using the decomposition of the tensile stress-strain curve illustrated in figure 2.8, the tensile

stress-strain curves of “Concrete v2.0.0” are completely in harmony with the stress-strain

curve generated according to Thorenfeldt formula in the first part. For the second part,

Concrete v2.0.0 gives results partially similar to Thorenfeldt formula.

Table 4.1: input data of Desayi and Krishan curve

()f MPacm 3
(10)x

p
 

 ()E MPa

20 1.8 22890

25 1.9 26130

30 2 29910

35 2.1 32890

40 2.2 35940

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

84

Table 4.2: input data of Thorenfeldt curve

()f MPacm 4
(10)x

tm
  ()f MPa

tm

20 0.68 1.58

25 0.79 1.99

30 0.87 2.37

35 0.93 2.71

40 0.98 3.04

Figure 4.11: Compressive stress-strain curve for
fcm = 30 MPa

Figure 4.12: Compressive stress-strain curve for
fcm = 35 MPa

Figure 4.9: Compressive stress-strain curve for
fcm = 20MPa

Figure 4.10: Compressive stress-strain curve for
fcm = 25MPa

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

85

Figure 4.13: Compressive stress-strain curve for
fcm = 40 MPa

Figure 4.14: Tensile stress-strain curve for
fcm = 20 MPa (ftm = 1.58 MPa)

Figure 4.15: Tensile stress-strain curve for
fcm = 25 MPa (ftm = 1.99 MPa)

Figure 4.16: Tensile stress-strain curve for
fcm = 30 MPa (ftm = 2.37 MPa)

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

86

IV.4 Mesh sensitivity

To examine the mesh sensitivity, the outcomes of our computer code (for a cubic sample with

the following dimensions: 250 mm long, 250 mm wide, and 250 mm high) were compared with

experimental results and with closed-form solutions from the literature. Three cases of the mesh

densities were considered (27, 64, and 125 elements). Table 4.3 summarizes the input data used by

“Concrete v2.0.0” in the examination process for the tensile and the compressive cases. The uniaxial

tensile stress at failure
0t and the initial undamaged stiffness

0E are auto-estimated according to the

Model Code Recommendations [33] based on the value of the compressive strength of concrete.

In the tension case, the outcomes of “Concrete v2.0.0” were compared with the experimental

results of Ahmed et al [32] and with the outcomes of the Thorenfeldt approach [102] (Figures

4.19,4.20). Two conclusions can be drawn from Figures 4.19 and 4.20. The first one is that the

influence of the mesh density is very limited. The mesh insensitivity is mainly due to the use of Bakhti

Approach [104] for computing the stress-strain diagrams and the damage parameters evolution in our

code. The second one is that the stress-strain curves generated by our computer code are in the range

of the experimental data and come very close to Thorenfeldt approach

Figure 4.17: Tensile stress-strain curve for
fcm = 35 MPa (ftm = 2.71 MPa)

Figure 4.18: Tensile stress-strain curve for
fcm = 40 MPa (ftm = 3.04 MPa)

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

87

For the compression case, the outcomes of “Concrete v2.0.0” were compared with the

experimental data of Watanabe et al [103] and with the closed-form solution suggested by Kratzig

and Polling [29] (which was also used by Alfarah et al [23], See section I.6.1.2.b)

 Table 4.3: The input data for Concrete v2.0.
 Tension Compression

Example 01 Example 02 Example 01 Example 02 Example 03

ckf 39.2 MPa 26.6 MPa 22.5 MPa 32 MPa 17.5 MPa

0t 3.48 MPa 2.70 MPa 2.40 MPa 3.04 MPa 2.04Mpa

0E 32786 MPa 28630 MPa 27161 MPa 30468 MPa 25253 MPa

 0.2
 0.1
 5 degrees

cK 0.667

0 0/b cf f 1.16

From figures 4.21, 4.22, we can see that the compressive stress-strain curves generated by our

computer code are in the range of the experimental data provided by Watanabe et al [103]. Also, the

influence of the mesh density is very limited due to the employment of the author’s approach [104]

for generating the stress-strain diagrams and the damage parameters evolution in “Concrete v2.0.0”

Figure 4.19: Tensile stress-strain curve
Mesh sensitivity-Example 01

Figure 4.20: Tensile stress-strain curve
Mesh sensitivity - Example 02

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

88

Figure 4.23 indicates that the compressive stress-strain curves generated by “Concrete v2.0.0”

come very close to the outcomes generated according to Kratzig and Polling [29] approach (almost

identical). Also, the influence of the mesh density is very limited due to the same reason which is the

use of our approach [104] to compute the stress-strain diagrams and the damage parameters evolution

in “Concrete v2.0.0”

Figure 4.21: compressive stress-strain curve
 Mesh sensitivity-Example 01

0 1 2 3 4 5 6

Strain ɛC x10-3

0

5

10

15

20

25

30

35

40

Watanabe et al.(2004)
Concrete V2.0-27 Elements
Concrete V2.0-64 Elements
Concrete V2.0-125 Elements

Figure 4.22: compressive stress-strain curve
Mesh sensitivity-Example 02

0 1 2 3 4 5 6 7 8

Strain ɛC x10-3

0

5

10

15

20

25

30

35

40

45

50

Watanabe et al.(2004)
Concrete V2.0-27 Elements
Concrete V2.0-64 Elements
Concrete V2.0-125 Elements

Figure 4.23: compressive stress-strain curve
Mesh sensitivity–Example 03

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

89

IV.5 Conclusion

In this chapter, a full demonstration of the efficiency of our computer code was provided.

Multiple comparisons with closed-form solutions and experimental tests were carried out in order to

examine the efficiency of our numerical approach for computing the stress-strain diagrams and the

damage parameters evolution. Several advantages of the proposed approach can be outlined as:

- Only, the concrete compressive strength value is needed to evaluate the stress-strain and

the damage parameters curves,

- Intriguingly, the stress-strain curves and the damage parameters evolution are

independent of the mesh size effect (eqL),

- Achieving a high level of accuracy in the estimation of damage parameters evolution,

both in tension and compression,

- Reducing the number of parameters needed to be calibrated according to the

experimental tests,

- The use of the Model Code recommendations and expandability to support other

recommendations,

- The developed method is quite appropriate to incorporate into other numerical codes.

Furthermore, a comparative study of the stress-strain curves generated by “Concrete v2.0.0” and

five stress-strain correlations was provided. For the compression case, the outcomes of “Concrete

v2.0.0” were compared with the stress-strain curves of Desayi, Kratzig, and Lubliner. The following

conclusions can be outlined:

- All curves are quite close to each other in the ascending part,

- The curves of “Concrete v2.0.0” are completely in harmony with the stress-strain curve

generated according to Lubliner formula,

- For the concrete strengths less than 25 MPa, The curves of “Concrete v2.0.0” are

partially in harmony with the stress-strain curve generated according to Kratzig formula.

For values more than 25MPa, the curves of “Concrete v2.0.0” move away from Kratzig

curve depending on the concrete strengths, especially in the descendant part,

- In the descendant part, the difference between the curves of “Concrete v2.0.0” curves

and the curves of Desayi is significant.

Chapter IV: Investigation of the inputs and the outputs of “Concrete v2.0.0”

90

For the tensile case the following conclusions can be made:

- All curves are quite close to each other in the ascending part,

- The outcomes of “Concrete v2.0.0” are in harmony with the stress-strain curve

generated according to Lubliner formula,

- “Concrete v2.0.0” gives results partially similar to Thorenfeldt formula, especially in

the descendant part.

The mesh sensitivity was exanimated in this chapter where it is demonstrated that the outcomes

of “Concrete v2.0.0” are unconnected to the mesh density for both cases compression and tension.

