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 ملخص

للنمذجة.  ايعد تحليل العناصر المحدودة للخرسانة التالفة عملية معقدة للغاية من خلال حقيقة أن الخرسانة هي أكثر المواد تعقيدً 

" باستخدام Concrete" مسمىتحت  تطوير رنامج حاسوبي مفتوح المصدرومع ذلك ، فإن الهدف الرئيسي من العمل الحالي هو 

نامج البرمادة الخرسانية في  برمجةالمكعبة والأسطوانية. تم ذات الاشكال لنمذجة عينات الخرسانة  "OOP" ثةالحدي تقنية البرمجة

للتعامل مع تدهور  (Plastic Damage Model PDM)ن خلال الشكل الثاني من النموذج المشهور المطور م الحاسوبي

خلص من تم الت في هذا العمل جهاد بالإضافة إلى تأثيرات استعادة الصلابة تحت التحميل الدوري.الإالصلابة المرنة الناتج عن 

حالتي  في  منحنيات اجهاد التوترن يد لتقدير كل منهج رقمي جدنموذج حيث تم اقتراح الت المطلوبة في لاماعملية معايرة المع

،   كلتا الحالتين. بالإضافة إلى القيم الافتراضية من لزاوية التمددمعامل تدهور الخرسانة في  وكذا تطويرالانضغاط والشد 

0/، والنسبة   والانحراف 0f fb cوالنسبة ، Kc تم تطويره وفقًا لتوصيات. تم اقتراح النهج الذي Model Code 

 Vb.Net ) باستخدام لغةVisual Studio 2022(تم ترحيله إلى  Visual Studio 2019تم إنشاء الكود المطور في إطار 

لتطوير  برمجيكأسلوب  OOPتم اختيار نموذج البرمجة  .GUI لبناء المحرك وواجهة المستخدم الرسومية WinForms وتقنية

في البرنامج المطور من أجل تحسين  Triangle.Net و OpenTk ، تم استخدام مكتبات في نفس الاتجاهة. رسانالخ برنامج

  .السرعة والجودة وإنشاء شبكات ثنائية الأبعاد للعينات الأسطوانية ، على التوالي كل من عملية الرسم في

 

  ت التلفلاماة ، الهيكل الخرساني ، معاللدونة الضرر للخرسانة ، طريقة العناصر المحدودكلمات مفتاحية: 
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Abstract 

Finite element analysis of damaged concrete is a very complicated process by the fact that 

concrete is the most complex material to model in the analysis. However, the main aim of the 

present work is to provide an open-source finite element computer code under the name “Concrete” 

using the modern coding paradigm “Object-Oriented Programming” to model cubical and 

cylindrical concrete samples. The concrete material was implemented in the developed code 

through the second form of the famous constitutive low Plastic Damage Model (PDM) to handle 

the elastic stiffness degradation induced by the plastic straining in addition to the stiffness recovery 

effects under cyclic loading. The calibration process of the required parameters in the Damage 

plastic model was eliminated in the present work where a new numerical approach was suggested 

to auto-estimate each of; the stress-strain diagrams for the compressive and the tensile cases, in 

addition to the damage parameters evolutions for both cases. Also, default values from the literature 

were suggested for the dilation angle , the eccentricity , the ratio /0 0f fb c , and the ratio Kc . The 

developed approach was developed in accordance with the Model Code recommendations. 

The developed code was built under visual studio 2019 (migrated to visual studio 2022) using 

the Vb.Net language and the WinForms technology to build the engine and the Graphical User 

Interface GUI; respectively. The Object-Oriented Programming paradigm was selected as a coding 

technique to develop Concrete software. In the same manner, the OpenTk and the Triangle.Net 

libraries were used in the developed software in order to improve the drawing process in speed and 

quality and generate 2D meshes for the cylindrical samples, respectively. 

Key words: Concrete Damage Plasticity, finite element method, Concrete structure, damage 

parameters  
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Introduction 

Concrete is one of the most important materials in construction, which present all around us, in 

concrete bridges, dams, buildings. In fact , concrete is the most widely used building material in the 

world, the global world production of this material in 2021 exceeding 10000 million cubic meters [1] 

and the global world cement production capacity reaching 4470.3 million tons in 2018 [2]. Actually, 

the use of concrete in construction worldwide is twice more than any other building material, 

including wood, steel, plastic, and aluminum. Hence, it is very important to be able to model the 

concrete material properly using the finite element method. However, concrete is the most complex 

material to model in the analysis. Many research efforts were conducted on understanding the 

behavior of concrete, and numerous papers were published on modeling concrete for numerical 

simulations. When subjected to very small stresses, the material behaves linearly, and elastically, but 

beyond certain threshold values, the cracking in tension will be observed, with thereafter tension 

softening, crushing in compression, and all in a highly nonlinear manner. This complex comportment 

of concrete must be simulated in general nonlinear analyses, for dynamic/ cyclic or static loading. To 

capture this behavior for analysis purposes, many researchers have pursued a phenomenological 

approach in which the material behavior of concrete is represented through multiple constitutive 

models available in the literature. These models can be categorized as follow; the empirical models 

[3]–[5], the linear and the nonlinear elastic models [6]–[12], the plastic models [13]–[17], the fracture 

models [18], [19], the endochronic models [20]–[22], and the damage models [23]–[29]. In civil 

engineering, a large number of FE programs were developed using various constitutive models in 

order to identify the concrete behavior. These programs are mainly created by using the Procedural 

Oriented Programming (POP) technique where each program collects a set of functions and 

subroutines. The reliability of the POP paradigm in processing complex algorithms was 

demonstrated. However, this approach does not address quality issues and program design. Programs 

created via POP paradigm have intricate control strategies, and internal data representation, therefore, 

these codes face difficulty in their maintenance and update process. In fact, the development of finite 

element software is a very complicated process that takes long and hard work to provide a commercial 

code. Hence, the main goal in developing a new FE Software is to keep maintenance, modification, 

and updating as simple as possible, which the Object-Oriented Programming paradigm (OOP) can 

easily offer  

One of the most used models for concrete behavior was developed by Lubliner et al [26] under 

the name Plastic Damage Model (PDM). On one hand, the PDM suggested by Lubliner considers the 

elastic stiffness degradation caused by the plastic straining (for both cases tension and compression), 
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but unfortunately on the other hand, the suggested form cannot address the cyclic/dynamic loading. 

To overcome this issue, Lee and Fenves [28] developed a second form of the PDM where several 

modifications in the initial form were suggested. The initial form of the PDM was implemented in a 

standard finite element program for the first time by Oller et al [30] using the Procedural Oriented 

Programming (POP) technique. Later, Lee and Fenves [31] suggested a return-mapping algorithm to 

implement the recent form of the PDM. Also, Ahmed et al [32] implemented the second form of the 

PDM using a novel stress decomposition. The PDM was implemented in the finite element code 

ABAQUS under the name Concrete Damaged Plasticity Model (CDPM). The use of CDPM in 

ABAQUS requires several parameters which are: the stress-inelastic strain diagrams and the damage 

parameters evolution for compression and tension cases, the ratio cK , the eccentricity, the ratio

0 0/b cf f , the dilation angle , and the viscosity parameter. The calibration of these parameters with 

experimental data complicates the use of the CDPM in ABAQUS which deeply diminishes its 

efficiency.  

The aim of this work is to develop a computer code under the name “Concrete” to model 

cylindrical and cubical concrete samples using the PDM as a constitutive model with minimum 

numbers of required parameters. This work provides in the first chapter a full overview of the 

constitutive models available in the literature, where a detailed description of several categories of 

models was provided namely; the empirical models, the linear and the nonlinear elastic models, the 

plastic models, the fracture models, the endochronic models, and the Damage models. 

The second chapter of this thesis provides an overview of two well know finite element 

implementations of the PDM which were developed by Oller and Lee respectively. A new numerical 

methodology was delivered in this chapter to compute the compressive and the tensile stress-strain 

curves and the damage parameters evolutions in accordance with the Model Code recommendations 

[33]. The developed numerical approach is based mainly on Lubliner formulas [26] and Alfarah 

formulas[23]. Furthermore, default values were suggested for each; the ratio cK , the eccentricity, 

the ratio 0 0/b cf f , and the dilation angle . A full description of the proposed finite element 

implementation of the PDM was delivered in this chapter where a new closed-form solution of the 

plastic multiplier was provided, in addition to the derivative of each; the yield function with respect 

of stresses, the derivative of the yield function with respect of inelastic strain, and the derivative of 

the potential function with respect of stresses. 
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The third chapter presents the user manual of the second version of “Concrete”, in addition to 

the used coding paradigm, and the used libraries. Also, a detailed description of the PDM class was 

provided in this chapter including the required fields, functions, and subroutines, in addition to the 

used algorithms. Finally, the last chapter presents a complete validation of the developed computer 

code “Concrete v2.0.0” by comparing its outcomes (stress-strain curves) with experimental evidence 

and with analytical solutions. Likewise, the suggested methodology for computing the stresses and 

the damage parameters evolution was examined through a comparative study with solutions from the 

literature. Also, the mesh sensitivity was examined in this chapter  
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I.1 Introduction 

Concrete is one of the most used materials in the construction field. In fact, the use of concrete 

is twice time more than the use of all other construction materials. Thus, the pervasive use of this 

material dictates a thorough understanding of the real behavior of concrete. As demonstrated in the 

literature, the concrete stress-strain behavior under uniaxial compression or tension loading is 

nonlinear. Therefore, simulating the concrete behavior with linear models in the numerical modeling 

using FEM leads to inaccurate results which makes the non-linear models an unavoidable key to 

minimize the error margin. An accurate solution for a concrete structural problem depends mainly on 

the used constitutive model that must be describe the real behavior of concrete. In fact, the concrete 

behavior is very complicated since it is not the same in the compression and the tension cases. It can 

be said that perhaps impossible to find any phenomenological approach can describe all the possible 

variations of concrete characteristics. 

Several constitutive models were developed in the few last decades in order to simulate the 

complex behavior of concrete. These models are classified according to Babu et al [34] in seven 

categories. The first one is the empirical models [3]–[5] where the constitutive equations are mainly 

developed basing on the outcomes of the experimental tests. The second category based on the Hook’s 

low and baptized the linear elastic models [6]–[8]. The third is called the nonlinear elastic models 

[9]–[12] which are mainly characterized by the nonlinear stress-strain relationship. The forth category 

adopt the plasticity theory to describe the concrete behavior [13]–[17]. The category number five 

called the fracture models [18], [19] where the models are based on the concept of propagation of 

microcracks. In the aim of eliminating the yield function complexity, anther category of models was 

developed under the name endochronic models [20]–[22], but in the few last decades the development 

of this type of models has no more supported by the scientific community. Finally the last category 

of models is the damage models [23]–[29] where the constitutive equations consider the damage 

parameters evolution and the loss of cohesion.  

One of the most innovative models for concrete was developed by Lubliner et al [26] under the 

name Plastic Damage Model (PDM), and upgraded by Lee and Fenves [28] to overcome the inability 

of handling the cyclic / dynamic loading. The recent form of this model was exploited in several 

research works. For instance, Javanmardi and Maheri [35] used Lee and Fenves form to predict the 

crack propagation paths. Also, Bilal et al [32] suggested a novel stress decomposition using the work 

of Lee and Fenves. Similarly, Poliotti and Bairán [36] developed a new constitutive plastic-damage 

model with evolutive dilatancy. The second form of this model was implemented in the finite element 
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code ABAQUS in the late of ‘90s under the name Concrete Damaged Plasticity Model (CDPM). The 

package software ABAQUS has been widely used in the numerical modeling of concrete using 

CDPM. For instance Silva et al [37] used CDPM to simulate the concrete damage. Likewise, Ren et 

al [38] used the CDPM in the numerical simulation of prestressed precast concrete bridge deck panels. 

Furthermore, Othman and Marzouk [39] used it to simulate ultra-high performance fibre reinforced 

concrete material under impact loading rates at different damage stages. The CDPM has been widely 

used in the concrete numerical modeling where the following parameters are required: 

- The stress-inelastic strain diagram for compression. 

- The stress-inelastic strain diagram for tension. 

- The ratio of the second stress invariants on tensile and compressive meridians ( Kc ). 

- The eccentricity (). 

- The ratio of biaxial compressive yield stress to uniaxial compressive yield stress. (

/0 0f fb c ) 

- The dilation angle in the p-q plane (). 

- The viscosity parameter. 

- The compressive damage parameter evolution. 

- The tensile damage parameter evolution. 

The main inconvenience of CDPM is that the outcomes are strongly depend on these parameters, 

values. Thus, all parameters must be calibrated with experimental tests. Furthermore, both of the high 

complexity and sensitivity of the calibration process deeply diminishes the CDPM efficiency.  

This chapter presents a full description for each of the linear and nonlinear elastic models, 

Plasticity models, endochronic models, empirical models, and the damage models  

I.2 Linear and nonlinear elastic models 

The linear elastic model is the simplest constitutive model for modeling the concrete behavior. 

This constitutive law presumes that there is a linear relationship between stress and strain governed 

by the Hooke law and the stress tensor is generated only by the elastic strain (the plastic part equal to 

zero). In the linear elastic model, concrete is treated as linear elastic until it reaches ultimate strength. 

For concrete under tension, since the failure strength is small, linear elastic model is quite accurate 

and sufficient to predict the concrete behavior till failure. Linear elastic stress-strain relation can be 

written as: 

 .D            (1.1) 
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Where D represents the constitutive matrix given by: 

1D 2D 3D 
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   

 
Both linear and nonlinear elastic materials are characterized by the elastically return to the 

“unloaded” state after loading but the main difference between them is the stress-strain relationship 

is linear for the linear elastic materials and more complex in the nonlinear case (the stress-strain 

relationship is nonlinear). In fact the nonlinear elastic models represent an extension of linear elastic 

models. Since the stress-strain relationship for concrete is nonlinear, the linear elastic model cannot 

provide accurate outcomes and the error margin becomes significant particularly for the compressive 

case. For the nonlinear case, two approaches can be used to model the nonlinear elastic materials. 

The first approach is the tangential stiffness method where the stiffness degradation is considered as 

failure is approached and the global stiffness matrix must be evaluated for each iteration. The second 

approach called the constant stiffness method in which the global stiffness matrix is evaluated once 

only in the iteration beginning. In this approach, the non-linearity is considered by iteratively 

modifying the loads vector. 

Several criteria are available in the literature to define the failure for linear and nonlinear elastic 

models. The most reputed ones are defined through several independent control parameters (one until 

five parameters). Menetrey and Willam [40] developed one of the most sophisticated failure criteria 

basing on the work of Hoek and Brown with some modifications. The failure criteria suggested by 

Menetrey and Willam takes the following form: 

' ' '

¨
( , , ) 1.5 ( , ) 0

6 3c c c

p p
f p m r e c

f f f

  
  

      
    

    (1.2) 

Where 
1

3

I
  is the hydrostatic stress invariant. p  is the deviatoric stress invariant. is the 

deviatoric polar angle and ( , )r e is an elliptic function. 
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I.3 Plasticity models 

Plasticity models were largely used in the few last decades to simulate the concrete behavior 

using the finite element method. In this category of models, the incremental strain can be divided to 

elastic and plastic parts. Two cases can be raised, the first one is when the plastic part of the 

incremental strain takes a value equal to zero which means that the stress state lies inside/ or in the 

yield surface (typically corresponds to purely elastic response which detected when the yield function 

takes a negative/zero value). The second case correspond the stress state is inaccessible (outside the 

yield surface which detected when the yield function takes a positive value).  

In the literature, two kinds of the yield functions were developed. The first one is the yield 

functions that influenced by the hydrostatic pressure and the second one is that completely 

independent of the hydrostatic pressure. Bridgman demonstrated that hydrostatic pressure has a 

negligible effect on the yield point for large number of materials such as concrete which has a 

behavior influenced by the effect of hydrostatic pressure. For instance, table 1.1 summarizes various 

well-known yield functions from both kinds. A number of models were developed specifically for 

concrete such as Menetrey and Willam [40] and Ottosen [41] where several modifications into the 

plasticity theory were suggested to compute the strain and the stress. 

Table 1.1: Types of the yield functions 
Type Yield function 
Pressure independent - Tresca  

- Von-Mises 
- Rankine 

Pressure dependent - Mohr-Coulomb 
- Drucker-Prager 
- Mises-Schleicher 

 

As explained previously, in the plasticity theory the total strain increment is the sum of the elastic 

part and the plastic part of strain increment, so the total strain increment can be written as: 

     pe                (1.3) 

Where the plastic component can be evaluated according to flow rule by: 

  Gp d 



 


          (1.4) 

With d   is the plastic multiplier and G is the potential function. The incremental stress can be 

evaluated from the incremental elastic strain according to following relationship: 
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   [ ] eD             (1.5) 

Where [ ]D represent the elastic constitutive matrix.  