Conclusion

91

Conclusion

Conclusion

92

Conclusion

Modeling the real behavior of concrete using the finite element method significantly helps the

scientific community to reduce the number of required experimental tests by simulating them

numerically which considerably reduces the study time and improves the profitability of research

teams. The Damage Plastic Model was selected as a constitutive model to build our computer App

with a view to simulate the real behavior of cylindrical and cubical concrete samples. This choice is

based on several logical reasons, which are; the ability to address small and large strain, the capability

to address the plasticity of concrete material, and the ability to handle the elastic stiffness degradation

induced by the plastic straining in addition to the stiffness recovery. The use of the second form of

the PDM requires multiple parameters namely; the stress-inelastic strain diagrams for compression

and tension cases, the damage parameters evolution for compression and tension cases, the ratio of

the second stress invariants on tensile and compressive meridians, the eccentricity, the ratio of biaxial

compressive yield stress to uniaxial compressive yield stress, and the dilation angle. The numerical

values of these parameters must reflect the real state of concrete material which required the

calibration process with experimental tests for each one of them. To overcome the calibration process,

default values are suggested in this work, in addition to a new numerical methodology for computing

the stress-strain diagrams and the damage parameters evolution for compression and tension cases

were suggested based on Lubliner and Alfarah formulas. The stress-strain curves and the damage

parameters evolution in tension and compression states were calculated in accordance with the Model

Code recommendations. The main advantage of this methodology is that the use of the Damage

Plastic Model is no longer related to the calibration process with experimental evidence. In fact, the

only parameter needed for evaluating the stress-strain and the damage parameters diagrams using the

developed approach is the concrete compressive strength value. Multiple comparisons with closed-

form solutions and experimental tests were carried out in order to examine the efficiency of our

numerical approach. The validation process of the proposed approach proved that the outcomes for

both cases; compression and tension are quite close to experimental curves and analytical solutions,

in addition to the no effect of the mesh size on the outcomes of the proposed approach

Also, the full procedure of the finite element implementation of the PDM was delivered where

the plastic strain estimation process was described, in addition to the closed-form of the plastic

multiplier, the derivative of the yield function with respect of stresses, the derivative of the yield

function with respect of the inelastic compression strain; and the derivative of the potential function

with respect of stresses.

Conclusion

93

A comparative study of the stress-strain curves generated by “Concrete v2.0.0” and multiple

stress-strain correlations was provided. The mesh sensitivity was exanimated in this work by a

comparative study of the stress-strain curves for multiple mesh density. Several advantages of the

proposed work can be outlined as:

 Only, the concrete compressive strength value is required to model the concrete

behavior,

 The stress-strain curves and the damage parameters evolution are independent of the

mesh size effect,

 The use of the Model Code recommendations for computing the input data (stresses

and the damage parameters) and expandability to support other recommendations,

 The developed method is quite appropriate to incorporate into other numerical codes.

 The curves of “Concrete v2.0.0” are completely in harmony with the stress-strain curve

generated according to several solutions from the literature,

 The ability to use another hardening function from the literature.

The developed software “Concrete v2.0.0” can be perfectly used to simulate the behavior of

concrete material including the degradation process of concrete. It can be used to model cubical and

cylindrical samples following the Model Code recommendation, the software can be updated to

support more stress-strain correlation by changing the hardening function and re-computing, the

derivative of the yield function with respect of stresses, the derivative of the yield function with

respect of the inelastic compression strain. Also, the author recommends extending the software for

composite material in order to model the behavior of confined concrete by composite materials.

References

94

References

[1] J. Winskell, H. Reese, S. Dayem, et R. McCaffrey, « Global concrete report 2021 », Pro Global
Media Ltd, p. 35, 2021.

[2] P. Edwards, « Top 10 cement producer profiles », Global Cement Magazine, août 2018.
[3] D.J. Chu Carreira et H. Kuang, « Stress-strain relationship for reinforced concrete in tension »,

ACI journal, vol. 84, p. 21‑28, 1986.
[4] J. B. Mander, M. J. N. Priestley, et R. Park, « Observed stress-strain model for confined

concrete », Journal of Structural Engineering, vol. 114, no 08, p. 1827‑1849, 1988.
[5] L.P. Sanez, « Discussion of ’Equation for the stress-strain curve of concrete’ by Desayi and

Krishnan », ACI journal proceedings, vol. 61, p. 1229‑1235, 1964.
[6] W.F. Chen, Constitutive Equations for Engineering Materials Vol. 1: Elasticity and Modelling.

Elsevier Publications, 1994.
[7] M.Y.H Bangash, Concrete and Concrete Structures. Elsevier Publications, 1989.
[8] S.H. Ahmad et S.P. Shah, « Complete triaxial stress-strain curves for concrete », Journal of the

Structural Division, vol. 108, p. 728‑742, 1982.
[9] B. Bresler et K. S. Pister, « Strength of Concrete Under Combined Stresses », Journal

Proceedings, vol. 55, p. 321‑345, 1958.
[10] M.D. Coon et R.J. Evans, « Incremental constitutive laws and their associated failure criteria

with application of plain concrete », International journal of solids structures, vol. 8, p.
1169‑1183, 1972.

[11] Z.P. Bazant et S.S. Kim, « Nonlinear creep of concrete adaptation and flow », Journal of the
Engineering Mechanics Division, vol. 105, p. 429‑446, 1979.

[12] Z.Y. Zhao et L.Q. Ren, « Failure Criterion of Concrete under Triaxial Stresses Using Neural
networks », Computer-Aided Civil and Infrastructure Engineering, vol. 17, p. 68‑73, 2002.

[13] H.D. Kang et K.J. Willam, « Localization characteristics of triaxial concrete model », Journal
of Engineering Mechanics, vol. 125, p. 941‑950, 1999.

[14] I. Imran et S.J. Pantazopoulou, « Plasticity model for concrete under triaxial compression »,
Journal of Engineering Mechanics, vol. 127, p. 281‑290, 2001.

[15] P. A. Vermeer, Non-Associated Plasticity for Soils, Concrete and Rock, vol. 29. Delft University
of Technology, 1984.

[16] P. Grassl, K. Lundgren, et K. Gylltoft, « Concrete in compression: A plasticity theory with novel
hardening law », International Journal of Solids and Structures, vol. 39, p. 5205‑5223, 2002.

[17] P.H Feenstra et R de Borst, « A composite plasticity model for concrete », International Journal
of Solids and Structures, vol. 33, p. 707‑730, 1996.

[18] A. Hillerborg, M. Modéer, et P.E. Petersson, « Analysis of crack formation and crack growth in
concrete by means of fracture mechanics and finite elements », Cement and Concrete Research,
vol. 6, p. 773‑781, 1976.

[19] Z.P. Bazant, « Concrete fracture models: testing and practice », Engineering Fracture
Mechanics, p. 165‑205, 2002.

[20] Z.P. Bazant, « Endochronic inelasticity and incremental plasticity », International Journal of
Solids and Structures, vol. 14, p. 691‑714, 1978.

[21] Z.P. Bazant et H. Shieh, « Endochronic model for non-linear triaxial behaviour of concrete »,
Nuclear Engineering and Design, vol. 47, p. 305‑315, 1978.

[22] Z.P. Bazant et P.D. Bhat, « Endochronic theory of inelasticity and failure of concrete », Journal
of the Engineering Mechanics, vol. 102, p. 701‑722, 1976.

[23] B. Alfarah, F. López-Almansa, et S. Oller, « New methodology for calculating damage variables
evolution in Plastic Damage Model for RC structures », Engineering Structures, vol. 132, p.
70‑86, 2017.

References

95

[24] B. Ayhan, P. Jehel, D. Brancherie, et A. Ibrahimbegovic, « Coupled damage–plasticity model
for cyclic loading: Theoretical formulation and numerical implementation », Engineering
Structures, vol. 50, p. 30‑42, 2013.

[25] C. Farahmandpour, S. Dartois, M. Quiertant, Y. Berthaud, et H. Dumontet, « A concrete
damage-plasticity model for FRP confined columns », Materials and Structures, vol. 50, no 156,
2017.

[26] J. Lubliner, J. Oliver, S. Oller, et E. Onate, « A plastic-damage model for concrete », Int. J.
Solids Structures, vol. 25, no 3, p. 299‑326, 1989.

[27] J. Lee et G. L. Fenves, « A plastic-damage concrete model for earthquake analysis of dams »,
Earthquake engineering and structural dynamics, vol. 27, p. 937‑956, 1998.

[28] J. Lee et G. L. Fenves, « Plastic-damage model for cyclic loading of concrete structures », J.
Engrg. Mech., ASCE, vol. 124, no 8, p. 892‑900, 1998.

[29] W. B. Kratzig et R. Polling, « An elasto-plastic damage model for reinforced concrete with
minimum number of material parameters », Computers & Structures, vol. 82, p. 1201‑1215,
2004.

[30] S. Oller, E. Onate, J. Oliver, et J. Lubliner, « Finite element nonlinear analysis of concrete
structures using a “plastic-damage model” », Engineering Fracture Mechanics, vol. 35, no 1/2/3,
p. 219‑231, 1990.

[31] J. Lee et G. L. Fenves, « A return-mapping algorithm for plastic-damage models: 3-D and plane
stress formulation », Int. J. Numer. Meth. Engng, vol. 50, p. 487‑506, 2001.

[32] B. Ahmed, G.Z. Voyiadjis, et T. Park, « Damaged Plasticity Model for Concrete Using Scalar
Damage Variables with a Novel Stress Decomposition », vol. 191–192, p. 56‑75, 2020.

[33] CEB-FIP, Model Code 2010. London: Thomas Telford, 2010.
[34] R. R. Babu, G.S. Benipal, et A.K. Singh, « Constitutive modeling of concrete: An overview »,

Asian Journal of Civil Engineering, vol. 6, no 4, p. 211‑246, 2005.
[35] M.R. Javanmardi et M.R. Maheri, « Extended finite element method and anisotropic damage

plasticity for modelling crack propagation in concrete », Finite Elements in Analysis and Design,
vol. 165, p. 1‑20, 2019.

[36] M. Poliotti et J.M. Bairán, « A new concrete plastic-damage model with an evolutive dilatancy
parameter », Engineering Structures, vol. 189, p. 541‑549, 2019.

[37] M.A.L. Silva, J.C.P.H. Gamage, et S. Fawzia, « Performance of slab-column connections of flat
slabs strengthened with carbon fiber reinforced polymers », Case Studies in Construction
Materials, vol. 11, p. e00275, 2019.

[38] W. Ren, L. H. Sneed, Y. Yang, et R. He, « Numerical Simulation of Prestressed Precast Concrete
Bridge Deck Panels Using Damage Plasticity Model », International Journal of Concrete
Structures and Materials, vol. 9, no 1, p. 45‑54, 2015.

[39] H. Othman et H. Marzouk, « A study on damage mechanism modelling of shield tunnel under
unloading based on damage–plasticity model of concrete », International Journal of Impact
Engineering, vol. 114, p. 20‑31, 2018.

[40] P.H. Menetrey et K.J.Willam, « Triaxial failure criterion for concrete and its generalization »,
ACI. Struct. J, vol. 92, p. 1995, 318 311apr. J.-C..

[41] N.S. Ottosen, « A failure criterion for concrete », J. Engrg. Mech., ASCE, vol. 103, p. 1977, 535
527.

[42] D.J. Han et W.F.Chen, « strain space plasticity formulation for hardening-softening materials
with elastoplastic coupling », Int. J. Solids Struct, vol. 22, p. 935‑950, 1986.

[43] E.N. Dvorkin, A.M. Cuitino, et G. Gioia, « A concrete material model based on nonassociated
plasticity and fracture », Engrg. Comput, vol. 6, p. 281‑294, 1989.

[44] P.A. Vermeer et R.de Borst, « Non-associated plasticity for soils, concrete and rock », Heron,
vol. 29, no 3, p. 3‑64, 1984.

References

96

[45] K.C. Valanis, « A theory of visco-plasticity with out a yield surface, part I: General theory »,
Archives of Mech, vol. 23, p. 517‑551, 1971.

[46] D.V. Reddy et K.R. Gopal, « Endochronic constitutive modeling of marine fiber reinforced
concrete », Comp. Modeling of RC struct, p. 154‑186, 1986.

[47] P. Desayi et S. Krishnan, « Equation for the stress-strain curve of concrete », ACI journal, vol.
61, p. 345‑350, 1964.

[48] G.M. Smith et L.E. Young, « Ultimate flexural analysis based on stress-strain curves of
cylinders », ACI journal, vol. 53, p. 597‑610, 1956.

[49] R.M. Richard et B.J. Abbott, « Versatile elastic-plastic stress-strain formula », J. Engrg. Mech,
ASCE, vol. 101, p. 511‑515, 1975.

[50] A. Mohamad Ali, B.j. Farid, et A.I.M. Al-Janabi, « Stress-Strain Relationship for Concrete in
Compression Madel of Local Materials », JKAU: Eng. Sci, vol. 2, p. 183‑194, 1990.

[51] D.J. Carreira et K.H. Chu, « Stress-Strain Relationship for Plain Concrete in Compression »,
ACI journal, vol. 82, no 6, p. 797‑804, 1985.

[52] D.J. Carreira et K.H. Chu, « Stress-strain relationship for reinforced concrete in tension », ACI
journal, vol. 84, p. 21‑28, 1986.

[53] J.W. Dougill, « Some remarks on path independence in the small in plasticity », Quart.App.
Math, vol. 32, p. 233‑243, 1975.

[54] J.W. Dougill, « On sTable progressively fracturing solids », ZAMP, vol. 27, p. 423‑437, 1976.
[55] J.W. Ju, « On energy based coupled elasto plastic damage theories: Constitutive modelling and

computational aspects », Int. J. Solids and Struct, vol. 25, p. 803‑833, 1989.
[56] G.Z. Voyiadjis et J.M. Abu Lebdeh, « Damage model for concrete using the bounding surface

concept », J. Engrg. Mech., ASCE, vol. 119, p. 1865‑1885, 1993.
[57] D. Krajcinovic, « Damage mechanics », Mech. Mat, vol. 8, p. 117‑197.
[58] A.K. Singh, « Finite element analysis of damage coupled elastoplastic problems based on

continuum damage mechanics ». Ph.D thesis, Indian Institute of Science, Bangalore, India,
1999.

[59] L.M. Kachanov, « Introduction to Continuum Damage Mechanics ». Kulwer Academic
Publishers, Dordrecht, 1986.

[60] Yu. N. Rabotnov, « Creep Problems in Structural Members ». North Holland Publishing
Company, Amsterdam, 1969.

[61] J.C. Simo et J.W. Ju, « Strain and stress based continuum damage models-I.Formulation », Int.
J. Solids. Struct, vol. 23, p. 821‑840, 1987.

[62] J.C. Simo et J.W. Ju, « Strain and stress based continuum damage models-II.Computational
aspects », Int. J. Solids. Struct, vol. 23, p. 841‑869, 1987.

[63] J.W. Ju, « Isotropic and anisotropic damage variables in continuum damage mechanics »,
J.Engrg. Mech., ASCE, vol. 116, p. 2764‑2770, 1990.

[64] J. Lamaitre, « How to use damage mechanics », Nucl. Engrg. Design, vol. 80, p. 233‑245, 1984.
[65] J. Lamaitre, « A continuous damage mechanics model for ductile fracture », J. Engrg. Mat.

Tech, vol. 107, p. 83‑89, 1985.
[66] J. Lamaitre, « A Course on Damage Mechanics ». Springer-Verlag, 1992.
[67] J.L. Chaboche, « Continuum damage mechanics I. General concepts », J. App. Mech., ASME,

vol. 55, p. 55‑59, 1988.
[68] J.L. Chaboche, « Continuum damage mechanics II. Damage growth, crack initiation and crack

growth », J. App. Mech., ASME, vol. 55, p. 65‑72, 1988.
[69] D. Krajcinovic et G.U. Foneska, « The continuous damage theory of brittle materials Part I:

General theory », J. App. Mech, vol. 48, p. 809‑815, 1981.
[70] D. Krajcinovic, « Constitutive equations for damaging materials », J. Appl. Mech, vol. 50, p.

355‑360, 1983.

References

97

[71] J.L. Chaboche, « Mechanical Behaviour of Anisotropic Solid ». Ed. J.P. Boehler, Martinus
Nijhoff, 1982.

[72] M. Ortiz, « A constitutive theory for inelastic behaviour of concrete », Mech. Mater, vol. 4, p.
67‑93, 1985.

[73] D.W. Nicholson, « Constitutive model for rapidely damaged structural material », Acta. Mech,
vol. 39, p. 195‑205, 1981.

[74] J. Y. Wu, J. Li, et R. Faria, « An energy release rate-based plastic-damage model for concrete »,
International Journal of Solids and Structures, vol. 43, no 3‑4, p. 583‑612, 2006.

[75] Hibbitt, Karlsson, et Sorensen, Abaqus analysis user’s manual Volume III: Materials version
6.10. Dassault Systémes, 2010.

[76] J. Zhang, Z. Zhang, et C. Chen, « Yield criterion in plastic-damage models for concrete », Acta
Mechanica Solida Sinica, vol. 23, no 3, 2010.

[77] M. Hafezolghorani, F. Hejazi, R. Vaghei, M.S. Bin Jaafar, et K. Karimzade, « Simplified
Damage Plasticity Model for Concrete », Structural Engineering International, no 1, p. 68‑78,
2017.

[78] T. Yu, J.G. Teng, Y.L. Wong, et S.L. Dong, « Finite element modeling of confined concrete-II:
Plastic-damage model », Engineering Structures, vol. 32, p. 680‑691, 2010.

[79] W. Demin et H. Fukang, « Investigation for plastic damage constitutive models of the concrete
material », 6th International Workshop on Performance, Protection & Strengthening of
Structures under Extreme Loading (PROTECT2017), Guangzhou (Canton), China, 2017.

[80] D.A Hordijk, « Tensile and tensile fatigue behavior of concrete; experiments, modeling and
analyses », Heron, vol. 37, no 1, p. 9‑79, 1992.

[81] M. Szczecina et A. Winnicki, « Calibration of the CDP model parameters in Abaqus », The 2015
World Congress on Advances in Structural Engineering and Mechanics (ASEM15),Incheon,
Korea, 2015.