By using Eqs (1.3),(1.4) , and (1.5), the incremental stress can be evaluated by: 

   [ ] [ ]
G

D Dd  


 





         (1.6) 

For concrete material, Han and Chen [42], Dvorkin et al. [43] suggested to use the Drucker-

Prager yield function as potential function in order to evaluate the plastic strain, the potential function 

suggested by Han and Chen [42], Dvorkin et al. [43] takes the following form: 

1 2G I J C             (1.7) 

Where: 

  Coefficient that can be calculated by  

1

3 (1 )
p

p
v








 
  

with 
p
v is the volumetric part of the plastic strain that equal to the second invariant of 

stress tensor 

1I  first invariant of stress tensor 

2J  second invariants of deviatoric stress tensor 

C constant 
 

Vermeer and de Borst [44] used the constitutive model of Mohr-Coulomb to provide a new 

potential function where the main modification is substituting the internal friction angle   by the 

dilatancy angle  . The potential function suggested by Vermeer and de Borst [44] is given by: 

1
2

sin sin
sin (cos )

3 3

I
G J

           (1.8) 

Where: 

  Lode angle 
  Dilatancy angel 
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I.4 Endochronic theory of inelasticity 

The main challenge in the plasticity models is finding the suitable correlations of the yield and 

the potential functions. To overcome this issue, another type of models was developed which did not 

require the existence of the yield function. This type of models is based on the concept of endochronic 

(or intrinsic) time calculated based on strain or stress and can be used to evaluate the structure damage. 

This model was initiated in 1971 by Valanis [45] to handle metals material and extended in 1976 by 

Bazant and Bhat [22] to address concrete material. In 1986 Reddy and Gopal [46] suggest a new form 

of this model in order to simulate the fibre reinforced concrete structures.  

The major inconvenience of the Endochronic model is its complexity and a large number of the 

required parameters for the development and the application of this model, which significantly limit 

its use. Consequently, in the few last decades, this model has no more supported by the scientific 

community. 

The intrinsic time ξ introduced by endochronic theory is given by: 

0 ( )

d

f

 


             (1.9) 

Where ( )f   is the history-dependent material function takes values greater than zero and 0d  . 

The typical constitutive equation for endochronic theory with pseudo-time measure ξ takes the 

following formula: 

'
'

0

( ) kl
ij ijklE

 
  




 
          (1.10) 

I.5 Empirical models 

In this category, the constitutive law is obtained from a series of experiments tests, where the 

experimental outcomes are used to develop functions described the material behavior. The big 

challenge in developing an empirical model is how to obtain the experimental data, especially after 

the peak point. In fact, the test process for compression and tension cases is very complicated and 

requires sophisticated equipment. Most testing machines use increasing loads instead of deformations 

to record the stress-strain curves for the standard compression/tensile tests, resulting in uncontrolled 

sudden failure after peak load. The experimental stress-strain curves are evaluated following the 

specimen’s shape and height-to-width ratio, which differ from a country to another according to the 

adopted standard. The specimen shape can significantly affect the stress-strain evolution, in particular 

the ultimate strain in compression, relevant peak load and the value of the descending arm of strain. 
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According to the European standard’s, the concrete stress-strain curves both in compression and 

tension are evaluated based on a cylindrical specimen with a diameter-to-height ratio equal to 1/2, 

e.g. specimens with dimensions 160x320 mm 

Several research tried to provide correlations between the stress and the strain for both cases 

compression and tension. Desayi and Krishan [47] suggested the following formula to describe the 

stress strain relationship in the compression case: 

21 ( )
p

E 





          (1.11) 

Where σ, ε are stress and strain tensors, E is Young’s modulus, εp is strain at peak stress. 

In the same manner, Saenz[5] proposed the next correlation: 

21 ( 2)( ) ( )
p p p

E
E

E

  
 


  

        (1.12) 

Where Ep is Young’s modulus at peak stress 

Also, Smith and Young [48] suggested the following formula: 

pE




 



            (1.13) 

Furthermore, Richard and Abbott [49] proposed a three parameter stress-strain relation given as: 

1
1

1

0

(1 ( ) )
p

n n

E
E

E


 




 


         (1.14) 

Where
pE  is plastic modulus, 0  is a reference plastic stress, 

1 pE E E  and n is a shape parameter 

of stress-strain curve 

Another simple form suggested by Mohamad Ali et al [50] is similar to the form proposed by Carreira 

and Chul [51] given by: 
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0

0

0

1 ( 1)( )

R

R 








 

          (1.15)

Where 
1

R

R
 


 

And R is a material parameter depends on the shape of the stress-strain curve takes value equal to 1.9 

according to Mohamad Ali et al [50]. The material parameter can be estimated by 

0

cE
R

E
 .            (1.16) 

With 0E is the concrete elasticity modulus and cE represent max. stress / strain at max. stress 

Carreira and Chu [52] proposed a stress-strain relation for reinforced concrete in tension given by: 

'

'

'1 ( )

t

t

t



 
 



 

          (1.17) 

Where 
t is the stress that corresponds to the strain   , '

t represents the maximum stress, '
t  

represents the strain corresponding to the maximum stress '
t ,   is a parameter depends on the 

shape of the stress-strain diagram. 

An equivalent uniaxial stress-strain relations was provided by Chen [6] for biaxial and triaxial stress 

conditions of concrete. In the case of biaxial compression stress, Chen [6] suggest the following 

formula: 

0

0 21 ( 2) ( )

iu

iu iu

s ic ic

E
E

E




 
 


  

         (1.18) 

With: 

0E  Initial tangent modulus of elasticity 

ic
S

ic

E




 

Secant modulus at the maximum (peak) compressive stress 

ic  Equivalent uniaxial strain corresponding to peak compressive principal stress 

iu  Equivalent uniaxial strain 
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For triaxial tension and compression case, Chen [6] suggest the next formula: 

0

2 301 ( 2) (2 1)( ) ( )

iu

iu iu iu

s ic ic ic

E
E

R R R
E




  
  


     

      (1.19) 

With  

0

2

( 1)

( 1)

ic

if ic

ic if
s

if

E

R
E


 
 




 


         (1.20) 

With ,if if  represent the coordinates of several points on the descending branch of the stress-

equivalent strain curve 

I.6 Damage Models 

Damage models are often used to describe the concrete behavior in tension and compression. 

Continuum damage mechanics was suggested by Kachanov in the late ‘50s for creep related problems 

and was applied to the progressive failure of materials. The earlier form of this category of models 

was suggested by Dougill [53], [54], and define the plastic deformation through the flow rule and the 

stiffness degradation is modeled by fracturing theory. Later, a recent form of damage models was 

suggested using of a set of state variables computing the internal damage provided by an external 

load. Table 1.2 presents the damage parameters state in several constitutive models available in the 

literature. The main idea of these models is that the local damage in the concrete material can be 

represented by damage variables that are related to the tangential stiffness matrix. Various categories 

of damage models can be found in the literature such as elastic damage, plastic damage (Ju [55], 

Lubliner et al [26] Lee et al. [28]), and damage model using bounding surface concept (Voyiadjis 

[56]). In the late ‘80s, Krajcinovic [57] suggested using the damage mechanics to model accurately 

the strain-softening response of concrete. Similarly, Lubliner et al [26] suggested substituting the 

hardening variable in the overall form of classical plasticity by the plastic damage variable to describe 

the strain-softening response of concrete for both cases compression and tension.  
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Table 1.2: Representation of damage (Singh [58]) 

Damage variable as References 

Scalar Kachnov [59], Rabotov [60], Simo and Ju [61], [62], 

Ju [63] , Lemaitre [64]–[66], Chaboche [67], [68] 

Vector Krajcinovic and Foneska [69], Krajcinovic [70] 

Second rank tensor Kachanov, Dragon and Mroz, Cordebois and Sidoroff 

Fourth order tensor Chaboche [71], Ortiz [72] 

Eight order tensor Chaboche 

Strain tensor Bazant and Kim [11], Nicholson [73] 

 

I.6.1 Damage Plastic Model 

I.6.1.1 General description 

One of the famous damage models is provided by Lubliner et al [26] under the name Plastic 

Damage Model for concrete. The main concept of this model is to substitute the hardening variable 

in the overall form of classical plasticity by the plastic damage variable which varies between two 

values (0 and 1), where the zero value represents the undamaged concrete and the value of one 

represents the totally damaged concrete with full loss of cohesion. The fundamental equations of this 

model are: 

I.6.1.1.a The Yield function 

max max

1
(3 3 )

1
F p J c    


     


      (1.21) 

With 𝛼, 𝛽 and 𝛾 are dimensionless parameters given by: 

0 0

0 0

( 1) / (2 1)b b

c c

f f

f f
             (1.22) 

    0

0

1 1    c

t

f
R withR

f
               (1.23) 

max max3(1 / (2 1) )oct octr r             (1.24) 
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Here: 

J  Deviatoric stress, 

p

 

Mean stress, 

max
 

The maximum principal effective stress, 

0

0

b

c

f

f  

The ratio of biaxial and uniaxial compressive yield strengths. According to Wu 
and Faria [74], /

0 0
f f
b c

takes a value between 1.10 and 1.20. In ABAQUS [75], 

the default value is 1.16, 

0tf
 

The initial uniaxial tensile yield stress, 

c
 

Cohesion, 

max
octr

 
Constant takes a value of 0.65 according to Oller et al [30], 

X 

 
Macaulay bracket and takes the form:

 
 

2

X X
X


   

 

I.6.1.1.b The potential function: 

A non-associated potential plastic flow was suggested by Lubliner et al [26], where the potential 

function G takes the same form of the classical Mohr-Coulomb yield function with substituting the 

friction angle  by the dilation angle . It takes the following form: 

sin sin
 s     (cos  )

3
G p in J

            (1.25) 

Where: 

J  Deviatoric stress, 
p Mean stress, 
  The dilation angle, 
  Lode angle. 
 

The main weakness of the yield function and the potential function suggested by Lubliner et al 

[26] is their inability to handle the dynamic loading. Hence, a second form of this model was 

developed by Lee and Fenves [28] to address the dynamic loading. The following modifications were 

proposed: 
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The Yield function 

- Substituting cohesion “ c ” by effective compressive cohesion stress c  

- New formulas for   parameter and zero value for   parameter. In our work   parameter will 

be considered, these parameters are given by: 

    1 1c

t

  


             (1.26) 

 3 1
 

2 1
c

c

K

K






          (1.27) 

Where: 

cK  The ratio of second stress invariants on tensile and compressive meridians. 

For Mohr-Coulomb yield surface, Kc takes a value of 0.7 [23]. 

c  The effective compressive cohesion stress 

t  The effective tensile cohesion stress 

 
As a result, the second form of the yield function suggested by Lee and Fenves [28] is written as: 

 max max

1
3   3    

1 cF p J     


     


     (1.28) 

In order to extend the yield function suggested by Lee and Fenves [28] to handle the triaxial 

compression stress states, Zhang et al [76] proposed the next correlation for the yield function: 

2 1 max 0 max 1 max max

1 max 0 max

3 ( ) ( ) ( )
( )

1 ( ) ( ) c

J H H I k
F k

H H

       


   
        

  
  (1.29) 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1: Yield surface in the deviatoric plane 
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 

 

Typical yield surfaces are shown in Figure 1.1 on the deviatoric plane and in Figure 1.2 for plane 

stress conditions. 

The potential function 

By using the Drucker-Prager hyperbolic function, a new formula for the potential function was 

developed by Lee and Fenves [28] given by: 

0
2 2 ( tan ) 3 tantG J p            (1.30) 

Here, 

0t  The uniaxial tensile stress at failure, 

  The flow potential eccentricity (0.1 in ABAQUS). 

According to the Model Code recommendations [33], the value of 0t  is related to the concrete grade: 

Figure 1.2: Yield surface in plane stress 
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For concrete grade ≤ C50 

2 /3
0 0.3016     t tm ckf f            (1.31) 

For concrete grade > C50 

  0 2.12 ln 1 0.1 8t tm ckf f            (1.32) 

With ckf  is the characteristic value of concrete compressive strength, 

Following ABAQUS user manual [75], the default value of the flow potential eccentricity is 0.1. 

This value indicates that the material has the same dilation angle over a wide range of confining 

pressure stress values. Values of the flow potential eccentricity that are greater than 0.1 provides more 

curvature to the flow potential, which means that the dilation angle increases more rapidly as the 

confining pressure decreases. Values of the flow potential eccentricity that are significantly less than 

the default value may lead to convergence problems according to ABAQUS user manual [75]. 

The estimation of the yield function “F” and the potential function “G” values is a step key in the 

finite element implementation of any non-linear constitutive model. For instance, Figure 1.3 shows 

the necessary steps adopted in the implementation of DPM for static loading. 

To implement DPM, the following steps must be followed: 

- Calculation of the yield function value in order to identify the material state which is 

elastic behavior if F < 0, plastic (or elastoplastic) behavior if F = 0 and impossible 

situation if F > 0. (The derivative of the yield function is used only to correct the stress 

state for F>0)  

- Calculation of the potential function value and the derivative of the potential function 

to evaluate the plastic strain. 

 

The required parameters to identify the yield function F and the potential function G are 

summarized in Table 1.3 

I.6.1.2 Estimation of the effective tensile and the effective compressive cohesion stress 

In order to evaluate the value of the yield function, the parameters ,  ,  and must be identified 

using Eq(1.22) and Eq(1.27) for   and , respectively. From Eq(1.26), the estimation of   is related 

to the values of each; the effective tensile and the effective compressive cohesion stresses that can be 

estimated by: 
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Table 1.3: Required parameters of DPM 

Parameter Default value/Estimation methodology  

 The uniaxial tensile stress at failure 

 The eccentricity 

 The dilation angle 

 The ratio of the second stress invariants on tensile and compressive meridians 

 

The ratio of biaxial compressive yield stress to uniaxial compressive yield stress. 

 The compressive stress 

 The tensile stress 

 The compressive damage parameter 

 The tensile damage parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each load increments 

Estimate the stiffness matrix [𝐾] 

Evaluate the residual load vector  (repeat 

until reaching convergence) 
 

Find displacements increment by solving 
 

For each element and each Gauss point 

Estimate the strain, the stress vectors, and 
the value of the yield function F 

If F >0 then correct the 

stress tensor, evaluate the 

plastic strain, internal 

force, and update stress 

and strain then go to the 

next Gauss point. (The 

potential function G is 

required) 

If F≤0 then 
update 

stress and 
strain then 
go to the 

next Gauss 
point 

Figure 1.3: Implementation of DMP in “Concrete v2.0” 
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          (1.33) 

Where  

cd  the compressive damage parameter 

td  the tensile damage parameter 

c  the compressive stress 

t  the tensile stress 

 

The compressive and tensile stresses can be evaluated from the stress-strain curves as shown in 

Figures 1.4 and 1.5. 

To generate the stress-strain curves, two main alternatives can be used: 

 User data: where the user supplied either the stress-inelastic strain data or the stress-

strain data. 

 Auto-estimation: where the stress-inelastic strain data or the stress-strain data are auto-

evaluated basing on the characteristic value of concrete compressive strength. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I.6.1.2.a User data 

In this approach, the stress-strain or the stress-inelastic strain curve is supplied by the user as a 

set of points. The strain-inelastic strain correlations are given by: 

 

 

 

 

  

 
  

  

Figure 1.4: Response of concrete to 
uniaxial loading in tension 

 1 2 

 

 

 

 

  
 

 

  

  
Figure 1.5: Response of concrete to 
uniaxial loading in compression 

1 2 3 
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          (1.34) 

Where E0 is the initial undamaged stiffness, ck
t is the tensile inelastic strain (the cracking strain), 

in
c is the compressive inelastic strain (crushing strain).  

Also, the damage parameters in this approach can be estimated by: 

- For the tensile damage parameter, Hafezolghorani et al [77] suggested a simple correlation 

takes the following form: 

0                          

1                  
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 
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       (1.35) 

- For the compressive damage parameter, Hafezolghorani et al [77] and Yu et al [78] 

suggested the following correlation: 

0                          
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f

 
  

 

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       (1.36) 

Finally, the damage parameter can be evaluated as: 

  1 1 1  t c c td s d s d            (1.37) 

Where 𝑠௖ and 𝑠௧ are the stress state evaluated by: 
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         (1.38) 

Where 

ch and th are weighting factors that varying between 0 and 1 

 *
11r  is the unit step. For uniaxial loading:   11*

11
11

1    0

0     0

if
r

if







  
  (1.39) 

In the case of multiaxial loading conditions, the computing of the damage parameter is based 

on the same formula with replacing the unit step function  *
11r   by the multiaxial stress weight 

factor  r  which given by: 
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        (1.40) 

Another formula of the damage parameter provided by Demin and Fukang [79] takes the 

following form: 

0

1d
E




            (1.41) 

I.6.1.2.b Auto-estimation  

Several research works were provided to auto evaluate the stress-strain diagrams and the stress-

inelastic strain and the damage parameters evolution. Lubliner et al [26] suggested a simple approach 

for auto computing the stress- inelastic strain both in tension and in compression cases. According to 

Lubliner et al [26], the relations of stress- inelastic strain both in tension and in compression are given 

by: 

 

 
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2
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2
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       
  


        

      (1.42) 

Where 0cf and 0tf are the compressive and tensile stresses that correspond respectively to zero 

crushing ( 0in
c  ) and zero cracking ( 0ck

t  ).  

,  ,  c t ca a b , and tb are dimensionless coefficients evaluated from the correlation of 

tensile/compressive energies per unit of volume dissipated by damage along entire deterioration 

process (See Figures 1.6-1.7), which are given by:  
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


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
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


         (1.43) 

By replacing the tension and compression stresses of Eq (1.42) in Eq (1.43), the following 

formula is obtained: 
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Since /c ch eqg G L and /t F eqg G L , the coefficients cb and tb take the following form: 

 0  1 0.5 c eq
c c

ch

f L
b a

G
           (1.45) 

 0 1 0.5 t eq
t t

F

f L
b a

G
           (1.46) 

Where: 

chG  The crushing energy per unit area. 