[82] M. Szczecina et A. Winnicki, « Numerical simulations of corners in RC frames using Strut-and-
Tie method and CDP model », XIII International Conference on Computational Plasticity.
Fundamentals and Applications (COMPLAS XIII), Barcelona, Spain, 2015.

[83] Y. Sümer et M. Aktaş, « Defining parameters for concrete damage plasticity model », Challenge
Journal of Structural Mechanics, vol. 1, no 2, p. 149‑155, 2015.

[84] A. Demir, H. Ozturk, K. Edip, M. Stojmanovska, et A. Bogdanovic, « Effect of viscosity
parameter on the numerical simulation of reinforced concrete deep beam behavior », The Online
Journal of Science and Technology, vol. 8, no 3, p. 50‑56, 2018.

[85] R. Bhartiya, D.R.Sahoo, et A.Verma, « Modified damaged plasticity and variable confinement
modelling of rectangular CFT columns », Journal of Constructional Steel Research, vol. 176,
p. 106426, 2021.

[86] L.M. e Silva, A.L. Christoforo, et R.C. Carvalho, « Calibration of Concrete Damaged Plasticity
Model parameters for shear walls. », Revista Matéria, vol. 26, no 1, 2021.

[87] H. Behnam, J.S. Kuang, et B. Samali, « Parametric finite element analysis of RC wide beam-
column connections », Computers and Structures, vol. 205, p. 28‑44, 2018.

[88] X. Yangjian, Z. Jianting, L. Yanling, et X. Runchuan, « Concrete plastic-damage factor for finite
element analysis: Concept, simulation, and experiment », Advances in Mechanical Engineering,
vol. 9, no 9, p. 1‑10, 2017.

[89] D.M.Potts et L. Zdravkovic, Finite element analysis in geotechnical engineering: Theory,
Thomas Telford. 1999.

[90] E.A. de Souza Neto, D. Peric, et D. R. J. Owen, Computational Methods for Plasticity: Theory
and Applications. John Wiley & Sons, United Kingdom, 2008.

[91] C. Woltering, « Triangle.NET », Github. https://github.com/wo80/Triangle.NET
[92] « OpenTK ». https://opentk.net/
[93] « Ribbon WinForms », Github. https://github.com/RibbonWinForms/RibbonWinForms

References

98

[94] « Math.NET Numerics ». https://numerics.mathdotnet.com/
[95] O.J. Dahl et K. Nygaard, « SIMULA an ALGOL-Based Simulation Language »,

Communications of the ACM, vol. 9, no 9, p. 671‑678, 1966.
[96] B. W. R. Forde, R. O. Foschi, et S. F. Stiemer, « Object-oriented finite element analysis »,

Computers & Structures, vol. 34, p. 355‑374, 1990.
[97] R.I Mackie, « Object oriented programming of the finite element method », International

Journal for Numerical Methods In Engineering, vol. 35, p. 425‑436, 1992.
[98] Y. Dubois-Pelerin, T. Zimmermann, et P. Bomme, « Object-oriented finite element

programming: II. A prototype program in smalltalk », Computer Methods in Applied Mechanics
and Engineering, vol. 98, p. 361‑397, 1992.

[99] S. Kumar, « Object-Oriented Finite Element Programming for Engineering Analysis in C++ »,
Journal of Software, vol. 5, no 7, p. 689‑696, 2010.

[100] P. D. Alves, F. B. Barros, et R. L.S. Pitangueira, « An object-oriented approach to the
Generalized Finite Element Method », Advances in Engineering Software, vol. 59, p. 1‑18,
2013.

[101] R. Benjamin et al., « CastLab: an object-oriented finite element toolbox within the Matlab
environment for educational and research purposes in computational solid mechanics »,
Advances in Engineering Software, vol. 128, p. 136‑151, 2019.

[102] E. Thorenfeldt, A. Tomaszewicz, et J. J. Jensen, « Mechanical properties of high-strength
concrete and application in design », in Proc. Symposium on Utilization of High-Strength
Concrete, Tapir, Trondheim, Norway, p. 149‑159, 1987.

[103] K. Watanabe, J. Niwa, H. Yokota, et M. Iwanami, « Experimental Study on Stress-Strain
Curve of Concrete Considering Localized Failure in Compression », Journal of Advanced
Concrete Technology, vol. 2, no 3, p. 395‑407, 2004.

[104] R. Bakhti, B.Benahmed, A. Laib, et M.T. Alfach., « New approach for computing damage
parameters evolution in Plastic Damage Model for concrete », Case Studies in Construction
Materials, vol. 16, no e00834, p. 1‑19, 2022.

Appendix

99

Appendix
The source code of Concrete v2.0.0 is available under MIT licensing on GitHub through the link:

https://github.com/BakhtiSoftwares/Concrete

Appendix

100

Mesh subroutines

The GenerateMeshCylindre subroutine is written as:

Private Sub GenerateMeshCylindre(Diametre As Double, Haut As Double, E As Double, V As Double, Fb0_Fc0
As Double, Kc As Double, PsiDegre As Double,Fck As Double, Excent As Double, Rhou As
Double, Comprission As List(Of DoublePoint), Tension As List(Of DoublePoint))

Dim Counteur As List(Of DoublePoint) = CalculerPiremetreCylindre(Diametre)
 Dim OurMesh As Mesh = MeshGenerator(Counteur)
 QuadMesh = QMesh(New QuadMesh(OurMesh))
 Delete double QUAD
 Dim Termine As Boolean = False
 Do Until Termine
 Dim Count As Integer = 0
 Dim ExistQuad As Boolean = False
 For i = 0 To QuadMesh.Count - 1
 For j = i + 1 To QuadMesh.Count - 1
 If SameQuad(QuadMesh.Item(i), QuadMesh.Item(j)) Then
 ExistQuad = True
 Count = i
 Exit For
 End If

 Next
 If ExistQuad Then Exit For
 Next
 If ExistQuad Then
 QuadMesh.Remove(QuadMesh.Item(Count))
 Else
 Termine = True
 End If
 Loop
 Noeuds.Clear()
 Dim NumbrElemet As Integer = Haut / MaxLong
 Dim Cont As Integer = -1
 Dim LongReal As Double = Haut / NumbrElemet
 NbrNoeudEtage = ListOfVertex.Count
 Dim Dis As Double = 999999999
 Dim Dis1 As Double
 For i = 0 To ListOfVertex.Count - 1
 Dis1 = Sqrt(ListOfVertex.Item(i).x ^ 2 + ListOfVertex.Item(i).y ^ 2)
 If Dis1 < Dis Then
 NoeudProcheCentre.x = ListOfVertex.Item(i).x
 NoeudProcheCentre.y = ListOfVertex.Item(i).y
 End If
 Next
 Dim Z As Double
 Do Until Z > Haut
 For i = 0 To ListOfVertex.Count - 1
 Cont = Cont + 1
 Dim NewNoeud As New Node
 NewNoeud.Ident = Cont
 NewNoeud.Coord(1) = ListOfVertex.Item(i).x
 NewNoeud.Coord(2) = ListOfVertex.Item(i).y
 NewNoeud.Coord(3) = Z
 Noeuds.Add(NewNoeud)
 Next
 Z = Z + LongReal
 If Abs(Z - Haut) < 0.0001 Then Z = Haut
 Loop
 Z = LongReal
 Elements.Clear()
 Cont = -1
 Dim Etage, NumberNoued As Integer
 Do Until Z > Haut
 For i = 0 To QuadMesh.Count - 1
 Cont = Cont + 1
 Dim ListNoeud As New List(Of Node)
 NumberNoued = QuadMesh.Item(i).S1 + Etage * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S2 + Etage * ListOfVertex.Count

Appendix

101

 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S3 + Etage * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S4 + Etage * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S1 + (Etage + 1) * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S2 + (Etage + 1) * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S3 + (Etage + 1) * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S4 + (Etage + 1) * ListOfVertex.Count
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 Elements.Add(New BrickEightNodes(Cont, E, V, Fb0_Fc0, Kc, PsiDegre, Fck, Excent, Rhou,
Comprission, Tension, ListNoeud))
 Next
 Z = Z + LongReal
 If Abs(Z - Haut) < 0.0001 Then Z = Haut
 Etage = Etage + 1
 Loop
End Sub

With MeshGenerator is the subroutine that generates 2D mesh of the cylinder section using

Triangle.Net library

Private Function MeshGenerator(Polygon As List(Of DoublePoint)) As Mesh
 Dim Resulat As Mesh
 Dim MyPolygon As New Polygon
 Dim VertexCount As New List(Of Vertex)
 For i = 0 To Polygon.Count - 1
 MyPolygon.Add(New Vertex(Polygon.Item(i).x, Polygon.Item(i).y))
 Next
 Dim Options As New ConstraintOptions
 Dim Quality As New QualityOptions()
 Quality.MaximumAngle = 130
 Quality.MinimumAngle = 25
 Quality.MaximumArea = MaxLong * MaxLong
 Resulat = MyPolygon.Triangulate(Options, Quality)
 Return Resulat
End Function

The GenerateMeshCube subroutine is written as;

Private Sub GenerateMeshCube(ZHaut As Double, Ylar As Double, XLon As Double, E As Double, V As
Double, Fb0_Fc0 As Double, Kc As Double, PsiDegre As Double,Fck As Double, Excent As
Double, Rhou As Double, Comprission As List(Of DoublePoint), Tension As List(Of
DoublePoint))

 Dim LineNumber As Integer = 0
 ListOfVertex.Clear()
 ListOfVertex = CalculatePointsCube(Ylar, XLon, LineNumber)
 Dim Dtot As Double = Ylar
 Dim DisY As Double = Ylar * MaillgeParametre / 100
 DisY = Ylar / DisY
 DisY = Ylar / (Int(DisY))
 Dim DisCour As Double = DisY
 Dim Cont As Integer = 1
 QuadMesh.Clear()

Do
 For i = 0 To LineNumber - 2
 QuadMesh.Add(New Quadralateral With {.S1 = i + (Cont - 1) * LineNumber, .S2 = i +

(Cont - 1) * LineNumber + 1, .S3 = i + Cont * LineNumber +
1, .S4 = i + Cont * LineNumber})

 Next
 Cont = Cont + 1
 If DisCour >= Dtot Then Exit Do
 DisCour = DisCour + DisY
 If DisCour >= Dtot Then
 For i = 0 To LineNumber - 2
 QuadMesh.Add(New Quadralateral With {.S1 = i + (Cont - 1) * LineNumber, .S2 = i +

(Cont - 1) * LineNumber + 1, .S3 = i + Cont * LineNumber +
1, .S4 = i + Cont * LineNumber})

Appendix

102

 Next
 Exit Do
 End If
 Loop 'Delete double QUAD
 Dim Termine As Boolean = False
 Do Until Termine
 Dim Count As Integer = 0
 Dim ExistQuad As Boolean = False
 For i = 0 To QuadMesh.Count - 1
 For j = i + 1 To QuadMesh.Count - 1
 If SameQuad(QuadMesh.Item(i), QuadMesh.Item(j)) Then
 ExistQuad = True
 Count = i
 Exit For
 End If
 Next
 If ExistQuad Then Exit For
 Next
 If ExistQuad Then
 QuadMesh.Remove(QuadMesh.Item(Count))
 Else
 Termine = True
 End If
 Loop
 Noeuds.Clear()
 Dim NumbrElemet As Integer = Haut / MaxLong
 Dim LongReal As Double = Haut / NumbrElemet
 NbrNoeudEtage = ListOfVertex.Count
 Dim Dis As Double = 999999999
 Dim Dis1 As Double
 For i = 0 To ListOfVertex.Count - 1
 Dis1 = Sqrt(ListOfVertex.Item(i).x ^ 2 + ListOfVertex.Item(i).y ^ 2)
 If Dis1 < Dis Then
 NoeudProcheCentre.x = ListOfVertex.Item(i).x
 NoeudProcheCentre.y = ListOfVertex.Item(i).y
 End If
 Next
 Cont = -1
 Dim Z As Double
 Do Until Z > Haut
 For i = 0 To ListOfVertex.Count - 1
 Cont = Cont + 1
 Dim NewNoeud As New Node
 NewNoeud.Ident = Cont
 NewNoeud.Coord(1) = ListOfVertex.Item(i).x
 NewNoeud.Coord(2) = ListOfVertex.Item(i).y
 NewNoeud.Coord(3) = Z
 Noeuds.Add(NewNoeud)
 Next
 Z = Z + LongReal
 If Abs(Z - Haut) < 0.0001 Then Z = Haut
 Loop
 Z = LongReal
 Cont = -1
 Elements.Clear()
 Dim Etage, NumberNoued As Integer
 Do Until Z > Haut
 For i = 0 To QuadMesh.Count - 1
 Cont = Cont + 1
 Dim ListNoeud As New List(Of Node)
 NumberNoued = QuadMesh.Item(i).S1 + Etage * ListOfVertex.Count ' Noeud 01
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S2 + Etage * ListOfVertex.Count ' Noeud 02
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S3 + Etage * ListOfVertex.Count 'Noeud 03
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S4 + Etage * ListOfVertex.Count ' Noeud 04
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S1 + (Etage + 1) * ListOfVertex.Count ' Noeud 05
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S2 + (Etage + 1) * ListOfVertex.Count 'Noeud 06
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S3 + (Etage + 1) * ListOfVertex.Count 'Noeud 07
 ListNoeud.Add(Noeuds.Item(NumberNoued))
 NumberNoued = QuadMesh.Item(i).S4 + (Etage + 1) * ListOfVertex.Count ' Noeud 08

Appendix

103

 ListNoeud.Add(Noeuds.Item(NumberNoued))
 Elements.Add(New BrickEightNodes(Cont, E, V, Fb0_Fc0, Kc, PsiDegre, Fck, Excent, Rhou,
Comprission, Tension, ListNoeud))
 Next
 Z = Z + LongReal
 If Abs(Z - Haut) < 0.0001 Then Z = Haut
 Etage = Etage + 1
 Loop
End Sub

Drawing subroutines

Public Sub ChargerGLControl(MyGlControl As GLControl)
 GL.ClearColor(Color.White)
 GL.Clear(ClearBufferMask.ColorBufferBit)
 GL.MatrixMode(MatrixMode.Projection)
 GL.LoadIdentity()
 GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line)
 GL.Clear(ClearBufferMask.ColorBufferBit)
 GL.ClearColor(Color.Black)
 GL.MatrixMode(MatrixMode.Projection)
 GL.LoadIdentity()
 MyGlControl.SwapBuffers()
End Sub

Public Sub ReDraw2D(MyGlControl As GLControl)
 Dim w, h As Integer
 w = MyGlControl.Width
 h = MyGlControl.Height
 Dim Rapport As Double = w / h
 GL.ClearColor(Color.Black)
 GL.Clear(ClearBufferMask.ColorBufferBit)
 GL.LoadIdentity()
 GL.MatrixMode(MatrixMode.Projection)
 GL.Ortho(-1, 1, -1, 1, -1, 1)
 GL.Viewport(0, 0, w, h)
 OurProblem.Draw2D(Color.Red)
End Sub

Public Sub ReDraw3D(MyGlControl As GLControl)
 Dim w, h As Integer
 w = MyGlControl.Width
 h = MyGlControl.Height
 Dim Rapport As Double = w / h
 Dim Prespective As Matrix4 = Matrix4.CreatePerspectiveFieldOfView(1, Rapport, 0.01, 100)
 Dim LoackAt As Matrix4 = Matrix4.LookAt(eyeX, eyeY, eyeZ, targetX, targetY, targetZ, 0, 0, 1)
 GL.MatrixMode(MatrixMode.Projection)
 GL.LoadIdentity()
 GL.LoadMatrix(Prespective)
 GL.MatrixMode(MatrixMode.Modelview)
 GL.LoadIdentity()
 GL.LoadMatrix(LoackAt)
 GL.Viewport(0, 0, w, h)
 GL.ClearColor(Color.Black)
 GL.Clear(ClearBufferMask.ColorBufferBit)
 OurProblem.Draw3D(True, Color.Red)
 OurProblem.Draw3D(False, Color.SkyBlue, EchelleAffichage)
End Sub

Public Sub Draw3D(InitialShape As Boolean, PrintColor As Color, Optional Echelle As Integer = 10)
If IsNothing(QuadMesh) Then Exit Sub
 Dim ContIndex As Integer = 0
 GL.Enable(EnableCap.Light0)
 GL.Enable(EnableCap.LineSmooth)
 If InitialShape Then
 GL.PushMatrix()
 For Each Elem In Elements
 GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line)
 GL.Color3(Color.BlueViolet)
 DessignerCube(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1), Elem.ListNoeud.Item(2),
Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5), Elem.ListNoeud.Item(6),
Elem.ListNoeud.Item(7))
 GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Fill)
 GL.Color3(Color.Brown)