FG  The fracture energy per unit area. 

eqL  The mesh size (finite element characteristic length). For a brick element, the mesh 

size value is computed as the volume divided by the largest face area. 

 

According to Alfarah et al [23], by zeroing derivatives of c and t  in Eq (1.42) with respect to 

the compressive and tensile inelastic strains, respectively, the maximum values cmf and tmf are 

obtained by: 

   2 2

0 01 1
;

4 4
c c t t

cm tm
c t

f a f a
f f

a a

 
         (1.47) 

As result, the coefficients ca and ta take the next forms: 
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        (1.48) 

 

  

  

Figure 1.7: Parts of compressive energy 
dissipated by damage 

   

 

 

 

Figure 1.6: Parts of tension energy 
dissipated by damage 
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To compute the damage parameters evolution, Lubliner et al [26] suggested the following 

correlation: 
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A second approach for computing the stress-strain diagrams can be found in the literature 

suggested by Alfarah et al [23] where for the uniaxial compression loading, Alfarah et al [23] (same 

approach of Kratzig and Polling [29]) divided the stress-strain diagram into three parts as follow 

(Figure 1.5): 

- First part which is linear (until 0cf ): 

(1) 0c cE             (1.51) 

- Second part that between 0cf and cmf : 
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        (1.52) 

- Third part after cmf : 

122

(3) 2 2
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c c cfcm cm

   
  



      
 

       (1.53) 

Where ciE is the modulus of deformation of concrete for zero stress. 
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  

     (1.54) 

chG  The crushing energy per unit area. 

eqL  The mesh size (characteristic length). 

pl
c  The compressive plastic strain. 

in
c  The compressive inelastic strain 
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For the tension case, Alfarah et al [23] suggested to split up the stress-strain curve into two part 

as shown in Figure 1.4, where the stresses can be evaluated by: 

- First part until tmf : 

(1) 0t tE            (1.55) 

- Second part after tmf : 

 2
23 3

(2) 1 11 ( ) 1c
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c c

w w
f c e c e

w w





          
      (1.56) 

With: 

w is the crack opening, given by  t tm eqw L          (1.57) 

cw is the crack opening at fracture, given by 5.14 F
c

tm

G
w

f
      (1.58) 

FG : The fracture energy by unit area. According to the Model code recommendations [33] FG  takes 

the following form: 

0.180.073 F cmG f           (1.59) 

1c and 2c are dimensionless coefficients. According to Hordijk [80] 1c and 2c  take values equal to 

3 and 6.93 respectively. 

Alfarah et al [23] suggested a closed-form expression for the damage parameters given by: 
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       

      (1.60) 

According to Alfarah et al [23], the coefficients  ca  and ta are evaluated by considering

0 0.4 c cmf f and 0 t tmf f (using the Model code recommendations). As results, the values of  ca and

ta are 7.873 and 1, respectively. The coefficients cb and tb are estimated according to Eqs (1.45)

,(1.46) 

In brief, Alfarah et al suggested a new algorithm in the aim to compute the stress-strain curves 

and damage parameters evolution that can be summarized in the following steps (All stress values 

are in MPa): 

a- Enter each of; the concrete compressive strength ckf , the mesh size eqL , and the initial value of b 

is equal to 0.9. 
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b- Evaluate the compressive/tensile stress strength by: 8cm ckf f   and 2/30.3016 tm ckf f   

c- State the strain at compressive stress strength as  0.0022cm    

d- Evaluate the initial tangent modulus of concrete deformation 1/310000 ci cmE f and the undamaged 

modulus of deformation 0 0.8 0.2
88

cm
ci

f
E E

   
 

. 

e- Compute the crushing/fracture energy (N/mm) as 

2

 cm
ch F

tm

f
G G

f

 
  
 

 and FG from Eq(1.59) 

f- Compute the critical crack opening from Eq(1.58) 

g- Build the compressive stress-strain curve using Eqs (1.51), (1.52), and (1.53). 

h- Build the tensile stress-strain curve using using Eqs (1.55),(1.56) 

i- Compute the coefficients  b c and  bt  by Eqs(1.45),(1.46) using the default values of  ca and ta (

7.873ca   and 1ta  ). 

j- Compute the compressive/tensile damage parameters using Eq(1.60). 

k- Calculate the compressive and tensile plastic strains: 

 0 1
pl in c c
c c

c

d

E d


  


         (1.61) 

 0 1
pl ck t t
t t

t

d

E d


  


         (1.62) 

l- Calculate the average value of the ratio b using Eq(1.54) and compare it with the assumption in 

step A. Repeat until reaching convergence. 

 

I.7 Conclusion: 

This chapter describes various categories of concrete constitutive models that can be used for 

modeling concrete behavior, each of linear and nonlinear elastic models, plasticity models, 

endochronic model, empirical models, and damage models were described in detail where the 

following points can be outlined:  

 The linear elastic models provide accurate results for an elastic material subjected to small 

strains which is not the case of concrete material where the strain values can be important. 

Also for nonlinear elastic models, it can address the large strain but shows a major failure in 

the case of non-elastic materials.  
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 The category of plasticity models can perfectly address small and large strains of both elastic 

and plastic cases but on the other hand, two main inconveniences can be observed. The first 

is the non-ability of handling the concrete degradation (the damage evolution) which provides 

a large margin of error specifically after the peak point (on the stress-strain curve), the second 

is that the concrete behavior is not the same for tension and compression cases. As result, the 

use of plasticity models to describe the behavior of damaged concrete structures provides 

inaccurate outcomes. 

 For complexity reasons, the endochronic model is no more supported by the scientific 

community. Furthermore, on the first hand, the use of this model for concrete needs several 

improvements specifically to evaluate the step time, but on the other hand, more suitable 

models can be found in the literature to describe the concrete behavior without the need to an 

additional improvement. 

 The only suitable category of models that can be used to model damaged concrete structures 

is the Damage Plastic Models for several logical reasons, which are; first, the ability to address 

small and large strain, second, this category of models can be used to address the plasticity of 

concrete material, the third reason is that can be used to handle the concrete degradation, and 

so to evaluate the damage parameters, the fourth is the compatibility in the compression and 

the tension cases. As result, the development of “Concrete” will be based mainly on this type 

of models as demonstrated in the next chapter 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter II: Finite element implementation of Damage Plastic Model 

33 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II : Finite element implementation of 
Damage Plastic Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter II: Finite element implementation of Damage Plastic Model 

34 
 

II.1 Introduction:  

The finite element implementation of the plastic damage model is a very complicated process 

due to the complexity of the related calculation such as the estimation of the plastic strain where the 

plastic multiplier must be identified. The two most common implementations of PDM were provided 

in the ’90s by Oller et al [30] and Lee and Fenves [31] where both forms of the PDM were coded. 

The first form of the PDM was implemented by Oller et al [30] using the yield function and the 

potential function provided by Lubliner et al [26]. The general procedure of the implementation 

process was delivered in the work of Oller et al [30] where the authors provided the estimation process 

of each; the plastic damage variables, the evolution of the internal variable of the cohesion, the 

internal friction angle, dilatancy angle, and the stiffness degradation. Unfortunately, the key steps for 

the development of our computer code are not provided in this work, especially the closed-form 

solutions of the plastic multiplier, the derivatives of the yield function and the derivative of the 

potential function. In the late ’90s, Lee and Fenves [31] suggested a return mapping algorithm in 

order to implement the second form of the PDM where the yield function and the potential function 

provided by the same authors in [28] were used. The full description of the implementation process 

of the second form of PDM was delivered in the work of Lee and Fenves [31] where they provided 

the estimation process of the plastic damage variables and the closed-form solution of the plastic 

multiplier in addition to the evaluation process of the tangent stiffness matrix. The algorithm provided 

in this work was used in the famous finite element code ABAQUS under the name Concrete Damage 

Plasticity Model (CDPM). In the other hand, the use of the CDPM requires multiple parameters 

namely; the stress-inelastic strain diagram for compression and tension cases, the damage parameters 

evolution for compression and tension cases, the ratio of the second stress invariants on tensile and 

compressive meridians, the eccentricity, the ratio of biaxial compressive yield stress to uniaxial 

compressive yield stress, and the dilation angle. The outcomes of ABAQUS strongly depend on the 

values of these parameters. Thus, all parameters must be calibrated with experimental tests. 

Furthermore, both the high complexity and sensitivity of the calibration process deeply diminish the 

CDPM efficiency. Few research works addressed this problem with the aim to reduce the number of 

parameters needed in the calibration process and identify their typical values. Szczecina and Winnicki 

[81] recommended the values of 0.0001 and 5 degrees as typical values for the viscosity parameter 

and the dilation angle, respectively. In a related study, the same authors [82] advised assessing the 

dilation angle and the fracture energy in compliance with the results obtained from Strut-and-Tie 

method and laboratory tests. Sümer and Aktaş [83] proposed a closed-form solution for evaluating 

the compressive damage parameter. As well as Demir et al. [84] examined the role of the viscosity 
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parameter in the numerical simulation of RC deep beams and concluded that 0.0005 is the typical 

value for the viscosity parameter. Likewise, Bhartiya et al [85] employed a new algorithm to evaluate 

the dilation angle. In a different manner, experimental results were exploited from Silva et al [86] to 

calibrate the dilation angle , the eccentricity , the ratio /0 0f fb c , the ratio Kc , and the viscosity 

parameter μ. 

Important research efforts were employed to avoid the problems due to the complexity and the 

sensitivity of the calibration process of both the stress-inelastic strain and the damage parameters 

diagrams. Thus, Lubliner et al [26] proposed a closed-form solutions for both of; the stress-inelastic 

strain and the damage parameters. Similarly,  closed-form solutions were developed by Alfarah et al 

[23] to compute the damage parameters and generate the stress-strain diagrams. Differently, Behnam 

et al [87] developed an analytical approach to evaluate the damage parameters evolution in terms of 

corresponding inelastic strains. Moreover, they elaborated an analytical approach to estimate the 

stress-strain diagram under compressive loading. Likewise, Yangjian et al [88] exploited an analytical 

approach to compute the stress-strain diagrams. Additionally, the authors created closed-form 

solutions to calculate the damage parameters evolution. While Bhartiya et al [85] used a new 

algorithm to evaluate the stress-strain diagrams. 

In order to facilitate the use of the second form of the PDM, several enhancements in the finite 

element implementation of PDM were suggested in this chapter to minimize the number of the 

required parameters and to provide closed-form solutions for each of the plastic multiplier, the 

derivative of the yield function with respect to the stress tensor, the derivative of the yield function 

with respect to the compressive inelastic strain, and the derivative of the potential function with 

respect to the stress tensor. Furthermore, a full description of the finite element implementation of 

the PDM has been provided in this chapter including the used algorithms and the coding technique 

II.2 Oller’s implementation of PDM 

In 1990, Oller et al [30] published the first finite element implementation of PDM where the 

developed code handle the complex behavior of concrete using the classical plasticity theory provided 

an adequate yield function to simulate the tension and the compression responses of concrete. Thus, 

the cracking paths can be detected through the local damage effect, which is estimated by the 

evolution of the damage parameters in tension and compressions cases. This work described perfectly 

the estimation process of each; the plastic damage variables, the evolution of the internal variable of 

cohesion, and the internal friction angle. The work of Oller used the first form of the plastic damage 

model which can not address the dynamic loading. 
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II.2.1 Fundamental equations: 

The total strains increment can be divided into elastic and plastic parts, according to the next 

correlation: 

1 p e p
eD                 (2.1) 

With: eD  is the elastic constitutive matrix 

In order to calculate the plastic strain increment, Oller suggested using the flow rule which can be 

defined for the general case of non-associated plasticity as: 

p G
d d g  




  


          (2.2) 

Where d is the plastic multiplier and g is the plastic flow vector that presents the derivative of the 

potential function with respect to the stress tensor. Unfortunately, both the closed-form solutions of 

the plastic multiplier and the derivative of the potential function are not provided in the work of Oller  

The incremental stress can be evaluated by: 

epD               (2.3) 

With epD  represents the elastoplastic constitutive matrix given as: 

e e
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D D
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 
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               

       (2.4) 

Where A is the hardening/Softening parameter evaluated according to Potts and Zdravkovic [89] by 

the next formula 

 1
T

F
A k

k
   
 

          (2.5) 

For perfect plasticity the derivative of the yield function F

k

 
  

 takes a value equal to zero which 

provides zero value for the parameter A. Otherwise, the estimation of parameter A can be performed 

by: 
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      (2.6) 

II.2.2 Definition of the compressive and the tensile Plastic Damage Variables 

For uniaxial tension and compression tests, Oller et al [30] suggested using Lubliner’s [26] formulas 

in order to evaluate the compressive and the tensile damage variables. For the tensile case, the damage 

variable can be estimated by: 

0

1 t
ck

t t t
t

k d
g

             (2.7) 

For the compressive case, the damage variable can be estimated by: 

0

1 t
in

c c c
c

k d
g

             (2.8) 

With tg and cg are the specific plastic works, defined by the areas presented in Figures 1.6 and 1.7 

For a multiaxial stress state, Oller et al [30] suggested the following formula to evaluate the damage 

variables (written in terms of principal stress and plastic strain): 
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With: 

3 3

* *1 1
* *

1 1
; ;

i i
i i

ki i i t t c c
t c t c

h g g g g
g g

 
 

 
 


    

 
 

Where c  and t  denote values obtained from uniaxial compression and tension tests, respectively. 

II.2.3 Estimation of the stiffness degradation: 

Considering the stiffness degradation effects required revaluating the elastic secant constitutive 

matrix D following two internal variables: the elastic and the plastic degradation variables. Oller et 

al [30] suggested using the simplest assumption for elastic degradation based on a simple isotropic 

degradation variable 
ed  where the secant constitutive matrix is modified by: 

0( ) (1 )e eD d d D            (2.10) 
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Where 0D represents the initial stiffness matrix and 
,0

1
ee wd e   . With ,0ew  is the square of the 

undamaged energy norm of the strain and  is a constant. 

For plastic degradation, a simple one-parameter model has also been used in the work of Oller. The 

plastic degradation takes place only in the softening branch and the stiffness is then proportional to 

the cohesion. The secant constitutive matrix is thus given by: 

( ) (1 ) ( )p p eD d d D d           (2.11) 

Where 1p
peak

c
d

c
   

Where c  is the actual value of cohesion and 
peakc  is the maximum cohesion value reached. 

II.3 Lee’s Implementation of PDM 

Based on the second form of the plastic damage model, Lee and Fenves al [31] suggested a new 

return-mapping algorithm for the finite element implementation of the PDM. The developed 

algorithm can be used for a broader range of plastic-damage models. A new numerically stress 

computation scheme was suggested for plane stress problems where rather than solving a multi-

dimensional iteration problem (where each of the plastic multiplier and two principal stresses are 

typical independent unknowns), the dimensionless scalar variable is evaluated iteratively to overcome 

the complexity and numerical difficulties occurring in multi-dimensional iterations. Also, the limits 

of the scalar variable are derived to deliver a thinner range of iterations which reduce significantly 

the required number of iterations to achieve the convergence of the algorithm  

II.3.1 Fundamental equations: 

a- The correlations between the stress   and the effective stress    

(1 )d             (2.12) 

0 ( ) 2 ( ) ( )p p pD I                    (2.13) 

Where d  represents the damage variable, 0D represents the initial stiffness matrix,   is the total 

strain and p is the plastic strain which can be estimated according to the Drucker-Prager plastic flow 

rule as: 
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        (2.14) 

With 2 1 12 p pG J I s I            (2.15) 

 and   represent Lame’s constants evaluated by / (2(1 ))E   and / ((1 )(1 2 ))E    , 

respectively. 

b- Loading-unloading conditions 

The Loading-unloading conditions are expressed in terms of the yield function and the plastic 

multiplier by: 

0

0

0

F

d

d F











           (2.16) 

c- The damage evolution law 

The damage evolution law is defined by a function of the damage variable and the principal 

effective stress  

( , )k d H k             (2.17) 

II.3.2 Stress computation 

For a given value of the damage variable, the effective stress is calculated in such a way the 

plastic consistency condition must be satisfied (F=0), where a discrete version of the yield function 

is written as: 

 
1 1 max max1 1 1 1 1 1 1

3
( , ) ( ) (( ) )( ) (1 )

2
c

n nn n n n n nF k I s H c                  (2.18) 

For three dimensional or plane strain cases, Eq (2.14) can be evaluated using the next correlation  

  1
1

1 1

1
( )

3

tr
trp

n ptr tr
n n

I
d I

s s
   

 

 
    
  

       (2.19) 

With tr donates the trial stress tensor. 
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According to Lee and Fenves al [31], the return-mapping equation for the principal effective stress is 

given by: 

  0 0
1 1 1 0

1 1

2
( 3 )
3

trtr tr
t

n n n ptr tr
n n

I
d K I

s s

 
      

 

 
    
  

      (2.20) 

For three dimensional or plane strain cases , the following correlation to evaluate the plastic multiplier 

is suggested: 
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   

   


        

  (2.21) 

With 
max1 1(( ) )n nH     

II.3.3 Plane stress formulation 

According to Lee and Fenves [31], the plane stress version of the return-mapping equation is 

given by: 

  
 1 1

01 1 0 0
1 1

2 (2 2 )
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n n p
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I
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s s
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 

 

 
    
 
 

     (2.22) 

Where  (1 2 ) / (1 )     and  0 0 / (2(1 ))K E    

In this case, the plastic multiplier can be evaluated according to the next formula: 


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0 0

(2 3)(1 )1
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     (2.23) 