Appendix

104

 DessignerCube(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1), Elem.ListNoeud.Item(2),
Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5), Elem.ListNoeud.Item(6),
Elem.ListNoeud.Item(7))
 Next
 GL.PopMatrix()
 Else
 GL.PushMatrix()
 For Each Elem In Elements
 GL.LineWidth(1)
 GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line)
 GL.Color3(Color.DarkBlue)
 DessignerCubeDeplacer(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1),
Elem.ListNoeud.Item(2), Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5),
Elem.ListNoeud.Item(6), Elem.ListNoeud.Item(7), Echelle)
 GL.LineWidth(2)
 GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Fill)
 GL.Color3(PrintColor)
 DessignerCubeDeplacer(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1),
Elem.ListNoeud.Item(2), Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5),
Elem.ListNoeud.Item(6), Elem.ListNoeud.Item(7), Echelle)
 GL.LineWidth(1)
 Next
 GL.PopMatrix()
 End If
End Sub

Public Sub Draw2D(PrintColor As Color)
 If IsNothing(QuadMesh) Then Exit Sub
 Dim ContIndex As Integer = 0
 GL.PushMatrix()
 GL.Color3(PrintColor)
 GL.Disable(EnableCap.Light0)
 GL.Disable(EnableCap.LineSmooth)
 GL.LineWidth(1)
 For Each Quad In QuadMesh
 GL.Begin(PrimitiveType.LineLoop)
 GL.Vertex2(ListOfVertex.Item(Quad.S1).x, ListOfVertex.Item(Quad.S1).y)
 GL.Vertex2(ListOfVertex.Item(Quad.S2).x, ListOfVertex.Item(Quad.S2).y)
 GL.Vertex2(ListOfVertex.Item(Quad.S3).x, ListOfVertex.Item(Quad.S3).y)
 GL.Vertex2(ListOfVertex.Item(Quad.S4).x, ListOfVertex.Item(Quad.S4).y)
 GL.End()
 Next
 GL.PopMatrix()
End Sub

Private Sub DessignerCube(Noued1 As Node, Noued2 As Node, Noued3 As Node, Noued4 As Node,Noued5 As
Node, Noued6 As Node, Noued7 As Node, Noued8 As Node)
 GL.Begin(PrimitiveType.Polygon)
 GL.Vertex3(Noued1.Coord(1), Noued1.Coord(2), Noued1.Coord(3))
 GL.Vertex3(Noued2.Coord(1), Noued2.Coord(2), Noued2.Coord(3))
 GL.Vertex3(Noued3.Coord(1), Noued3.Coord(2), Noued3.Coord(3))
 GL.Vertex3(Noued4.Coord(1), Noued4.Coord(2), Noued4.Coord(3))
 GL.End()

 GL.Begin(PrimitiveType.Polygon)
 GL.Vertex3(Noued5.Coord(1), Noued5.Coord(2), Noued5.Coord(3))
 GL.Vertex3(Noued6.Coord(1), Noued6.Coord(2), Noued6.Coord(3))
 GL.Vertex3(Noued7.Coord(1), Noued7.Coord(2), Noued7.Coord(3))
 GL.Vertex3(Noued8.Coord(1), Noued8.Coord(2), Noued8.Coord(3))
 GL.End()

 GL.Begin(PrimitiveType.Polygon)
 GL.Vertex3(Noued1.Coord(1), Noued1.Coord(2), Noued1.Coord(3))
 GL.Vertex3(Noued2.Coord(1), Noued2.Coord(2), Noued2.Coord(3))
 GL.Vertex3(Noued6.Coord(1), Noued6.Coord(2), Noued6.Coord(3))
 GL.Vertex3(Noued5.Coord(1), Noued5.Coord(2), Noued5.Coord(3))
 GL.End()

 GL.Begin(PrimitiveType.Polygon)
 GL.Vertex3(Noued3.Coord(1), Noued3.Coord(2), Noued3.Coord(3))
 GL.Vertex3(Noued4.Coord(1), Noued4.Coord(2), Noued4.Coord(3))
 GL.Vertex3(Noued8.Coord(1), Noued8.Coord(2), Noued8.Coord(3))
 GL.Vertex3(Noued7.Coord(1), Noued7.Coord(2), Noued7.Coord(3))
 GL.End()
End Sub

Appendix

105

PDM Class

Imports System.Math
Public Class PDM
 Inherits Base
 Public E0, V, Fb0_Fc0, Kc, PsiDegre, Leq, Fck, Excent, SigmaT0, SigmaC, SigmaT, Dc, Dt, Damaged As
Double
 Public ac, bc, at, bt As Double

Public Function ConcreteDamagedPlasticityYieldCondition(stress() As Double, SigmaI As Double, SigmaII
As Double, SigmaIII As Double, Fb0_Fc0 As Double,SigmaC As Double, SigmaT As Double, Kc As Double) As
Double

 Dim J2, I1 As Double
 InvariantsContraintes(stress, I1,,, J2)
 Dim Alfa, Beta, Gamma As Double
 ParamatersCDP(Fb0_Fc0, SigmaC, SigmaT, Kc, Alfa, Beta, Gamma)
 Dim SigmaMax As Double
 SigmaMax = Max(Max(SigmaI, SigmaII), SigmaIII)
 If SigmaMax >= 0 Then
 Dim result As Double = (1 / (1 - Alfa))
 result = result * (Sqrt(3 * J2) + Alfa * I1 + Beta * SigmaMax) - SigmaC
 Return result
 Else
 Dim result As Double = (1 / (1 - Alfa))
 result = result * (Sqrt(3 * J2) + Alfa * I1 - Gamma * SigmaMax)
 result = result - SigmaC
 Return result
 End If
 End Function

Public Function DLambda(DStrain() As Double, DerivativeQ() As Double, DerivativeF() As
Double,Delastic(,) As Double, InElasticStrain As Double, SigmaTbarre As Double,SigmaMax As Double,
DInElasticStrain As Double) As Double

 Dim DDQ() As Double = MatriceVecteurMultipe(Delastic, DerivativeQ, 1)
 Dim DDE() As Double = MatriceVecteurMultipe(Delastic, DStrain, 1)
 Dim fc0 As Double = 0.4 * (Fck + 8)
 Dim DerivativeFStrain As Double = DerivativeYieldFunctionStrain(InElasticStrain, fc0,
SigmaTbarre, SigmaMax)
 Dim FirstScale As Double = 0
 Dim SecondScale As Double = 0
 Dim IH As Integer = DerivativeQ.Count - 1
 For i = 1 To IH
 FirstScale += DerivativeF(i) * DDE(i)
 Next
 FirstScale += DerivativeFStrain * DInElasticStrain
 For i = 1 To IH
 SecondScale += DerivativeF(i) * DDQ(i)
 Next
 Dim DLam As Double = FirstScale / SecondScale
 If DLam < 0 Then DLam = 0
 Return DLam
End Function

Public Function PlasticStressImplicit(Strain() As Double, Stress() As Double, Delastic(,) As
Double,StrainIncrement() As Double, InElasticStrain As Double, DInElasticStrain As Double, SigmaTbarre
As Double,SigmaMax As Double, alfa As Double) As Double()
 Dim a, b, Gamma, I1, J2, Theta, J3, SigmaI, SigmaII, SigmaIII As Double
 Dim Comprission As List(Of DoublePoint)
 Dim Tension As List(Of DoublePoint)
 SigmaT0 = 0.3016 * Fck ^ 0.6666667
 ValeurPropre(Stress, SigmaI, SigmaII, SigmaIII, Theta)
 InvariantsContraintes(Stress, I1,,, J2, J3)
 Dim DefPlasT, DefPlasC As Double
 DamageParametres(1, Strain, SigmaI, SigmaII, SigmaIII, Fck, Leq, bc, bt, SigmaC, SigmaT,
SigmaT0, Dc, Dt, Damaged, Comprission, Tension, E0, DefPlasT, DefPlasC)
 SigmaC = SigmaC / (1 - Dc)
 SigmaT = SigmaT / (1 - Dt)
 ParamatersCDP(Fb0_Fc0, SigmaC, SigmaT, Kc, a, b, Gamma)
 If SigmaI < 0 Then b = -Gamma
 Dim DerivativeF() As Double = DerivativeYieldFunctionStress(Stress, a, b, Theta, I1, J2, J3)
 Dim DerivativeQ() As Double = DerivativePotentialFunction(Stress, PsiDegre, Excent, SigmaT0)

Appendix

106

 Dim Lamda As Double = DLambda(StrainIncrement, DerivativeQ, DerivativeF, Delastic,
InElasticStrain, SigmaTbarre, SigmaMax, DInElasticStrain)
 Dim IH As Integer = DerivativeQ.Count - 1
 For i = 1 To IH
 DerivativeQ(i) = DerivativeQ(i) * Lamda
 Next
 Return MatriceVecteurMultipe(Delastic, DerivativeQ)
End Function

Public Function YieldFunctionEstimation(Approch As Integer, Strain() As Double, Stress() As
Double,SigmaI As Double, SigmaII As Double, SigmaIII As Double, Fck As Double, Ieq As Double, bcBakhti
As Double, btBakhti As Double, Fb0_Fc0 As Double,Kc As Double, Comprission As List(Of DoublePoint),
Tension As List(Of DoublePoint),ByRef SigmaC As Double, ByRef SigmaT As Double, ByRef SigmaT0 As
Double,ByRef Dc As Double, ByRef Dt As Double, ByRef D As Double,Optional Ebeton As Double = 0, ByRef
Optional DefPlasC As Double = 0) As Double

 Dim YieldFunction As Double = 0
 'Damaged Paramaters Evaluation
 Dim DefPlasT As Double
 Dim Resultats As Boolean = DamageParametres(Approch, Strain, SigmaI, SigmaII, SigmaIII, Fck,
Ieq, bcBakhti, btBakhti,
 SigmaC, SigmaT, SigmaT0, Dc, Dt, D,
Comprission, Tension, Ebeton, DefPlasT, DefPlasC)
 If Dc = 1 Then Dc = 0.999999999
 If Dt = 1 Then Dt = 0.999999999
 SigmaC = SigmaC / (1 - Dc)
 SigmaT = SigmaT / (1 - Dt)
 YieldFunction = ConcreteDamagedPlasticityYieldCondition(Stress, SigmaI, SigmaII, SigmaIII,
Fb0_Fc0, SigmaC, SigmaT, Kc)
 Return YieldFunction
End Function

Public Function DerivativeYieldFunctionStrain(InElasticStrain As Double, fc0 As Double, SigmaTBare As
Double, SigmaMax As Double) As Double
 Dim Resultats As Double = (Crocher(SigmaMax) / SigmaTBare) - 1
 Resultats = Resultats * fc0 * ac * (ac + 1) * (ac + 2) * bc * Exp(bc * InElasticStrain)
 Dim S As Double = ((2 * ac + 2) * Exp(bc * InElasticStrain) - ac) ^ 2
 Return Resultats / S
End Function

Public Function DerivativeYieldFunctionStress(Stress() As Double, a As Double, b As Double, Theta As
Double, I1 As Double, J2 As Double, J3 As Double) As Double()
 Dim Resultats(6) As Double
 Dim M1(0, 0), M2(0, 0), M3(6, 6), Flow(6, 6), x As Double
 FormM3D(Stress, M1, M2, M3)
 Dim J As Double = Sqrt(J2)
 Dim p As Double = I1 / 3
 Dim FirstSide() As Double = DerativeMeanStress()
 Dim SecondSide() As Double = DerativeDiviatoricStress(Stress, p, J)
 Dim ThirdSide() As Double = DerativeTheta(Stress, p, J, Theta, J3, M3)
 Dim DQ1, DQ2, DQ3 As Double
 DQ1 = (3 * a) / (1 - a) ' (3 * a + b) / (1 - a)
 Dim Sqrt3 As Double = Sqrt(3)
 DQ2 = 2 * b * Sin(Theta - 2 * PI / 3)
 DQ2 = Sqrt3 + DQ2 / Sqrt3
 DQ2 = Sqrt3 / (1 - a) 'DQ2 / (1 - a)
 DQ3 = 2 * b * J * Cos(Theta - 2 * PI / 3)
 DQ3 = 0 ' DQ3 / (Sqrt3 * (1 - a))
 For i = 1 To 6
 Resultats(i) = DQ1 * FirstSide(i) + DQ2 * SecondSide(i) + DQ3 * ThirdSide(i)
 Next
 Return Resultats
End Function

Public Function DerivativePotentialFunction(Stress() As Double, PsiDegre As Double, Epsilon As Double,
Sigmat0 As Double,Optional Type As Integer = 0) As Double()
 Select Case Type
 Case 0
 Dim TanPsi As Double = Tan(DegreToRadian(PsiDegre))
 Dim Resultats(6) As Double
 Dim M1(0, 0), M2(0, 0), M3(6, 6), Flow(6, 6), x As Double
 Dim DQ1, DQ2 As Double
 Dim J2 As Double
 InvariantsContraintes(Stress,,,, J2)
 DQ1 = TanPsi

Appendix

107

 DQ2 = 3 / (2 * Sqrt((Epsilon * Sigmat0 * TanPsi) ^ 2 + 3 * J2))
 FormM3D(Stress, M1, M2, M3)
 For i = 1 To 6
 For j = 1 To 6
 Flow(i, j) = (M1(i, j) * DQ1 + M2(i, j) * DQ2)
 Next
 Next
 For i = 1 To 6
 x = 0
 For j = 1 To 6
 x += Flow(i, j) * Stress(j)
 Next
 Resultats(i) = x
 Next
 Return Resultats
 Case 1
 Dim TanPsi As Double = Tan(DegreToRadian(PsiDegre))
 Dim Resultats(6), I1, J2, J3 As Double
 InvariantsContraintes(Stress, I1,,, J2, J3)
 Dim J As Double = Sqrt(J2)
 Dim p As Double = I1 / 3
 Dim FirstSide() As Double = DerativeMeanStress()
 Dim SecondSide() As Double = DerativeDiviatoricStress(Stress, p, J)
 Dim DQ1, DQ2 As Double
 DQ1 = TanPsi
 DQ2 = 3 * J / Sqrt(3 * J ^ 2 + (Epsilon * Sigmat0 * TanPsi) ^ 2)
 For i = 1 To 6
 Resultats(i) = DQ1 * FirstSide(i) + DQ2 * SecondSide(i)
 Next
 Return Resultats
 End Select
 Return Nothing
End Function

Public Function DamageParametres(Approch As Integer, Strain() As Double, SigmaI As Double, SigmaII As
Double,SigmaIII As Double, Fck As Double, Ieq As Double, bcBakhti As Double, btBakhti As Double, ByRef
SigmaC As Double,ByRef SigmaT As Double, ByRef SigmaT0 As Double, ByRef Dc As Double, ByRef Dt As
Double, ByRef D As Double, Comprission As List(Of DoublePoint), Tension As List(Of DoublePoint),
Ebeton As Double, ByRef DefPlasT As Double,ByRef DefPlasC As Double) As Boolean

 'According to B. Alfarah & al. 2017
 Select Case Approch
 Case 0 'Alfarah approach
 DamageParametres = True
 Dim r As Double = Rfunction(SigmaI, SigmaII, SigmaIII)
 Dim St, Sc As Double 'Must evaluate Dc,Dt 'Eq 19 & 20
 Dim Hc, Ht As Double
 Dim StrI, StrII, StrIII As Double
 SigmaT = 0
 SigmaT0 = 0
 SigmaC = 0
 Dc = 0
 Dt = 0
 D = 0
 ValeurPropre(Strain, StrI, StrII, StrIII)
 Dim DefT As Double = r * Max(Max(StrI, StrII), StrIII)
 Dim DefC As Double = -(1 - r) * Min(Min(StrI, StrII), StrIII)
 Dim DefCpl, DefTpl As Double
 Hc = 0.9
 Ht = 0
 Dim b As Double = 0.9
 Dim Newb As Double
 Dim Fcm, Ftm, Fc0, Ft0, Defcm, Deftm, Eci, E0, Gf, Gch, Wc As Double
 Fcm = Fck + 8
 Ftm = 0.3016 * Fck ^ (2 / 3)
 Defcm = 0.0007 * Fcm ^ 0.31
 Eci = 10000 * Fcm ^ (1 / 3)
 E0 = Eci * (0.8 + 0.2 * (Fcm / 88))
 Gf = 0.073 * Fcm ^ 0.18
 Gch = Gf * (Fcm / Ftm) ^ 2
 Wc = 5.14 * Gf / Ftm
 Deftm = Ftm / E0
 Fc0 = 0.4 * Fcm
 Ft0 = Ftm
 Dim ac, at, bc, bt As Double