With 

      
1 2 11 2 1 1( ); (3 ) (3 2 ) 2 (1 )
tr tr tr

tr c
nI c                       (2.24) 

Applying the condition 0d  in Eq(2.23), the value of  will be in the range: 

max(0,min( , )) min(1,max( , ))a b a b            (2.25) 

Where 
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       (2.26) 

II.4 Proposed finite element implementation of PDM 

In order to minimize the number of the required parameter in the finite element implementation 

of the PDM, the auto-estimation strategy was used in our computer code for computing the stress-

strain diagrams and the damage parameters evolutions. Also, default values were suggested for each 

of the following parameters; the dilation angle , the eccentricity , the ratio /0 0f fb c ,  and the ratio 

Kc . Two main approaches were described in chapter I in order to auto-estimate the stress-strain 

diagrams and the damage parameters evolutions using Eqs (1.45),(1.46),(1.54). Following these 

equations, the mesh size value affects the stress-strain diagrams and the damage parameters 

evolutions. Therefore, to examine the mesh size influence on the stress-strain curves and the damage 

parameters evolution suggested by Alfarah et al [23] and Lubliner et al [26] , both approaches were 

implemented in the computer code “Concrete v2.0.0” where these diagrams were generated based on 

multiple mesh size values. In addition, to overcome the mesh size sensitivity, a new numerical 

approach is suggested to estimate the stress-strain diagrams and the damage parameters evolution in 

accordance with the Model Code recommendations [33]. In this approach, the stress-inelastic strain 

was evaluated according to Lubliner et al [26] formulas, and the damage parameters evolution was 

estimated according to Alfarah et al [23] formulas. The main aim of this section is to provide a finite 

element class to model concrete behavior using PDM as a constitutive model and the Object-Oriented 

Programming paradigm (OOP) as a coding technique. In this section, the closed-form solutions of 

each; the plastic multiplier, the derivative of the yield function with respect of stresses, the derivative 

of the yield function with respect of inelastic strain, and the derivative of the potential function with 

respect of stresses are provided. Furthermore, a detailed description of the suggested class is delivered 

in this section, including the required, functions, subroutines, and fields, in addition to the used 

algorithms. The PDM class was developed as a key part of our computer software “Concrete” with 

the objective of modeling damaged concrete structures with a minimum number of required 

parameters. 
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II.4.1 The proposed Algorithm to implement PDM 

Several approaches were developed to solve nonlinear finite element problems like the constant 

stiffness method, the tangent stiffness method, the visco-plastic method, the Newton-Raphson 

method, the modified Newton-Raphson method. In our computer code “Concrete v2.0.0”, the 

simplest approach (constant stiffness method) was used to implement the PDM. According to the 

used approach, the finite element implementation process of the PDM can be summarized as follows: 

a- Apply the load increment   F
i

   

b- Calculate the displacement increment. For static loading, the following system must be 

solved      
j

K U
I

           (2.27) 

For the first iteration (j=1)    F
ij

    

c- For each Gauss integration point evaluate the strain increment according to  

     B U
i I

            (2.28) 

d- Evaluate the stress increment according to      
i i

D       (2.29) 

e- If ( , ) 0in inF
i c c

        ; integration points stay elastic, go to step g: 

f- The integration points reached the plastic surface. The stress must be corrected  

g- Update the stress and the strain tensors 

h- Calculate the residual load      1
r

j
j    

,  

where:    Tr B dV
i

V
          (2.30) 

i-  If 1j
TOL

F
i

 



goto step “b” 

According to the described algorithm, two key steps must be achieved, the first one is the 

estimation of the value of the yield function for a given stress tensor and the second one is the 

correction of the stress tensor for points outside the yield surface. As described in Chapter I, the 

estimation of the yield function required multiple parameters that are illustrated in Table 1.3 and take 

the default values illustrated in Table 2.1. The most significant parameters are : 
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- The effective compressive cohesion stress 

- The effective tensile cohesion stress 

 

Table 2.1: Default values of DPM parameters 

Parameter Default value/Estimation methodology  
 Eqs.(1.31),(1.32) 

 0.1 According to [75] 

 130 According to [44] and 50 According to [81] 

 0.67 According to [75] / 0.7 According to [23] 

 1.16 According to [75] 

 See the following sections 

 See the following sections 

 See the following sections 

 See the following sections 

 

The auto-estimation of the stresses and the damage parameters suggested by Alfarah [23] and 

Lubliner [26] based mainly on the values of four coefficients which are , ,c c ta b a  and tb . These 

coefficients are related to the mesh size value according to Eqs (1.48),(1.45),(1.49), and (1.46), which 

affects the stresses and the damage parameters values as demonstrated in the next section. 

II.4.2 Influence of the mesh size on the damage parameters and the stress-strain diagrams 

In order to examine the mesh size influence on the stress-strain curves and the damage parameters 

evolution suggested by Alfarah et al [23] and Lubliner et al [26], both approaches were implemented 

in our finite element code “Concrete v2.0.0” where the stress-strain curves and the damage parameters 

evolution were generated following multiple mesh size values. Figures: 2.1-2.6 were generated by 

“Concrete v2.0.0” to demonstrate the influence of the mesh size on: 

- The compressive and the tensile stress-strain curves  

- The damage parameters evolution for the compressive and the tensile cases. 

For Lubliner’s [26] approach, three values of the mesh size (200, 300, and 700 mm) were selected 

to examine their influence on the stress-inelastic strain curves. Figures 2.1 and 2.2 present the 

compressive and the tensile stress- inelastic strain curves generated according to Lubliner et al [26] 

approach for the same concrete compressive strength (25 MPa). For each mesh size value (200, 300, 

and 700 mm) the coefficients , ,c c ta b a  and tb were calculated based on Eqs (1.48),(1.45),(1.49), and 

(1.46), respectively. From these figures, it is observed that the mesh size value strongly affects the 

0t
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stress-strain curve shape where the peak points of all compressive stress-strain curves approach the 

same compressive strength value while the inelastic strain value for each peak point is different. 

For Alfarah [23] approach, four values of the mesh size were selected (50, 100, 200, and 400 

mm) to demonstrate its influence on the stress-strain curves and the damage. Several observations 

can be outlined based on the figures 2.3-2.6: 

- The third part of the compressive stress-strain curve and the second part of the tensile 

stress-strain curve are strongly influenced by the mesh size value. 

- The compressive and tensile damage parameters evolutions are related to the mesh size 

value. 

- The value of the effective compressive cohesion stress c introduced in the yield 

function depends on the values of the compressive stress and the compressive damage 

parameter. 

- The damage parameters are not compatible with the stress-strain diagrams in both cases 

compression and tension stresses. This conclusion is based on the fact that the formulas 

of the damage parameters used in Alfarah method and presented in Eq (1.60) are derived 

from the stress-strain formulas developed by Lubliner (Eq. (1.42)) while the used stress-

strain diagrams are based on other formulas  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The influence of the mesh size on 
the tensile stress -inelastic strain, Lubliner approach  

 

Figure 2.2: The influence of the mesh size on the 
compressive stress - inelastic strain, Lubliner approach 
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As result, the mesh size value will affect the outcomes of Alfarah approach (displacements, 

stress, and strain) for various logical reasons, which are: 

- The value of β parameter delivered in the yield function depends on the effective 

compressive and tensile cohesion stress values. Therefore, it depends on both the values 

of the compressive and tensile stresses and the compressive and tensile damage 

parameters. 
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II.4.3 The proposed approach for computing the damage parameters evolutions and the stress-

strain diagrams 

II.4.3.1 General description 

The estimation of the stress-strain diagrams and the damage parameters evolution according to 

Eqs (1.42), (1.60), respectively depend mainly on the values of the coefficients , ,c c ta b a  and tb

evaluated according to Eqs (1.48),(1.45), (1.49) and (1.46).As demonstrated previously, the values of 

these coefficients are deeply related to the mesh size value which affects the stresses and the damage 

parameters values. To overcome this issue and to evaluate the stress-inelastic strain curves according 

to Lubliner formulas and the damage parameters evolution in terms of inelastic strain according to 

Alfarah formulas, it is observed that by computing coefficients , ,c c ta b a and tb according to Eqs 

(1.48),(1.45), (1.49) and (1.46) for the same concrete compressive strength and different mesh size 

values, the peak points of all compressive stress-strain curves approach the same compressive 

strength value while the strain value for each peak point is different (Figure 2.7), so it is suggested 

computing these coefficients in such a way the peak point will have the same strain and stress as 

delivered in the Model Code recommendations [33]. The main objective is to develop an algorithm 

that computes the previous coefficients that provide a peak point value equal to the peak point 

delivered in the model code recommendations. This algorithm computes the coefficients , ,c c ta b a

and tb  according to the following steps: 

 

 

 

 

 

 

 

 
Figure 2.7: Mesh size effect on the Compressive 

stress vs compressive strain curve, case:  
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- Evaluate ca and ta by substituting 0cf  with 0.4 cmf  in Eq (1.48) and 0tf with tmf in Eq 

(1.49). The values of ca and ta  are 7.873 and 1, respectively 

- Computing the coefficients cb and tb where the peak point has the same compressive 

strength and the same strain for compressive strength delivered in the Model Code 

recommendations [33]. Table 2.2 presents the strain values at peak stress for different 

concrete strength values according to the Model Code recommendations [33]. 

 

Table 2.2: Values of 1c for different concrete strength (Model code [33]) 

𝑓௖௞(MPa) 12 16 20 25 30 35 40 45 50 55 60 70 80 90 

𝑓௖௠(MPa) 20 24 28 33 38 43 48 53 58 63 68 78 88 98 

𝜀௖ଵ(‰) 1.8 1.9 2.0 2.1 2.2 2.25 2.3 2.4 2.45 2.5 2.6 2.7 2.8 2.8 

II.4.3.2 Stress-strain diagrams  

In order to evaluate the stress-strain diagram under uniaxial compression loading, the diagram 

has been divided into two segments as shown in Figure 2.8 where: 

- In the first (linear) segment (till 0fc ), the compressive stress can be evaluated according to 

Hook’s law 

- In the second segment, the compressive stress and the compressive strain can be estimated 

by: 

 0

0

2
1          

                                                 

in in
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  


      (2.31) 

In the same manner, the estimation of the stress-strain diagram under uniaxial tensile loading 

based on the decomposition suggested in Figure 2.9 where: 

- In the first (linear) segment (till ftm ), the tensile stress can be computed through Hook’s law 

- In the second segment, the tensile stress the tensile strain can be estimated by: 

 0
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      (2.32) 

 

 



Chapter II: Finite element implementation of Damage Plastic Model 

48 
 

 

 

 

 

 

 

 

II.4.3.3 Damage parameters evolution  

In order to evaluate the compressive damage parameter evolution in terms of corresponding 

strain, the diagram has been divided into two parts, in which: 

- In the first part, the compressive damage parameter value equal to zero 

- In the second segment, the compressive damage parameter can be estimated according to: 
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     (2.33) 

The same procedure can be used to compute the tensile damage parameter evolution in terms of 

the corresponding strain: 

- In the first part, the tensile damage parameter value equal to zero 

- In the second segment, the tensile damage parameter is evaluated by: 
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     (2.34) 

According to the Model Code recommendations [33], it is allowable to replace 0 fc  by 0.4 fcm  and 

replace  0ft  by  ftm  in Eqs (1.48), (1.49), respectively, to obtain the values of ca  and ta , which are 

7.873 and 1, respectively. The values of the coefficients cb  and tb , are estimated according to the 

algorithm described in the next section. 

 
Figure 2.9: Response of concrete to 

uniaxial loading in tension 

1 2 
 

 
Figure 2.8: Response of concrete to 
uniaxial loading in compression 

  

fc0 

1 2 
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II.4.3.4 The proposed algorithm for computing the coefficients ac,bc,at and bt 

The main idea of the present algorithm is to determine the coefficient cb  in such a way the peak 

point of the compressive stress-strain curve will have the same compressive strength and the same 

strain at compressive strength delivered in the Model Code recommendations [33]. The values of the 

strain at the peak stress delivered in the Model Code for different concrete strength values are 

summarized in table 2.2. In the model code recommendation, the strain values are estimated according 

to the following formula:  

0.31 30.5   2 .8  1 0
1

f x
c cm

           (2.35) 

 

Where cmf is the compressive strength in MPa. According to the Model Code recommendations 

[33], the compressive strength  can be estimated by: 

 8 cm ckf f            (2.36) 

In order to estimate coefficient tb , we suggest computing the mesh size based on Eq (1.45) by: 

 0 1 0.5 
c ch

eq
c c

b G
L

f a


          (2.37) 

By substituting Eq (2.37) in Eq (1.46), we can evaluate coefficient tb  without the need to the 

mesh size value. The coefficient tb  is given by: 

0

0

1 0.5 
     

1 0.5 
t ch t

t c
c F c

f G a
b b

f G a





        (2.38) 

 
Table 2.3: Values of coefficients , ,a a bc t c and bt for different concrete strength –Part1 

𝑓௖௞(MPa) 12 16 20 25 30 35 40 

𝑎௖ 7.873 7.873 7.873 7.873 7.873 7.873 7.873  

𝑏௖ 637.077 636.468 638.065 641.894 646.876 652.439 658.218 

𝑎௧ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑏௧ 6122.778 6059.292 6107.316 6240.193 6412.655 6604.052 6803.804 

 
Table 2.4: Values of coefficients , ,a a bc t c and bt  for different concrete strength –Part2 

𝑓௖௞(MPa) 45 50 55 60 70 80 90 

𝑎௖ 7.873  7.873  7.873  7.873  7.873  7.873  7.873  

𝑏௖ 663.972 669.533 674.783 679.639 687.945 698.146 794.836 

𝑎௧ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

𝑏௧ 7005.913 7206.661 7403.612 7595.106 7957.263 8334.567 9769.134 
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The proposed algorithm illustrated in Figure 2.10 (All stress values are in MPa) was implemented 

in our computer code “Concrete v2.0.0” in order to examine the generated stress-strain diagrams and 

the damage parameters evolution. The values of coefficients , ,c t ca a b and tb  are summarized in tables 

2.3 and 2.4 for different concrete strengths. 

II.4.4 The incremental stress and strain calculation: 

In the plasticity theory, the total strains increment   can be divided into elastic e and 

plastic p parts, as follows: 

The input data are the concrete compressive strength , the error tolerance (Tol), and the 

initial step bstep. Initial assumption is bstep = 10 

Calculate the compressive stress strength  according to Eq (46) and which is equal 
to  

Calculate the initial tangent modulus of deformation of concrete and the 

undamaged modulus of deformation  

State the coefficients  as , and put  

Calculate the value of the strain at the peak stress ( ) according to Eq (2.35) 

Evaluate the inelastic strain at the peak stress ( ) from Eq (2.31) 

Compute the new value of by adding  𝑏௦௧௘௣ ( ). The initial value of 
equal to zero) 

Calculate the new value of the compressive stress according to Eq (2.31) 

Update the old value of the compressive stress  

If the new value 𝜎௖ is less than the old value then: 

1. Revaluate  

2. Revaluate the new value according to Eq (2.31) 

3. Evaluate the new step   by   

Repeat until  

Figure 2.10: Proposed algorithm for evaluating , and  

Compute according to Eq (2.38) 
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     pe                (2.39) 

Where the plastic component can be evaluated according to the flow rule as: 

  1(1 )( ) ( )i iG Gp d   
 

        
       (2.40) 

Where d is the plastic multiplier and   is a parameter that depends on the type of time integration 

used.  

For ω = 0 the integration is called explicit in which the derivative of the potential function is 

evaluated at point A (figure 2.11). In this case, the plastic strain can be estimated using the following 

schemes: 

- Modified Euler 

- Single-step modified Euler 

- Dormand-Prince 

- Runge-Kutta integration  

For ω = 1 the integration is called implicit which means that the derivative of the potential 

function must be computed at point B (figure 2.11 ) where the following schemes can be used to 

estimate the plastic strain: 

- Single-Step Backward Euler Scheme 

- Backward Euler Return Scheme 

- Return algorithm proposed by Ortiz & Simo (1986) 

- Return algorithm proposed by Borja & Lee (1990) 

In our computer code, the single-step Backward Euler scheme was selected to evaluate the plastic 

strain. In this algorithm, the plastic strain is evaluated at point B (figure 2.11) by the following 

correlation: 

  Gp d 



 


          (2.41) 

The incremental stress  can be estimated from the incremental elastic strain  e and the 

elastic constitutive matrix [ ]D  according to the next formula: 

   [ ] eD            (2.42) 

 



Chapter II: Finite element implementation of Damage Plastic Model 

52 
 

 

By using Eqs (2.39), (2.41), and (2.42), the incremental stress  takes the following form: 

   [ ] [ ]
G

D Dd  


 





         (2.43) 

In plastic condition, the stress state in each integration point must always remain on the edge of 

the elastic domain (F=0). The Kuhn Tucker plasticity consistency condition is given by [90]: 

0, 0, 0, 0F d d F d dF             (2.44) 

By differentiating Eq (1.28) with respect to time, and using the chain rule of differentiation, the 

consistency condition becomes as follows [35]: 

0
F F indF cin

c

 
 

 
    
 

        (2.45) 

From Eqs (2.43) and (2.45), the plastic multiplier d  can be evaluated according to the next 

correlation: 

  

 

TF F inD cin
cd

TF G
D

 
 



 

        


    
       

       (2.46) 

Figure 2.11: Stress correction 
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The finite element implementation of the PDM model required the identification of the plastic 

multiplier which needs the estimation of each: 

a- The derivative of the yield function with respect of stresses, 

b- The derivative of the yield function with respect of the inelastic compression strain, 

c- The derivative of the potential function with respect of stresses. 

 

II.4.4.1 The derivatives of the yield function:  

In order to evaluate the plastic multiplierd, each of the derivative of the yield function with 

respect of stresses and the derivative of the yield function with respect to the compressive inelastic 

strain should be calculated. To evaluate the derivative of the yield function with respect of stresses, 

the Chain rule was used where the derivative becomes: 

   
F F p F J

p J  
    

 
    

         (2.47) 

Here: 

p: Mean stress, 

J: Deviatoric stress, 

To evaluate the derivative of the yield function with respect to stress tensor, each term in Eq(2.47) 

must be determined.   
p





 and   
J





are model-independent evaluated by Potts and Zdravkovic [89] as 

follows: 

 1
 1 1 1 0 0 0
3

p T






        (2.48) 

 1
2 2 2

2

TJ
p p p

x y z xy xz yzJ
     




   


    (2.49) 

 
F

p


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 and  
F

J




can be evaluated according to: 

3
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The derivative of the yield function with respect to the compressive inelastic strain can be 

determined by: 

( 1)
F max c
in in

tc c

 

 


 

 
        (2.52) 

With  

( / (1 )) ( 1)( 2)

0
2((2 2) )

inb
c cd a a a b e

c c c c c c cf
cin in inb

c c c ca e a
c c


 

  

    
 

 
 

    (2.53) 

II.4.4.2 The derivative of the potential function:  

The second step in the estimation of the plastic multiplier d  is to determine the derivative of 

the potential function where the Chain rule was used. The derivative of the potential function with 

respect to the stress tensor becomes: 

   
G G p G J

p J  
    

 
    

          (2.54) 

As we have seen previously p





and J





 can be determined according to Eqs(2.48),(2.49) 

respectively. The estimation of 
G

p




and 
G

J




 is based on: 

tan
G

p





           (2.55) 

3

2 2(  tan ) 3
0

G J

J J
t

  




 

        (2.56) 

II.5 Conclusion: 

In this chapter, the full procedure of the finite element implementation of the PDM was delivered, 

in addition to a new methodology to minimize the number of the required parameters. Only the 

compressive concrete strength is required to model a concrete sample for both cases compression and 

tension. Each of the stress-inelastic strain diagrams and the damage parameters evolution for 

compression and tension cases, the ratio of the second stress invariants on tensile and compressive 

meridians, the eccentricity, the ratio of biaxial compressive yield stress to uniaxial compressive yield 
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stress, and the dilation angle were auto-estimated and default values were suggested in this chapter. 

Also, the mesh size influence was eliminated in the proposed approach for computing the damage 

parameters evolutions and the stress-strain diagrams.  

The stress-strain curves and the damage parameters evolution in tension and compression states 

were calculated in accordance with the Model Code recommendations. The main advantage of this 

approach is that the use of the Damage Plastic Model is no longer related to the complicated 

calibration process of the stress-strain and the damage parameters evolution with experimental tests. 

In fact, the only parameter needed in the developed approach is the concrete compressive strength 

value.  

The plastic strain estimation process has been described in this chapter, where the closed-form 

of the plastic multiplier, the derivative of the yield function with respect of stresses, the derivative of 

the yield function with respect of the inelastic compression strain; and the derivative of the potential 

function with respect of stresses were provided  
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III.1 Introduction 

In order to achieve the aim of the present work, a new finite element computer code under the 

name “Concrete” was built to model damaged concrete structures with the minimum number of 

required parameters. For the first version of “Concrete 1.0.0”, the visual studio 2019 was used to 

build the App using visual basic.Net (Figure 3.1), and for the second version “Concrete v2.0.0”, the 

code was migrated to the last version of visual studio (visual studio 2022) in order to benefit from 

their recent features. Also, several third-party libraries were employed to accomplish multiple tasks 

such as the drawing process, meshing process, the user graphical interface, and performing the math 

calculations. The Triangle.Net library was used in our computer code to generate 2D mesh, this well-

known library was developed by Woltering [91] as a port of the Triangle program made by Shewchuk 

under MIT licensing. In the same manner, a second library under the name Open Toolkit “OpenTK” 

[92] was used in “Concrete v2.0.0” to handle the drawing process with a high level of efficiency, this 

library gives the developer the ability to access the graphics card and perform the drawing with a high 

level of speed and quality. The Open Toolkit is distributed under the permissive MIT/X11. Also, 

Ribbon WinForms [93] is the third library that was used in our code in order to add a Ribbon to our 

computer code and so, improve the graphical user interface of “Concrete v2.0.0”. The last library that 

was used in “Concrete v2.0.0” is Math.Net Numerics [94] which is covered under the terms of the 

MIT license. This library was used with the aim to help the developer to carry out the math 

calculations.  

To improve the quality of “Concrete 2.0.0”, the Object-Oriented Programming (OOP) paradigm 

was selected to use as a coding technique where instead to decompose the main program into a 

collection of variables, data structures, and subroutines, the program was decomposed into “Objects” 

that expose behavior and data using interfaces. This strategy helps us to improve the code quality 

where we can benefit from modern technology to getting a modern design, increase programs 

performance, debugging and error handling, and update managing. 

In the computer code “Concrete v2.0.0”, the second form of the plastic damage model was 

selected as constitutive law to simulate the real behavior of concrete material. The implementation 

process of the PDM in “Concrete v2.0.0” was described in chapter II, where the only required 

parameter to use PDM is the compressive concrete strength. The stress-strain diagrams and the 

damage parameters evolutions were auto-calculated through our new approach. Moreover, typical 

values for the ratio of biaxial and uniaxial compressive yield strengths, The ratio of second stress 
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invariants on tensile and compressive meridians, the flow potential eccentricity, and the dilation angle 

were selected from the literature.  

“Concrete v2.0.0” was developed under visual studio with vb.net based on OOP and the finite 

element fundamentals, it was developed to model cubical and cylindrical concrete structures. The 

eight-node brick element (C3D8) was used in our code to discretize and analyze the continuum. The 

current version enables the users to analyze structures with linear material properties and nonlinear 

material properties using PDM constitutive model.  

 

 

 

 

 

 

 

 

 

 

 

 

III.2 Object-Oriented Programming Paradigm 

In the literature, the coding of linear and nonlinear finite element methods is mainly based on the 

Procedure Oriented Programming (POP) paradigm that appeared in the late 1950s with the 

programming languages ALGOL 58 and ALGOL 60, where the main idea is to divide the main 

programs into smaller self-contained program segments such as block structures and subroutines. 

With this technique, the FE application made great strides in the 1970s and 1980s, when a large 

amount of software was developed. Unfortunately, the POP demonstrated a huge failing in terms of 

software design, management of recent technology, code updating, and maintenance. With the 

development of a new programming paradigm called Object-Oriented Programming (OOP), a large 

Figure 3.1: Code source of Concrete v2.0.0. Screenshot 
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number of trade codes were raised such as PLAXIS, ABAQUS, ROBOBAT, SAP. In fact, the OOP 

was initiated for the first time in the late 1960s by the Norwegian developers O. J. Dahl and K. 

Nygaard [95] who developed a new programming language called SIMULA (SIMUlation 

LAnguage), based on the assumption that the main program should be modeled around objects rather 

than procedures. In fact, they invented the idea of "classes" in order to develop objects sharing similar 

characteristics. Therefore, these objects could communicate and make requests to each other. The 

OOP paradigm is based on four concepts: 

- Encapsulation: grouping the data and the methods working with it within one unit; 

- Abstraction: Objects only reveal internal mechanisms relevant to the use of other 

objects, masking any unnecessary implementation code; 

- Inheritance: is a mechanism whereby a class acquires the property (fields and methods) 

of another class; 

- Polymorphism: the object can take many forms. The most common use of this concept 

in OOP occurs when a parent class reference is used to refer to a child class object. 

The main difference between POP and OOP is that the first approach aims to decompose the 

program into a collection of variables, data structures, and subroutines, while the second approach 

consists of decomposing the program into “Objects” that expose behavior and data using interfaces. 

Therefore, the most important difference is that POP uses procedures to operate on data structures, 

while OOP groups the two together. As a result, using OOP improves the code organization and 

increases the maintainability and reusability of the source code. 

In the FE coding, several research projects have already suggested using the OOP paradigm, in 

which various programming languages were employed such as C++, Java, Matlab. In the early ‘90s, 

Forde et al [96] explained the possible solutions that object-oriented programs offer in the FE 

problems. Similarly, Mackie [97] described an object-oriented implementation of the finite element 

method and demonstrated its advantages. Likewise, Dubois-Pelerin et al [98] used the prototyping 

language Smalltalk for the OOP implementation of the finite element method. Later Kumar [99] 

suggested the implementation of OOP to the FEM for engineering analysis using C++. Also, Phillipe 

D.Alves et al [100] exploited the OOP to the generalized finite element method. Also, Benjamin et al 

[101] used the OOP to provide an FE toolbox within the Matlab environment. 

In this work, the FE implementation of the PDM was performed through OOP paradigm. The 

architecture of “Concrete v2.0.0” shown in Figure 3.2 illustrates four classes used in its development 

which are the “Global Structure” class, “Brick Eight Nodes” class, “Node” class, and the “PDM” 

Class. In fact, the main class “Global Structure” holds several fields, subroutines, and functions in 
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order to model the structure such as the meshing process, computing the global stiffness matrix, load 

vector, and solving the system...etc. Also, the Global Structure contains a list of elements, each 

element is based on the Brick Eight Nodes class to evaluate the element stiffness matrix, the stress 

vector, and the strain vector based on: 

- The position of each node, which can be found in the list of nodes where each node 

represents a node object. 

- The material behavior (found in the PDM Class).  
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Figure 3.2:  Concrete v2.0.0 architecture 



Chapter III: Description of the finite element computer code “Concrete v2.0.0” 

61 
 

III.3 Eight nodes brick element 

In order to discretize cubical and/or cylindrical concrete samples, a 3D element must be selected 

from various choices namely: the eight-node brick element (linear), the twenty-node brick element 

(parabolic), the six-node tetrahedron element (linear), and the ten-node tetrahedron element 

(parabolic). In the present work, the eight-node brick element (C3D8) was chosen for various logical 

reasons, which are:  the displacement inside the element can be found through linear interpolation, 

and the low calculation cost of the C3D8 compared to the twenty-node brick element  

 In our code, the C3D8 element is fully integrated using 2x2x2 Gauss integration points. The 

node and the integration points are numbered following the convention of figure 3.3. The shape 

functions matrix of this element takes the following form: 
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The stiffness matrix of this element is calculated according to: 

      
T

e
v

K B D B dv           (3.3) 

Where  D represents the stress-strain matrix, takes the following form: 
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And the matrix  B is calculated as follows; 
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Figure 3.3: Eight nodes brick element (C3D8) 
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III.4 Mesh generation 

As known, Mesh generation is the process of dividing the whole structure into a set of defined 

elements. Usually, for one-dimensional structures, each of bar or beam element with two or three 

nodes can be used to discretize the continuum. For 2D structures, both triangle and quadrilateral 

elements with three, four, six, and eight nodes can be used to generate the mesh. For our computer 

software, we need to discretize both cubical and cylindrical elements using the C3D8 element as 

mentioned previously. 

In Concrete v2.0.0 , the meshing subroutines are affiliated to the Global structure class where 

two main subroutines can be found to ensure the meshing of both supported shapes namely the 

cylindrical shape and the cubical shape. The first subroutine called “GenerateMeshCylindre” ensures 

the meshing of the cylindrical shape. This subroutine goes through the 2D discretization of the 

cylinder section (circle) provided by the Triangle.Net library as illustrated in figure 3.4 to generate 

the 3D mesh. This subroutine executes the following steps: 

- Calculate the cylinder section  and generate the polygon that represents the section 

(circle) 

- Generate 2D mesh of the section 

- Delete the double quadrilaterals elements 

- Build the levels for a given distance 

- Generate the 3D mesh  
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The second subroutine called “GenerateMeshCube” ensures the meshing of cubical shape. In the 

same way of GenerateMeshCylindre subroutine, this subroutine goes through the 2D discretization 

of the cubical section (rectangle) as illustrated in figure 3.5 to generate the 3D mesh. This subroutine 

follows the next instructions: 

- Calculate the cubic section  and generate the rectangle 

- Using CalculatePointsCube subroutine, calculate the nodes list that is used to generate 

the 2D mesh of the rectangle  

- Generate the 2D mesh 

- Delete the double quadrilaterals elements 

- Build the levels for a given distance 

- Generate the 3D mesh  

 

 

 

 

 

 

 

 

Figure 3.4: 2D mesh of circle shape 

Figure 3.5: 2D mesh of rectangle shape 
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Both subroutines GenerateMeshCylindre and GenerateMeshCube are presented in the appendix. 

III.5 OpenTK library 

The Open Toolkit is a set of fast, portable, low-level C# bindings for OpenGL, OpenGL ES, 

OpenAL, and OpenCL. It runs on all major platforms and powers hundreds of Apps, games, and 

scientific research programs. Practically, the OpenTk can be used on the multiple technologies such 

as WPF, WinForms, Xamarin, Avalonia, WinUI, and UWP. 

 Since OpenGL is a graphics API and not a platform of its own, it requires a language to operate 

in and the language of choice is C++. Therefore a decent knowledge of the C++ programming 

language is required to master OpenGL which is unfortunately unenviable in the .net Framework. 

Luckily, OpenTK gives us the possibility to operate OpenGL inside the .net Framework environment, 

which offers us the ability to draw the elements with a high level of speed and quality. The main 

subroutines that are used to draw 2D and 3D elements are delivered in the appendix 

III.6 PDM Class description 

The PDM Class was developed as part of our academic finite element code “Concrete v2.0.0” in 

order to model damaged concrete structures. The design of this class is mainly based on several fields, 

functions; and subroutines that are required to implement the PDM. These fields are mainly used to 

evaluate the value of the yield function "F" and the value of the potential function "G". Therefore, 

each parameter used in Eqs (1.28), (1.22), (1.26), (1.27), and (1.30) has a correspondence filed in the 

PDM class (Table 3.1). 

Also, it is essential to evaluate each of; the yield function, the derivatives of the yield function, 

the potential function, and the derivative of the potential function in order to identify the material 

behavior and the plastic strain (F<0 signified that the current integration point is elastic and F>0 

signified that the plastic yielding is indicated and ∆𝜎 is incorrect). Hence, the PDM Class includes 

the functions and the subroutines summarized in Table 3.2 (The code source of the PDM class is 

presented in the Appendix). 

Table 3.1: Fields used in the PDM Class 

Field Description 
E The initial undamaged stiffness E0. 

v Poisson Ratio   

fb0_fc0 The ratio of biaxial and uniaxial compressive yield strengths /0 0f fb c  

Kc The ratio of second stress invariants on tensile and compressive meridians Kc  

Excent The flow potential eccentricity   
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SigmaT0 The uniaxial tensile stress at failure 0t . 

PsiAngle The dilation angle  

fck The compressive strength of concrete f c k
. 

ac 
 

Dimensionless coefficients ,, , a a bc t c andbt. 
at 

bc 
bt 

SigmaC Compressive stress value c for a given compressive inelastic strain  

SigmaT Tensile stress value t for a given tensile inelastic strain  

dc Compressive damage parameter value dc for a given compressive inelastic strain  

dt Tensile damage parameter value dt  for a given tensile inelastic strain  

d Damage parameter value d 
 

Table 3.2: Functions and Subroutines used in the PDM Class 

Function / Subroutines Name Description 

YieldFunctionEstimation 
This function returns with the value of the yield function for a given 
stress tensor. 

DerivativeYieldFunctionStress 
This function returns with the value of the derivative of the yield 
function with respect to the stress tensor for a given stress tensor. 

DerivativeYieldFunctionStrain 
This function returns with the value of the derivative of the yield 
function with respect to the compressive inelastic strain for a given stress 
tensor. 

DerivativePotentialFunction 
This function returns with the value of the derivative of the potential 
function for a given stress tensor 

DamageParametres  

This subroutine calculates according to Alfarah approach,  Bakhti 
approach, and user data approach the following parameters: 

- The tensile stress for a given inelastic strain; 
- The compressive stress for a given inelastic strain; 
- The tensile damage parameter for a given inelastic strain; 
- The compressive damage parameter for a given inelastic strain. 
- The damage parameter 

DLambda This function returns with the value of the plastic multiplier. 

ParamatersCDP  

This function is inherited from Base class and returns with the values of: 
- Alfa parameter 
- Beta Parameter 
- Gamma parameter 

FindInelasticStrain This function returns with the inelastic strain value. 

PlasticStressImplicit This function returns with the plastic strain tensor. 
 

III.7 Concrete V2.0.0 description 

Concrete v2.0.0 is a Windows App developed under visual studio using vb.Net coding language. 