Appendix

108

 ac = 7.873
 at = 1
 bc = (1.97 * Fcm / Gch) * Ieq
 bt = (0.453 * Fck ^ (2 / 3) / Gf) * Ieq
 Sc = 1 - Hc * (1 - r)
 St = 1 - Ht * r
 Dim ElaticDefor As Double = 0.4 * Fcm / E0
 Dim iter As Integer = 0
 Do 'Lancer iteration
 iter += 1
 If DefC >= 0 And DefC <= ElaticDefor Then
 SigmaC = SigmaCI(DefC, E0)
 DefPlasC = 0
 ' If DefC <> 0 Then DamageParametres = False
 ElseIf DefC > ElaticDefor And DefC <= Defcm Then
 SigmaC = SigmaCII(DefC, Defcm, Fcm, Eci)
 DefPlasC = DefC - SigmaC / E0
 ElseIf DefC > Defcm Then
 SigmaC = SigmaCIII(DefC, Defcm, Fcm, Gch, Ieq, b, E0)
 DefPlasC = DefC - SigmaC / E0
 End If
 If DefT >= 0 And DefT <= Deftm Then
 SigmaT = SigmaTI(DefT, E0)
 DefPlasT = 0
 ' If DefT <> 0 Then DamageParametres = False
 ElseIf DefT > Deftm Then
 SigmaT = SigmaTII(DefT, Deftm, Ieq, Wc, Ftm)
 DefPlasT = DefT - SigmaT / E0
 End If
 Dc = 1 - (1 / (2 + ac)) * (2 * (1 + ac) * Exp(-bc * DefPlasC) - ac * Exp(-2 * bc *
DefPlasC))
 Dt = 1 - (1 / (2 + at)) * (2 * (1 + at) * Exp(-bt * DefPlasT) - at * Exp(-2 * bt *
DefPlasT))
 D = 1 - (1 - St * Dc) * (1 - Sc * Dt)
 If Dc < 0 Then Dc = 0
 If Dt < 0 Then Dt = 0
 If D < 0 Then D = 0
 If DefPlasC = 0 Then
 SigmaC = Fc0
 DefCpl = 0
 Else
 DefCpl = DefPlasC - SigmaC * Dc / (E0 * (1 - Dc))
 If DefCpl < 0 Then DefCpl = 0
 End If
 If DefPlasT = 0 Then
 SigmaT = Ft0
 DefTpl = 0
 Else
 DefTpl = DefPlasT - SigmaT * Dt / (E0 * (1 - Dt))
 End If
 If DefPlasC <> 0 Then
 Newb = DefCpl / DefPlasC
 If Convergence(Newb, b, 0.0001) Or iter > 400 Then
 Exit Do
 End If
 b = Newb
 Else
 Exit Do
 End If
 Loop
 SigmaT0 = SigmaTI(Deftm, E0)
 Case 1 'According to Bakhti approach
 DamageParametres = True
 Dim r As Double = Rfunction(SigmaI, SigmaII, SigmaIII)
 If SigmaI > 0 Then
 SigmaI += 0
 End If
 Dim St, Sc As Double 'Must evaluate Dc,Dt 'Eq 19 & 20
 Dim Hc, Ht As Double
 Dim StrI, StrII, StrIII As Double
 SigmaT = 0
 SigmaT0 = 0
 SigmaC = 0
 Dc = 0
 Dt = 0

Appendix

109

 D = 0
 ValeurPropre(Strain, StrI, StrII, StrIII)
 Dim DefT As Double = r * Max(Max(StrI, StrII), StrIII)
 Dim DefC As Double = -(1 - r) * Min(Min(StrI, StrII), StrIII)
 Dim SigT As Double = r * Max(Max(SigmaI, SigmaII), SigmaIII)
 Dim SigC As Double = -(1 - r) * Min(Min(SigmaI, SigmaII), SigmaIII)
 Hc = 0.9
 Ht = 0
 Dim Fcm, Fc0, Ft0, Ftm, Defcm, Deftm, Eci, E0, Gf, Gch, Wc As Double
 Fcm = Fck + 8
 Ftm = 0.3016 * Fck ^ (2 / 3)
 Defcm = 0.0007 * Fcm ^ 0.31
 Eci = 10000 * Fcm ^ (1 / 3)
 E0 = Eci * (0.8 + 0.2 * (Fcm / 88))
 Gf = 0.073 * Fcm ^ 0.18
 Gch = Gf * (Fcm / Ftm) ^ 2
 Wc = 5.14 * Gf / Ftm
 Deftm = Ftm / E0
 Fc0 = 0.4 * Fcm
 Ft0 = Ftm
 Dim ac, at, bc, bt As Double
 ac = 7.873
 at = 1
 bc = bcBakhti
 bt = btBakhti
 Sc = 1 - Hc * (1 - r)
 St = 1 - Ht * r
 DefPlasC = FindInelasticStrain(0, 0.05, 0.00001, Fc0, ac, bc, E0, DefC)
 DefPlasT = FindInelasticStrain(0, 0.005, 0.000001, Ft0, at, bt, E0, DefT)
 Dc = 1 - (2 * (1 + ac) * Exp(-bc * DefPlasC) - ac * Exp(-2 * bc * DefPlasC)) / (2 +
ac)
 Dt = 1 - (2 * (1 + at) * Exp(-bt * DefPlasT) - at * Exp(-2 * bt * DefPlasT)) / (2 +
at)
 D = 1 - (1 - St * Dc) * (1 - Sc * Dt)
 If DefPlasC = 0 Then
 SigmaC = Fc0
 Else
 SigmaC = Fc0 * ((1 + ac) * Exp(-bc * DefPlasC) - ac * Exp(-2 * bc * DefPlasC))
 End If
 If DefPlasT = 0 Then
 SigmaT = Ft0
 Else
 SigmaT = Ft0 * ((1 + at) * Exp(-bt * DefPlasT) - at * Exp(-2 * bt * DefPlasT))
 End If
 SigmaT0 = SigmaTI(Deftm, E0)
 If Dc < 0 Then Dc = 0
 If Dt < 0 Then Dt = 0
 If D < 0 Then D = 0
 Case 2 'From curves
 DamageParametres = True
 Dim r As Double = Rfunction(SigmaI, SigmaII, SigmaIII)
 Dim St, Sc As Double 'Must evaluate Dc,Dt 'Eq 19 & 20
 Dim Hc, Ht As Double
 Dim StrI, StrII, StrIII As Double
 SigmaT = 0
 SigmaT0 = 0
 SigmaC = 0
 Dc = 0
 Dt = 0
 D = 0
 ValeurPropre(Strain, StrI, StrII, StrIII)
 Dim DefT As Double = r * Max(Max(StrI, StrII), StrIII)
 Dim DefC As Double = -(1 - r) * Min(Min(StrI, StrII), StrIII)
 Hc = 0.9
 Ht = 0
 Sc = 1 - Hc * (1 - r)
 St = 1 - Ht * r
 DefPlasC = FindInelasticStrainFromCurve(DefC, Comprission, Ebeton)
 DefPlasT = FindInelasticStrainFromCurve(DefT, Tension, Ebeton)
 SigmaC = FindStressFromCurve(DefPlasC, Comprission, Dc)
 SigmaT = FindStressFromCurve(DefPlasT, Tension, Dt, SigmaT0)
 D = 1 - (1 - St * Dc) * (1 - Sc * Dt)
 If Dc < 0 Then Dc = 0
 If Dt < 0 Then Dt = 0
 If D < 0 Then D = 0

Appendix

110

 End Select
End Function

Public Function FindInelasticStrain(IntrevalStart As Double, IntrevalEnd As Double, Precesion As
Double,Fc0 As Double, ac As Double, bc As Double, E0 As Double, TotalStrain As Double) As Double
 Dim IntervalMidde As Double = (IntrevalStart + IntrevalEnd) / 2
 'Find total strain intervale
 Dim TotalIntrevalStart, TotalIntrevalEnd, TotalMiddelInterval As Double
 Dim SigmaC1, SigmaC2, SigmaC3 As Double
 SigmaC1 = Fc0 * ((1 + ac) * Exp(-bc * IntrevalStart) - ac * Exp(-2 * bc * IntrevalStart))
 SigmaC2 = Fc0 * ((1 + ac) * Exp(-bc * IntervalMidde) - ac * Exp(-2 * bc * IntervalMidde))
 SigmaC3 = Fc0 * ((1 + ac) * Exp(-bc * IntrevalEnd) - ac * Exp(-2 * bc * IntrevalEnd))
 TotalIntrevalStart = IntrevalStart + SigmaC1 / E0
 TotalMiddelInterval = IntervalMidde + SigmaC2 / E0
 TotalIntrevalEnd = IntrevalEnd + SigmaC3 / E0
 If TotalStrain < TotalIntrevalStart Then
 Return 0
 End If
 If Abs(TotalStrain - TotalIntrevalStart) < Precesion Then
 Return IntrevalStart
 End If
 If Abs(TotalStrain - TotalMiddelInterval) < Precesion Then
 Return IntervalMidde
 End If
 If Abs(TotalStrain - TotalIntrevalEnd) < Precesion Then
 Return IntrevalEnd
 End If
 If TotalStrain > TotalIntrevalStart And TotalStrain < TotalMiddelInterval Then
 Return FindInelasticStrain(IntrevalStart, IntervalMidde, Precesion, Fc0, ac, bc, E0,
TotalStrain)
 End If
 If TotalStrain > TotalMiddelInterval And TotalStrain < TotalIntrevalEnd Then
 Return FindInelasticStrain(IntervalMidde, IntrevalEnd, Precesion, Fc0, ac, bc, E0,
TotalStrain)
 End If
 Return Nothing
 End Function
End Class

 نسخة نهائية مصححة وقابلة للايداع