The OOP technology was used in order to improve the design quality of our computer code. The first 

version of this code was developed only to model cylindrical and cubical elements considering the 

concrete as elastic liner material. Otherwise, considering the concrete material as linear elastic 
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material provides inaccurate results and shows a major weakness regarding the degradation process 

of concrete. To overcome these issues, the second version was developed to simulate the real behavior 

of concrete and improve the predicting of the concrete degradation in both cases tension and 

compression. In the user interface graphic, two main tabs are available, the first one is the Geometry 

tab, where the following tasks are available: 

- List of buttons number “1“is used to choose the shape of the concrete sample. Two shapes are 

available,  the cubical one and the  cylindrical one (Illustrated in figure 3.6) 

-  List of buttons number “2” allows the user to input the shape dimensions. For the cubical 

case, the user can input the length; the width, and the height of the sample. For the cylindrical 

shape, each of; the height and the diameter must be entered. In addition, the drawing factor 

must be inputted. (Illustrated in figure 3.6) 

- List of buttons number “3” provides the ability to reinforce the concrete by adding layers of 

composite materials to the concrete sample. This feature will be available in the third version 

of Concrete software. (Illustrated in figure 3.6) 

- Button “4” is used to generate the mesh (Figure 3.7) 

- Button “5” allows the user to broaden an existing mesh. This button cannot be used before 

generating the mesh. (Figure 3.7) 

- Button “6” allows the user to squeeze an existing mesh. This button cannot be used before 

generating the mesh. (Figure 3.7) 

- List of buttons number “7” allows the user to select the drawing mode namely the 3D model 

or the 2D model (Figure 3.8) 
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1 2 

Figure 3.6: Concrete v2.0.0. Screenshot N01 

3 

4 5 6 

Figure 3.7: Concrete v2.0.0. Screenshot N02 
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The second tab available in our computer code is the Calculation tab, where the linear and the 

nonlinear calculations (using PDM) are available. In addition to the output button, the following tasks 

are available in the calculation tab: 

- List of buttons number “8” is used to model concrete samples for linear analysis. The button 

calculation is used to start the calculation process (Figure 3.9). The following parameters are 

required to perform the calculation: 

 The Young modulus 

 Poisson’s ratio. 

- List of buttons number “9” is used to model concrete samples for nonlinear analysis using the 

plastic damage model. The user can choose the compressive case or the tensile case. Also, the 

user can input the compressive stress strength via the textbox fcm (Figure 3.10). Default values 

are suggested for the following parameters: 

 /
0 0

f f
b c

 The ratio of biaxial and uniaxial compressive yield strengths (default value 

equal to 1.16) 

Figure 3.8: Concrete v2.0.0. Screenshot N03 

7 
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 cK  The ratio of second stress invariants on tensile and compressive meridians (default 

value equal to 0.67) 

Figure 3.9: Concrete v2.0.0. Screenshot N04 

8 

Figure 3.10: Concrete v2.0.0. Screenshot N05 

9 
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   The flow potential eccentricity (default value equal to 0.1) 

  The dilation angle (default value equal to 5 degrees) 

 Poisson’s ratio (default value equal to 0.2) 

 

 

Figure 3.11: Concrete v2.0.0. Screenshot N06 

10 

11 

Figure 3.12.a: Concrete V2.0.0 outputs - 

Compressive stress-strain curve 

Figure 3.12.b: Concrete V2.0.0 outputs - Damage 

parameter curve 
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Figure 3.12.c: Concrete V2.0.0 outputs - Tensile 

stress-strain curve 

Figure 3.12.d: Concrete V2.0.0 outputs - Compressive 

stress-strain (BAKHTI) 

Figure 3.12.e: Concrete V2.0.0 outputs - 

Compressive damage parameter curve (BAKHTI) 

Figure 3.12.f: Concrete V2.0.0 outputs - Tensile 

stress-strain curve (BAKHTI) 
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Figure 3.12.g: Concrete V2.0.0 outputs - Tensile 

damage parameter curve (BAKHTI) 

Figure 3.12.h: Concrete V2.0.0 outputs - Compressive 

stress-strain (Alfarah) 

Figure 3.12.i: Concrete V2.0.0 outputs - 

Compressive damage parameter curve (Alfarah) 

Figure 3.12.j: Concrete V2.0.0 outputs - Tensile 

stress-strain curve (Alfarah) 
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- Button “10” allows the user to display the following curves (Figure 3.11): 

 Compressive stress-strain (Figure 3.12.a) 

 Damage-parameter curve (Figure 3.12.b) 

 Tensile: stress-strain (Figure 3.12.c) 

 Compressive DPM Model Curve according to the author’s approach (Figure 3.12.d) 

 Compressive Damage Parameter Curve: Bakhti (Figure 3.12.e) 

 Tensile CDP Model Curve: Bakhti (Figure 3.12.f) 

 Tensile CDP Damage Parameter Curve: Bakhti (Figure 3.12.g) 

 Compressive CDP Model Curve: Alfarah (Figure 3.12.h) 

 Compressive Damage Parameter Curve: Alfarah (Figure 3.12.j) 

 Tensile CDP Model Curve: Alfarah (Figure 3.12.j) 

 Tensile Damage Parameter Curve: Alfarah (Figure 3.12.k) 

- List box “11” displays the displacements of each node (Figure 3.11). 

Figure 3.12.k: Concrete V2.0.0 outputs - Tensile 

damage parameter curve (Alfarah) 
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- Menu “12” (Figure 3.13) allows the user to create a new project, save and open an existing 

project and a quick access for: 

 Generate mesh  

 Broaden an existing mesh  

 Squeeze an existing mesh  

 Model concrete samples for linear analysis 

 Model concrete samples for non-linear analysis using PDM 

 Display results 

 

III.8 Conclusion 

In this chapter, a full description of the new computer code “Concrete v2.0.0” was provided. The 

used coding paradigm was described in this chapter where the main advantage is improving the design 

quality of our computer code. In addition, the architecture of Concrete v2.0.0 was provided where the 

developed code is based on four classes which are the “Global Structure” class, “Brick Eight Nodes” 

class, “Node” class, and the “PDM” Class. Also, the used element was delivered where the closed 

forms of each; the shape functions, the stress-strain matrix, and the stiffness matrix were provided. 

The mesh generation process of the cylindrical shapes and the cubical shapes was described in this 

Figure 3.13: Concrete v2.0.0. Screenshot N07 

12 
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chapter, in addition to several subroutines and functions that are employed in our software, each of; 

the manual calculations of the 2D meshing and the Triangle.Net calculation were also provided. In 

the same manner, the drawing process through the OpenTK library was presented in this chapter, 

where multiple subroutines are presented.  

A full description of the PDM Class was delivered as part of our academic finite element code 

“Concrete v2.0.0”. The design of this class is mainly based on multiple required fields, functions; and 

subroutines to implement the plastic damage model. These fields, functions, and subroutines are 

delivered in tables 3.1 -3.2. In the same manner, the user interface graphic of “Concrete v2.0.0” was 

described in this chapter where all the required tools/buttons in our computer code were demonstrated, 

the reader can easily run the software simply by following the delivered description of the software. 
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IV.1 Introduction 

In order to validate our computer software, a comparative study between the developed approach 

(proposed approach for computing the stress-strain diagrams and the damage parameters evolution) 

and stress-strain curves from the literature is provided in this chapter in addition to comparing the 

outcomes of Concrete v2.0.0 with experimental evidence and analytical approaches. Also, this 

chapter provides numercical study to examine the mesh sensitivity. For the auto estimation of the 

stress-strain curves, the outcomes of our approach were compared with the following solutions: 

- The experimental stress-strain curves of Mohamad Ali et al [50], 

- The stress-strain curves generated according to Alfarah correlations [23], 

- The stress-strain curves generated according to Thorenfeldt correlations [102]. 

Furthermore, a comparison was preseted between the compressive and tensile stress-strain curves 

generated by “Concrete v2.0.0”with multiple compressive and tensile stress-strain correlations from 

the literature. For the compressive case, five values of the concrete compressive strength were 

selected (20, 25, 30, 35, and 40 MPa), for comparing with the stress-strain correlations of : 

- Lubliner [26], 

- Desayi and Krishan [47], 

- Kratzig and Polling [29], 

For the tensile case, same values of compressive strength were used for comparing with the 

outcomes of Lubliner correlations [26] and the outcomes of Thorenfeldt correlations [102]. The mesh 

sensitivity was examined through three cases of the mesh densities which are; 27 elements, 64 

elements, and 125 elements (for a cubic sample with the following dimensions: 250 mm long, 250 

mm wide, and 250 mm high).  

For the compressive case, the outcomes of Concrete v2.0.0 were compared with the experimental 

data provided by Watanabe et al [103] and with the closed-form solution suggested by Kratzig and 

Polling [29]. For the tensile case, the outcomes of Concrete v2.0.0 were compared with experimental 

data provided by B. Ahmed et al [32] and with the outcomes of the Thorenfeldt approach [102]. 

IV.2 Validation of the proposed approach for computing the stress-strain 
diagrams and the damage parameters evolutions 

In order to validate the proposed approach for computing the stress-strain curves and the damage 

parameters evolutions, the stress-strain curves generated by “Concrete v2.0.0” according to the 
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present approach were compared with experimental results for the compression case and with closed-

form solutions for the tension case, the results are illustrated in figures 4.1, 4.1, 4.3, and 4.4.  

Figure 4.1 shows the compressive stress-strain curves of experimental tests provided by 

Mohamad Ali et al [50] and the outcomes of the proposed approach for different compressive 

strengths ckf (8.7, 17.3, 19.7 and 24 MPa). From this figure, it is observed that for every sample, both 

curves are very close, which proves the efficiency of the presented approach. 

Figures 4.2, 4.3 and 4.4 show the tension stress-strain curves generated by “Concrete v2.0.0” 

(according to the proposed algorithm) and the outcomes of the analytical solution of Alfarah [23] and 

the analytical solution of Thorenfeldt [102]. The tension stress-strain curves generated according to 

Alfarah formulas were calculated for a cubic sample with the following dimensions: 100 mm long, 

100 mm wide and 100 mm high. 
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Figure 4.1: Validation of the auto-estimation 
of the compressive stress-strain curves 

Figure 4.2: Validation of the auto-estimation of the 
tensile stress-strain curve, fck=32 MPa 

0 4 8 12 16 20 24 28 32

ɛ c (x10 -4)

0

4

8

12

16

20

24

28

32

36

.7 Mpa
8=kcf

.3 MPa

71=kcf .7 MP

91=kcf

4 MP
2=kcf

Experimental tests - Mohamad Ali
Proposed approach

0 1 2 3 4 5 6 7 8

ɛ t x10 -4

0

0,4

0,8

1,2

1,6

2

2,4

2,8

Thoronfeldt
Alfarah
Proposed approach

0 1 2 3 4 5 6 7 8

ɛ t x10 -4

0

0,4

0,8

1,2

1,6

2

2,4

Thoronfeldt
Alfarah
Proposed approach

Figure 4.3: Validation of the auto-estimation of 
the tensile stress-strain curve, fck=25 MPa 

Figure 4.4: Validation of the auto-estimation of 
the tensile stress-strain curve, fck=20 MPa 
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The tension stress-strain curves generated according to the approach of Thorenfeldt are linear up 

to the uniaxial tensile strength, then determined by: 

 0.7 1000 t
tm

t tm
t

f




 
  

 
        (4.1) 
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Figure 4.5: Compressive Stress-strain curves for 
different compressive strength 

Figure 4.6: Compressive damage parameter 
evolution  
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Figure 4.8: Tensile damage parameter evolution  
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Figures 4.2, 4.3, and 4.4 show that the proposed approach gives similar results to Alfarah 

approach at the beginning, then, they start to move gradually away until they reach the Thorenfeldt 

outcomes at the end of the curve. Figures 4.5, 4.7 illustrate the compressive and the tensile stress-

strain diagrams generated according to the proposed approach.  

Figures 4.6, 4.8 illustrate the compressive and the tensile damage parameters evolution generated 

according to the present approach. The curves were generated for four concrete strengths ckf (20, 30, 

40, and 50 MPa). 

Figure 4.5 illustrates compressive strength effect on the compressive stress-strain curves. The 

maximum values increased with the augmentation of the compressive strength, while the effect of 

compressive strength on the compressive damage parameter evolution is negligible for compressive 

strain c higher than 60 x10-4. 

From Figure 4.7, it is observed that the curves can be divided into three parts. The curves are 

quite close to each other in the first part which represents the linear behavior of concrete, until they 

reach the peak points, where the maximum differences values are obtained. Then the curves begin to 

get closer to each other in the second part, until they assemble in the third part. Similarly, the tensile 

curves presented in Figure 4.8 consist of three parts. In the first part, it is observed that the curves 

begin converging and reach a point of intersection. In the second part, it is noticed that the curves 

begin to converge and reach the maximum values, then started to get closer to each other until 

reaching the third part where the curves assemble. Moreover, it is observed that the concrete strength 

influence on the tensile damage parameter evolution is very limited. 

The stress-strain diagrams and the damage parameters evolution generated according to the 

developed approach are completely independent of the mesh size ( Leq ) value. This conclusion is 

based on the fact that the stresses and the damage parameters values are mainly correlated to the 

coefficients ,,  ,  c t ca a b and tb according to Eq (1.42) and Eq (1.60), respectively. Furthermore, these 

coefficients are evaluated without the mesh size value (as demonstrated in figure 2.10). 

IV.3 Investigation of “Concrete v2.0.0” outcomes 

This section aims to compare the compressive stress-strain and the tensile stress-strain curves 

generated by our computer code with multiple compressive and tensile stress-strain correlations from 

the literature. For the compressive case, five values of concrete strengths (20, 25, 30, 35, and 40 MPa) 

are selected to compare the outcomes of Concrete v2.0.0 with three stress-strain correlations for the 

compressive case namely: 
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- Desayi and Krishan [47] (Section I.5),  

- Kratzig and Polling [29] (Section I.6.1.2.b),  

- Lubliner et al [26] (Section I.6.1.2.b). 

For the tension case, Lubliner et al [26] and Thorenfeldt et al [102]stress-strain correlations are 

carefully chosen to validate the outcomes of “Concrete v2.0.” for the same values of concrete 

strengths. Young’s modulus and the strain value at peak stress for each value of concrete strength are 

delivered in Table 4.2.  

For Kratzig and Polling [29] correlation, all curves are calculated based on mesh size equal to 

300 mm. The Model Code Recommendations [33] was used to calculate the following parameters: 

- The initial tangent modulus of deformation of concrete 1 / 310000  E fci cm   (4.2) 

- The undamaged modulus of deformation 0.8 0.20 88

fcmE Eci
 

   
 

   (4.3) 

- The compressive stress that corresponds to zero crushing 0 0.4c cmf f   (4.4) 

- The value of the strain at the peak stress 0 .31 30 .5   2 .8  1 0cm cmf x      (4.5) 

- The crushing/fracture energy (N/mm)  

2

 cm
ch F

tm

f
G G

f

 
  
 

where 0.180.073 F cmG f       (4.6) 

Table 4.2 summarizes the values of the peak tensile stress and the strain at the peak tensile stress 

for each value of concrete strength that are required to evaluate the stress value according to 

Thorenfeldt correlation. For Lubliner correlations, we used the values of  coefficients , ,c t ca a b and

tb  that were calculated by Bakhti et al [104] and presented in Table 2.2 and Table 2.3. Also, 

according to this approach, the compressive and tensile stress-strain curves were divided into two 

parts. The first one represents the linear segment where the stress is evaluated according to Hooke’s 

law. The second one represents the non-linear part where the stress is evaluated according to 

Lubliner’s formulas. 

Figures 4.9-4.13 present the compressive stress-strain curves generated by Concrete v2.0.0 

together with the stress-strain curves generated according to the correlations of Lubliner, Desayi and 

Krishan, and Kratzig and Polling. From these figures, the following observations can be outlined: 
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- The curves generated by Concrete v2.0.0 are completely in harmony with the stress-strain 

curve generated according to Lubliner Formula, this observation can be justified by the fact 

that the used hardening function in the implementation of PDM is identical to Lubliner 

formulas. 

- For the concrete strengths less than 25 MPa, The outcomes of “Concrete v2.0.0” are partially 

in harmony with the stress-strain curve generated according to Kratzig formula. For values 

more than 25MPa and by using the decomposition of Kratzig, we observed that the curves 

of Concrete v2.0.0 move away from Kratzig curve depending on the concrete strengths, 

especially in the third part. 

- Using the decomposition of Kratzig, the outcomes of “Concrete v2.0.0” are partially in 

harmony with the stress-strain curve generated according to Desayi formula in the first and 

the second parts. For the third part, the difference between both curves is significant. 

Figures 4.14-4.18 present the tensile stress-strain curves generated by “Concrete v2.0.0” together 

with the stress-strain curves generated according to the correlations of Lubliner and Thorenfeldt. 

From these figures, the following notes can be outlined: 

- The outcomes of “Concrete v2.0.0” are in harmony with the stress-strain curve generated 

according to Lubliner formula which can be justified by the adopted hardening function 

which is the Lubliner formula. 

- Using the decomposition of the tensile stress-strain curve illustrated in figure 2.8, the tensile 

stress-strain curves of “Concrete v2.0.0” are completely in harmony with the stress-strain 

curve generated according to Thorenfeldt formula in the first part. For the second part, 

Concrete v2.0.0 gives results partially similar to Thorenfeldt formula. 

 

Table 4.1: input data of Desayi and Krishan curve 

( )f MPacm  3
( 10 )x

p
 

 ( )E MPa  

20 1.8 22890 

25 1.9 26130 

30 2 29910 

35 2.1 32890 

40 2.2 35940 
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Table 4.2: input data of Thorenfeldt curve 

( )f MPacm  4
( 10 )x

tm
   ( )f MPa

tm  

20 0.68 1.58 

25 0.79 1.99 

30 0.87 2.37 

35 0.93 2.71 

40 0.98 3.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Compressive stress-strain curve for  
fcm = 30 MPa 

 

Figure 4.12: Compressive stress-strain curve for  
fcm = 35 MPa 

 

Figure 4.9: Compressive stress-strain curve for  
fcm = 20MPa 

Figure 4.10: Compressive stress-strain curve for  
fcm = 25MPa 
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Figure 4.13: Compressive stress-strain curve for  
fcm = 40 MPa 

 

Figure 4.14: Tensile stress-strain curve for  
fcm = 20 MPa (ftm = 1.58 MPa) 

 

Figure 4.15: Tensile stress-strain curve for  
fcm = 25 MPa (ftm = 1.99 MPa) 

 

Figure 4.16: Tensile stress-strain curve for  
fcm = 30 MPa (ftm = 2.37 MPa) 
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IV.4 Mesh sensitivity 

To examine the mesh sensitivity, the outcomes of our computer code (for a cubic sample with 

the following dimensions: 250 mm long, 250 mm wide, and 250 mm high) were compared with 

experimental results and with closed-form solutions from the literature. Three cases of the mesh 

densities were considered (27, 64, and 125 elements). Table 4.3 summarizes the input data used by 

“Concrete v2.0.0” in the examination process for the tensile and the compressive cases. The uniaxial 

tensile stress at failure 
0t  and the initial undamaged stiffness 

0E  are auto-estimated according to the 

Model Code Recommendations [33] based on the value of the compressive strength of concrete.  

In the tension case, the outcomes of “Concrete v2.0.0” were compared with the experimental 

results of Ahmed et al [32] and with the outcomes of the Thorenfeldt approach [102] (Figures 

4.19,4.20). Two conclusions can be drawn from Figures 4.19 and 4.20. The first one is that the 

influence of the mesh density is very limited. The mesh insensitivity is mainly due to the use of Bakhti 

Approach [104] for computing the stress-strain diagrams and the damage parameters evolution in our 

code. The second one is that the stress-strain curves generated by our computer code are in the range 

of the experimental data and come very close to Thorenfeldt approach 

Figure 4.17: Tensile stress-strain curve for  
fcm = 35 MPa (ftm = 2.71 MPa) 

 

Figure 4.18: Tensile stress-strain curve for  
fcm = 40 MPa (ftm = 3.04 MPa) 
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For the compression case, the outcomes of “Concrete v2.0.0” were compared with the 

experimental data of Watanabe et al [103] and with the closed-form solution suggested by Kratzig 

and Polling [29] (which was also used by Alfarah et al [23], See section I.6.1.2.b ) 

 Table 4.3: The input data for Concrete v2.0. 
 Tension Compression 

Example 01 Example 02 Example 01 Example 02 Example 03 

ckf  39.2 MPa  26.6 MPa 22.5 MPa 32 MPa 17.5 MPa 

0t  3.48 MPa 2.70 MPa 2.40 MPa 3.04 MPa 2.04Mpa 

0E  32786 MPa 28630 MPa 27161 MPa 30468 MPa 25253 MPa 

  0.2 
  0.1 
  5 degrees 

cK  0.667 

0 0/b cf f  1.16 

 

From figures 4.21, 4.22, we can see that the compressive stress-strain curves generated by our 

computer code are in the range of the experimental data provided by Watanabe et al [103]. Also, the 

influence of the mesh density is very limited due to the employment of the author’s approach [104] 

for generating the stress-strain diagrams and the damage parameters evolution in “Concrete v2.0.0” 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Tensile stress-strain curve 
Mesh sensitivity-Example 01 

Figure 4.20: Tensile stress-strain curve 
Mesh sensitivity - Example 02 
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Figure 4.23 indicates that the compressive stress-strain curves generated by “Concrete v2.0.0” 

come very close to the outcomes generated according to Kratzig and Polling [29] approach (almost 

identical). Also, the influence of the mesh density is very limited due to the same reason which is the 

use of our approach [104] to compute the stress-strain diagrams and the damage parameters evolution 

in “Concrete v2.0.0” 

Figure 4.21: compressive stress-strain curve 
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Figure 4.22: compressive stress-strain curve 
Mesh sensitivity-Example 02 
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Figure 4.23: compressive stress-strain curve 
Mesh sensitivity–Example 03 
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IV.5 Conclusion 

In this chapter, a full demonstration of the efficiency of our computer code was provided. 

Multiple comparisons with closed-form solutions and experimental tests were carried out in order to 

examine the efficiency of our numerical approach for computing the stress-strain diagrams and the 

damage parameters evolution. Several advantages of the proposed approach can be outlined as: 

- Only, the concrete compressive strength value is needed to evaluate the stress-strain and 

the damage parameters curves, 

- Intriguingly, the stress-strain curves and the damage parameters evolution are 

independent of the mesh size effect ( eqL ), 

- Achieving a high level of accuracy in the estimation of damage parameters evolution, 

both in tension and compression, 

- Reducing the number of parameters needed to be calibrated according to the 

experimental tests, 

- The use of the Model Code recommendations and expandability to support other 

recommendations, 

- The developed method is quite appropriate to incorporate into other numerical codes. 

Furthermore, a comparative study of the stress-strain curves generated by “Concrete v2.0.0” and 

five stress-strain correlations was provided. For the compression case, the outcomes of “Concrete 

v2.0.0” were compared with the stress-strain curves of Desayi, Kratzig, and Lubliner. The following 

conclusions can be outlined: 

- All curves are quite close to each other in the ascending part, 

- The curves of “Concrete v2.0.0” are completely in harmony with the stress-strain curve 

generated according to Lubliner formula, 

- For the concrete strengths less than 25 MPa, The curves of “Concrete v2.0.0” are 

partially in harmony with the stress-strain curve generated according to Kratzig formula. 

For values more than 25MPa, the curves of “Concrete v2.0.0” move away from Kratzig 

curve depending on the concrete strengths, especially in the descendant part, 

- In the descendant part, the difference between the curves of “Concrete v2.0.0” curves 

and the curves of Desayi is significant. 
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For the tensile case the following conclusions can be made: 

- All curves are quite close to each other in the ascending part, 

- The outcomes of “Concrete v2.0.0” are in harmony with the stress-strain curve 

generated according to Lubliner formula, 

- “Concrete v2.0.0” gives results partially similar to Thorenfeldt formula, especially in 

the descendant part. 

The mesh sensitivity was exanimated in this chapter where it is demonstrated that the outcomes 

of “Concrete v2.0.0” are unconnected to the mesh density for both cases compression and tension. 
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Conclusion  

Modeling the real behavior of concrete using the finite element method significantly helps the 

scientific community to reduce the number of required experimental tests by simulating them 

numerically which considerably reduces the study time and improves the profitability of research 

teams. The Damage Plastic Model was selected as a constitutive model to build our computer App 

with a view to simulate the real behavior of cylindrical and cubical concrete samples. This choice is 

based on several logical reasons, which are; the ability to address small and large strain, the capability 

to address the plasticity of concrete material, and the ability to handle the elastic stiffness degradation 

induced by the plastic straining in addition to the stiffness recovery. The use of the second form of 

the PDM requires multiple parameters namely; the stress-inelastic strain diagrams for compression 

and tension cases, the damage parameters evolution for compression and tension cases, the ratio of 

the second stress invariants on tensile and compressive meridians, the eccentricity, the ratio of biaxial 

compressive yield stress to uniaxial compressive yield stress, and the dilation angle. The numerical 

values of these parameters must reflect the real state of concrete material which required the 

calibration process with experimental tests for each one of them. To overcome the calibration process, 

default values are suggested in this work, in addition to a new numerical methodology for computing 

the stress-strain diagrams and the damage parameters evolution for compression and tension cases 

were suggested based on Lubliner and Alfarah formulas. The stress-strain curves and the damage 

parameters evolution in tension and compression states were calculated in accordance with the Model 

Code recommendations. The main advantage of this methodology is that the use of the Damage 

Plastic Model is no longer related to the calibration process with experimental evidence. In fact, the 

only parameter needed for evaluating the stress-strain and the damage parameters diagrams using the 

developed approach is the concrete compressive strength value. Multiple comparisons with closed-

form solutions and experimental tests were carried out in order to examine the efficiency of our 

numerical approach. The validation process of the proposed approach proved that the outcomes for 

both cases; compression and tension are quite close to experimental curves and analytical solutions, 

in addition to the no effect of the mesh size on the outcomes of the proposed approach  

Also, the full procedure of the finite element implementation of the PDM was delivered where 

the plastic strain estimation process was described, in addition to the closed-form of the plastic 

multiplier, the derivative of the yield function with respect of stresses, the derivative of the yield 

function with respect of the inelastic compression strain; and the derivative of the potential function 

with respect of stresses.  
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A comparative study of the stress-strain curves generated by “Concrete v2.0.0” and multiple 

stress-strain correlations was provided. The mesh sensitivity was exanimated in this work by a 

comparative study of the stress-strain curves for multiple mesh density. Several advantages of the 

proposed work can be outlined as: 

 Only, the concrete compressive strength value is required to model the concrete 

behavior, 

 The stress-strain curves and the damage parameters evolution are independent of the 

mesh size effect, 

 The use of the Model Code recommendations for computing the input data (stresses 

and the damage parameters) and expandability to support other recommendations, 

 The developed method is quite appropriate to incorporate into other numerical codes. 

 The curves of “Concrete v2.0.0” are completely in harmony with the stress-strain curve 

generated according to several solutions from the literature, 

 The ability to use another hardening function from the literature. 

The developed software “Concrete v2.0.0” can be perfectly used to simulate the behavior of 

concrete material including the degradation process of concrete. It can be used to model cubical and 

cylindrical samples following the Model Code recommendation, the software can be updated to 

support more stress-strain correlation by changing the hardening function and re-computing, the 

derivative of the yield function with respect of stresses, the derivative of the yield function with 

respect of the inelastic compression strain. Also, the author recommends extending the software for 

composite material in order to model the behavior of confined concrete by composite materials. 
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Appendix 
The source code of Concrete v2.0.0 is available under MIT licensing on GitHub through the link:  

https://github.com/BakhtiSoftwares/Concrete 
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Mesh subroutines 

The GenerateMeshCylindre subroutine is written as: 

Private Sub GenerateMeshCylindre(Diametre As Double, Haut As Double, E As Double, V As Double, Fb0_Fc0 
As Double, Kc As Double, PsiDegre As Double,Fck As Double, Excent As Double, Rhou As 
Double, Comprission As List(Of DoublePoint), Tension As List(Of DoublePoint)) 

         
Dim Counteur As List(Of DoublePoint) = CalculerPiremetreCylindre(Diametre) 
        Dim OurMesh As Mesh = MeshGenerator(Counteur) 
        QuadMesh = QMesh(New QuadMesh(OurMesh)) 
        Delete double QUAD 
        Dim Termine As Boolean = False 
        Do Until Termine 
            Dim Count As Integer = 0 
            Dim ExistQuad As Boolean = False 
            For i = 0 To QuadMesh.Count - 1 
                For j = i + 1 To QuadMesh.Count - 1 
                    If SameQuad(QuadMesh.Item(i), QuadMesh.Item(j)) Then 
                        ExistQuad = True 
                        Count = i 
                        Exit For 
                    End If 
 
                Next 
                If ExistQuad Then Exit For 
            Next 
            If ExistQuad Then 
                QuadMesh.Remove(QuadMesh.Item(Count)) 
            Else 
                Termine = True 
            End If 
        Loop 
        Noeuds.Clear() 
        Dim NumbrElemet As Integer = Haut / MaxLong 
        Dim Cont As Integer = -1 
        Dim LongReal As Double = Haut / NumbrElemet 
        NbrNoeudEtage = ListOfVertex.Count 
        Dim Dis As Double = 999999999 
        Dim Dis1 As Double 
        For i = 0 To ListOfVertex.Count - 1 
            Dis1 = Sqrt(ListOfVertex.Item(i).x ^ 2 + ListOfVertex.Item(i).y ^ 2) 
            If Dis1 < Dis Then 
                NoeudProcheCentre.x = ListOfVertex.Item(i).x 
                NoeudProcheCentre.y = ListOfVertex.Item(i).y 
            End If 
        Next 
        Dim Z As Double 
        Do Until Z > Haut 
            For i = 0 To ListOfVertex.Count - 1 
                Cont = Cont + 1 
                Dim NewNoeud As New Node 
                NewNoeud.Ident = Cont 
                NewNoeud.Coord(1) = ListOfVertex.Item(i).x 
                NewNoeud.Coord(2) = ListOfVertex.Item(i).y 
                NewNoeud.Coord(3) = Z 
                Noeuds.Add(NewNoeud) 
            Next 
            Z = Z + LongReal 
            If Abs(Z - Haut) < 0.0001 Then Z = Haut 
        Loop 
        Z = LongReal 
        Elements.Clear() 
        Cont = -1 
        Dim Etage, NumberNoued As Integer 
        Do Until Z > Haut 
            For i = 0 To QuadMesh.Count - 1 
                Cont = Cont + 1 
                Dim ListNoeud As New List(Of Node) 
                NumberNoued = QuadMesh.Item(i).S1 + Etage * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S2 + Etage * ListOfVertex.Count 
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                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S3 + Etage * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S4 + Etage * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S1 + (Etage + 1) * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S2 + (Etage + 1) * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S3 + (Etage + 1) * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S4 + (Etage + 1) * ListOfVertex.Count 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                Elements.Add(New BrickEightNodes(Cont, E, V, Fb0_Fc0, Kc, PsiDegre, Fck, Excent, Rhou, 
Comprission, Tension, ListNoeud)) 
            Next 
            Z = Z + LongReal 
            If Abs(Z - Haut) < 0.0001 Then Z = Haut 
            Etage = Etage + 1 
        Loop 
End Sub 

With MeshGenerator is the subroutine that generates 2D mesh of the cylinder section using 

Triangle.Net library  

Private Function MeshGenerator(Polygon As List(Of DoublePoint)) As Mesh 
        Dim Resulat As Mesh 
        Dim MyPolygon As New Polygon 
        Dim VertexCount As New List(Of Vertex) 
        For i = 0 To Polygon.Count - 1 
            MyPolygon.Add(New Vertex(Polygon.Item(i).x, Polygon.Item(i).y)) 
        Next 
        Dim Options As New ConstraintOptions 
        Dim Quality As New QualityOptions() 
        Quality.MaximumAngle = 130 
        Quality.MinimumAngle = 25 
        Quality.MaximumArea = MaxLong * MaxLong 
        Resulat = MyPolygon.Triangulate(Options, Quality) 
        Return Resulat 
End Function 

The GenerateMeshCube subroutine is written as; 

Private Sub GenerateMeshCube(ZHaut As Double, Ylar As Double, XLon As Double, E As Double, V As 
Double, Fb0_Fc0 As Double, Kc As Double, PsiDegre As Double,Fck As Double, Excent As 
Double, Rhou As Double, Comprission As List(Of DoublePoint), Tension As List(Of 
DoublePoint)) 

        Dim LineNumber As Integer = 0 
        ListOfVertex.Clear() 
        ListOfVertex = CalculatePointsCube(Ylar, XLon, LineNumber) 
        Dim Dtot As Double = Ylar 
        Dim DisY As Double = Ylar * MaillgeParametre / 100 
        DisY = Ylar / DisY 
        DisY = Ylar / (Int(DisY)) 
        Dim DisCour As Double = DisY 
        Dim Cont As Integer = 1 
        QuadMesh.Clear() 

Do 
            For i = 0 To LineNumber - 2 
                QuadMesh.Add(New Quadralateral With {.S1 = i + (Cont - 1) * LineNumber, .S2 = i + 

(Cont - 1) * LineNumber + 1,                             .S3 = i + Cont * LineNumber + 
1, .S4 = i + Cont * LineNumber}) 

            Next 
            Cont = Cont + 1 
            If DisCour >= Dtot Then Exit Do 
            DisCour = DisCour + DisY 
            If DisCour >= Dtot Then 
                For i = 0 To LineNumber - 2 
                    QuadMesh.Add(New Quadralateral With {.S1 = i + (Cont - 1) * LineNumber, .S2 = i + 

(Cont - 1) * LineNumber + 1,                             .S3 = i + Cont * LineNumber + 
1, .S4 = i + Cont * LineNumber}) 
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                Next 
                Exit Do 
            End If 
        Loop        'Delete double QUAD 
        Dim Termine As Boolean = False 
        Do Until Termine 
            Dim Count As Integer = 0 
            Dim ExistQuad As Boolean = False 
            For i = 0 To QuadMesh.Count - 1 
                For j = i + 1 To QuadMesh.Count - 1 
                    If SameQuad(QuadMesh.Item(i), QuadMesh.Item(j)) Then 
                        ExistQuad = True 
                        Count = i 
                        Exit For 
                    End If 
                Next 
                If ExistQuad Then Exit For 
            Next 
            If ExistQuad Then 
                QuadMesh.Remove(QuadMesh.Item(Count)) 
            Else 
                Termine = True 
            End If 
        Loop 
        Noeuds.Clear() 
        Dim NumbrElemet As Integer = Haut / MaxLong 
        Dim LongReal As Double = Haut / NumbrElemet 
        NbrNoeudEtage = ListOfVertex.Count 
        Dim Dis As Double = 999999999 
        Dim Dis1 As Double 
        For i = 0 To ListOfVertex.Count - 1 
            Dis1 = Sqrt(ListOfVertex.Item(i).x ^ 2 + ListOfVertex.Item(i).y ^ 2) 
            If Dis1 < Dis Then 
                NoeudProcheCentre.x = ListOfVertex.Item(i).x 
                NoeudProcheCentre.y = ListOfVertex.Item(i).y 
            End If 
        Next 
        Cont = -1 
        Dim Z As Double 
        Do Until Z > Haut 
            For i = 0 To ListOfVertex.Count - 1 
                Cont = Cont + 1 
                Dim NewNoeud As New Node 
                NewNoeud.Ident = Cont 
                NewNoeud.Coord(1) = ListOfVertex.Item(i).x 
                NewNoeud.Coord(2) = ListOfVertex.Item(i).y 
                NewNoeud.Coord(3) = Z 
                Noeuds.Add(NewNoeud) 
            Next 
            Z = Z + LongReal 
            If Abs(Z - Haut) < 0.0001 Then Z = Haut 
        Loop 
        Z = LongReal 
        Cont = -1 
        Elements.Clear() 
        Dim Etage, NumberNoued As Integer 
        Do Until Z > Haut 
            For i = 0 To QuadMesh.Count - 1 
                Cont = Cont + 1 
                Dim ListNoeud As New List(Of Node) 
                NumberNoued = QuadMesh.Item(i).S1 + Etage * ListOfVertex.Count  ' Noeud 01 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S2 + Etage * ListOfVertex.Count  ' Noeud 02 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S3 + Etage * ListOfVertex.Count  'Noeud 03 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S4 + Etage * ListOfVertex.Count  ' Noeud 04 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S1 + (Etage + 1) * ListOfVertex.Count ' Noeud 05 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S2 + (Etage + 1) * ListOfVertex.Count   'Noeud 06 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S3 + (Etage + 1) * ListOfVertex.Count  'Noeud 07 
                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                NumberNoued = QuadMesh.Item(i).S4 + (Etage + 1) * ListOfVertex.Count ' Noeud 08 
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                ListNoeud.Add(Noeuds.Item(NumberNoued)) 
                Elements.Add(New BrickEightNodes(Cont, E, V, Fb0_Fc0, Kc, PsiDegre, Fck, Excent, Rhou, 
Comprission, Tension, ListNoeud)) 
            Next 
            Z = Z + LongReal 
            If Abs(Z - Haut) < 0.0001 Then Z = Haut 
            Etage = Etage + 1 
        Loop 
End Sub 

Drawing subroutines 

Public Sub ChargerGLControl(MyGlControl As GLControl) 
        GL.ClearColor(Color.White) 
        GL.Clear(ClearBufferMask.ColorBufferBit) 
        GL.MatrixMode(MatrixMode.Projection) 
        GL.LoadIdentity() 
        GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line) 
        GL.Clear(ClearBufferMask.ColorBufferBit) 
        GL.ClearColor(Color.Black) 
        GL.MatrixMode(MatrixMode.Projection) 
        GL.LoadIdentity() 
        MyGlControl.SwapBuffers() 
End Sub 
 
Public Sub ReDraw2D(MyGlControl As GLControl) 
        Dim w, h As Integer 
        w = MyGlControl.Width 
        h = MyGlControl.Height 
        Dim Rapport As Double = w / h 
        GL.ClearColor(Color.Black) 
        GL.Clear(ClearBufferMask.ColorBufferBit) 
        GL.LoadIdentity() 
        GL.MatrixMode(MatrixMode.Projection) 
        GL.Ortho(-1, 1, -1, 1, -1, 1) 
        GL.Viewport(0, 0, w, h) 
        OurProblem.Draw2D(Color.Red) 
End Sub 
 
Public Sub ReDraw3D(MyGlControl As GLControl) 
        Dim w, h As Integer 
        w = MyGlControl.Width 
        h = MyGlControl.Height 
        Dim Rapport As Double = w / h 
        Dim Prespective As Matrix4 = Matrix4.CreatePerspectiveFieldOfView(1, Rapport, 0.01, 100) 
        Dim LoackAt As Matrix4 = Matrix4.LookAt(eyeX, eyeY, eyeZ, targetX, targetY, targetZ, 0, 0, 1) 
        GL.MatrixMode(MatrixMode.Projection) 
        GL.LoadIdentity() 
        GL.LoadMatrix(Prespective) 
        GL.MatrixMode(MatrixMode.Modelview) 
        GL.LoadIdentity() 
        GL.LoadMatrix(LoackAt) 
        GL.Viewport(0, 0, w, h) 
        GL.ClearColor(Color.Black) 
        GL.Clear(ClearBufferMask.ColorBufferBit) 
        OurProblem.Draw3D(True, Color.Red) 
        OurProblem.Draw3D(False, Color.SkyBlue, EchelleAffichage) 
End Sub 

Public Sub Draw3D(InitialShape As Boolean, PrintColor As Color, Optional Echelle As Integer = 10) 
If IsNothing(QuadMesh) Then Exit Sub 
        Dim ContIndex As Integer = 0 
        GL.Enable(EnableCap.Light0) 
        GL.Enable(EnableCap.LineSmooth) 
        If InitialShape Then 
        GL.PushMatrix() 
            For Each Elem In Elements 
                GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line) 
                GL.Color3(Color.BlueViolet) 
                DessignerCube(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1), Elem.ListNoeud.Item(2), 
Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5), Elem.ListNoeud.Item(6), 
Elem.ListNoeud.Item(7)) 
                GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Fill) 
                GL.Color3(Color.Brown) 
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                DessignerCube(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1), Elem.ListNoeud.Item(2), 
Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5), Elem.ListNoeud.Item(6), 
Elem.ListNoeud.Item(7)) 
            Next 
            GL.PopMatrix() 
        Else 
            GL.PushMatrix() 
            For Each Elem In Elements 
                GL.LineWidth(1) 
                GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Line) 
                GL.Color3(Color.DarkBlue) 
                DessignerCubeDeplacer(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1), 
Elem.ListNoeud.Item(2), Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5), 
Elem.ListNoeud.Item(6), Elem.ListNoeud.Item(7), Echelle) 
                GL.LineWidth(2) 
                GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Fill) 
                GL.Color3(PrintColor) 
                DessignerCubeDeplacer(Elem.ListNoeud.Item(0), Elem.ListNoeud.Item(1), 
Elem.ListNoeud.Item(2), Elem.ListNoeud.Item(3),Elem.ListNoeud.Item(4), Elem.ListNoeud.Item(5), 
Elem.ListNoeud.Item(6), Elem.ListNoeud.Item(7), Echelle) 
                GL.LineWidth(1) 
            Next 
            GL.PopMatrix() 
        End If 
End Sub 

Public Sub Draw2D(PrintColor As Color) 
        If IsNothing(QuadMesh) Then Exit Sub 
        Dim ContIndex As Integer = 0 
        GL.PushMatrix() 
        GL.Color3(PrintColor) 
        GL.Disable(EnableCap.Light0) 
        GL.Disable(EnableCap.LineSmooth) 
        GL.LineWidth(1) 
        For Each Quad In QuadMesh 
            GL.Begin(PrimitiveType.LineLoop) 
            GL.Vertex2(ListOfVertex.Item(Quad.S1).x, ListOfVertex.Item(Quad.S1).y) 
            GL.Vertex2(ListOfVertex.Item(Quad.S2).x, ListOfVertex.Item(Quad.S2).y) 
            GL.Vertex2(ListOfVertex.Item(Quad.S3).x, ListOfVertex.Item(Quad.S3).y) 
            GL.Vertex2(ListOfVertex.Item(Quad.S4).x, ListOfVertex.Item(Quad.S4).y) 
            GL.End() 
        Next 
        GL.PopMatrix()  
End Sub 
 
Private Sub DessignerCube(Noued1 As Node, Noued2 As Node, Noued3 As Node, Noued4 As Node,Noued5 As 
Node, Noued6 As Node, Noued7 As Node, Noued8 As Node) 
        GL.Begin(PrimitiveType.Polygon) 
        GL.Vertex3(Noued1.Coord(1), Noued1.Coord(2), Noued1.Coord(3)) 
        GL.Vertex3(Noued2.Coord(1), Noued2.Coord(2), Noued2.Coord(3)) 
        GL.Vertex3(Noued3.Coord(1), Noued3.Coord(2), Noued3.Coord(3)) 
        GL.Vertex3(Noued4.Coord(1), Noued4.Coord(2), Noued4.Coord(3)) 
        GL.End() 
 
        GL.Begin(PrimitiveType.Polygon) 
        GL.Vertex3(Noued5.Coord(1), Noued5.Coord(2), Noued5.Coord(3)) 
        GL.Vertex3(Noued6.Coord(1), Noued6.Coord(2), Noued6.Coord(3)) 
        GL.Vertex3(Noued7.Coord(1), Noued7.Coord(2), Noued7.Coord(3)) 
        GL.Vertex3(Noued8.Coord(1), Noued8.Coord(2), Noued8.Coord(3)) 
        GL.End() 
 
        GL.Begin(PrimitiveType.Polygon) 
        GL.Vertex3(Noued1.Coord(1), Noued1.Coord(2), Noued1.Coord(3)) 
        GL.Vertex3(Noued2.Coord(1), Noued2.Coord(2), Noued2.Coord(3)) 
        GL.Vertex3(Noued6.Coord(1), Noued6.Coord(2), Noued6.Coord(3)) 
        GL.Vertex3(Noued5.Coord(1), Noued5.Coord(2), Noued5.Coord(3)) 
        GL.End() 
 
        GL.Begin(PrimitiveType.Polygon) 
        GL.Vertex3(Noued3.Coord(1), Noued3.Coord(2), Noued3.Coord(3)) 
        GL.Vertex3(Noued4.Coord(1), Noued4.Coord(2), Noued4.Coord(3)) 
        GL.Vertex3(Noued8.Coord(1), Noued8.Coord(2), Noued8.Coord(3)) 
        GL.Vertex3(Noued7.Coord(1), Noued7.Coord(2), Noued7.Coord(3)) 
        GL.End() 
End Sub 
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PDM Class 

Imports System.Math 
Public Class PDM 
    Inherits Base 
    Public E0, V, Fb0_Fc0, Kc, PsiDegre, Leq, Fck, Excent, SigmaT0, SigmaC, SigmaT, Dc, Dt, Damaged As 
Double 
    Public ac, bc, at, bt As Double 
 
Public Function ConcreteDamagedPlasticityYieldCondition(stress() As Double, SigmaI As Double, SigmaII 
As Double, SigmaIII As Double, Fb0_Fc0 As Double,SigmaC As Double, SigmaT As Double, Kc As Double) As 
Double 
 
        Dim J2, I1 As Double 
        InvariantsContraintes(stress, I1,,, J2) 
        Dim Alfa, Beta, Gamma As Double 
        ParamatersCDP(Fb0_Fc0, SigmaC, SigmaT, Kc, Alfa, Beta, Gamma) 
        Dim SigmaMax As Double 
        SigmaMax = Max(Max(SigmaI, SigmaII), SigmaIII) 
        If SigmaMax >= 0 Then 
            Dim result As Double = (1 / (1 - Alfa)) 
            result = result * (Sqrt(3 * J2) + Alfa * I1 + Beta * SigmaMax) - SigmaC 
            Return result 
        Else 
            Dim result As Double = (1 / (1 - Alfa)) 
            result = result * (Sqrt(3 * J2) + Alfa * I1 - Gamma * SigmaMax) 
            result = result - SigmaC 
            Return result 
        End If 
    End Function 
 
Public Function DLambda(DStrain() As Double, DerivativeQ() As Double, DerivativeF() As 
Double,Delastic(,) As Double, InElasticStrain As Double, SigmaTbarre As Double,SigmaMax As Double, 
DInElasticStrain As Double) As Double 
 
        Dim DDQ() As Double = MatriceVecteurMultipe(Delastic, DerivativeQ, 1) 
        Dim DDE() As Double = MatriceVecteurMultipe(Delastic, DStrain, 1) 
        Dim fc0 As Double = 0.4 * (Fck + 8) 
        Dim DerivativeFStrain As Double = DerivativeYieldFunctionStrain(InElasticStrain, fc0, 
SigmaTbarre, SigmaMax) 
        Dim FirstScale As Double = 0 
        Dim SecondScale As Double = 0 
        Dim IH As Integer = DerivativeQ.Count - 1 
        For i = 1 To IH 
            FirstScale += DerivativeF(i) * DDE(i) 
        Next 
        FirstScale += DerivativeFStrain * DInElasticStrain 
        For i = 1 To IH 
            SecondScale += DerivativeF(i) * DDQ(i) 
        Next 
        Dim DLam As Double = FirstScale / SecondScale 
        If DLam < 0 Then DLam = 0 
        Return DLam 
End Function 
 
Public Function PlasticStressImplicit(Strain() As Double, Stress() As Double, Delastic(,) As 
Double,StrainIncrement() As Double, InElasticStrain As Double, DInElasticStrain As Double, SigmaTbarre 
As Double,SigmaMax As Double, alfa As Double) As Double() 
        Dim a, b, Gamma, I1, J2, Theta, J3, SigmaI, SigmaII, SigmaIII As Double 
        Dim Comprission As List(Of DoublePoint) 
        Dim Tension As List(Of DoublePoint) 
        SigmaT0 = 0.3016 * Fck ^ 0.6666667 
        ValeurPropre(Stress, SigmaI, SigmaII, SigmaIII, Theta) 
        InvariantsContraintes(Stress, I1,,, J2, J3) 
        Dim DefPlasT, DefPlasC As Double 
        DamageParametres(1, Strain, SigmaI, SigmaII, SigmaIII, Fck, Leq, bc, bt, SigmaC, SigmaT, 
SigmaT0, Dc, Dt, Damaged, Comprission, Tension, E0, DefPlasT, DefPlasC) 
        SigmaC = SigmaC / (1 - Dc) 
        SigmaT = SigmaT / (1 - Dt) 
        ParamatersCDP(Fb0_Fc0, SigmaC, SigmaT, Kc, a, b, Gamma) 
        If SigmaI < 0 Then b = -Gamma 
        Dim DerivativeF() As Double = DerivativeYieldFunctionStress(Stress, a, b, Theta, I1, J2, J3) 
        Dim DerivativeQ() As Double = DerivativePotentialFunction(Stress, PsiDegre, Excent, SigmaT0) 
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        Dim Lamda As Double = DLambda(StrainIncrement, DerivativeQ, DerivativeF, Delastic, 
InElasticStrain, SigmaTbarre, SigmaMax, DInElasticStrain) 
        Dim IH As Integer = DerivativeQ.Count - 1 
        For i = 1 To IH 
            DerivativeQ(i) = DerivativeQ(i) * Lamda  
        Next 
        Return MatriceVecteurMultipe(Delastic, DerivativeQ) 
End Function 
 
Public Function YieldFunctionEstimation(Approch As Integer, Strain() As Double, Stress() As 
Double,SigmaI As Double, SigmaII As Double, SigmaIII As Double, Fck As Double, Ieq As Double, bcBakhti 
As Double, btBakhti As Double, Fb0_Fc0 As Double,Kc As Double, Comprission As List(Of DoublePoint), 
Tension As List(Of DoublePoint),ByRef SigmaC As Double, ByRef SigmaT As Double, ByRef SigmaT0 As 
Double,ByRef Dc As Double, ByRef Dt As Double, ByRef D As Double,Optional Ebeton As Double = 0, ByRef 
Optional DefPlasC As Double = 0) As Double 
 
        Dim YieldFunction As Double = 0 
        'Damaged Paramaters Evaluation 
        Dim DefPlasT As Double 
        Dim Resultats As Boolean = DamageParametres(Approch, Strain, SigmaI, SigmaII, SigmaIII, Fck, 
Ieq, bcBakhti, btBakhti, 
                                                            SigmaC, SigmaT, SigmaT0, Dc, Dt, D, 
Comprission, Tension, Ebeton, DefPlasT, DefPlasC) 
        If Dc = 1 Then Dc = 0.999999999 
        If Dt = 1 Then Dt = 0.999999999 
        SigmaC = SigmaC / (1 - Dc) 
        SigmaT = SigmaT / (1 - Dt) 
        YieldFunction = ConcreteDamagedPlasticityYieldCondition(Stress, SigmaI, SigmaII, SigmaIII, 
Fb0_Fc0, SigmaC, SigmaT, Kc) 
        Return YieldFunction 
End Function 
 
Public Function DerivativeYieldFunctionStrain(InElasticStrain As Double, fc0 As Double, SigmaTBare As 
Double, SigmaMax As Double) As Double 
        Dim Resultats As Double = (Crocher(SigmaMax) / SigmaTBare) - 1 
        Resultats = Resultats * fc0 * ac * (ac + 1) * (ac + 2) * bc * Exp(bc * InElasticStrain) 
        Dim S As Double = ((2 * ac + 2) * Exp(bc * InElasticStrain) - ac) ^ 2 
        Return Resultats / S 
End Function 
 
Public Function DerivativeYieldFunctionStress(Stress() As Double, a As Double, b As Double, Theta As 
Double, I1 As Double, J2 As Double, J3 As Double) As Double() 
        Dim Resultats(6) As Double 
        Dim M1(0, 0), M2(0, 0), M3(6, 6), Flow(6, 6), x As Double 
        FormM3D(Stress, M1, M2, M3) 
        Dim J As Double = Sqrt(J2) 
        Dim p As Double = I1 / 3 
        Dim FirstSide() As Double = DerativeMeanStress() 
        Dim SecondSide() As Double = DerativeDiviatoricStress(Stress, p, J) 
        Dim ThirdSide() As Double = DerativeTheta(Stress, p, J, Theta, J3, M3) 
        Dim DQ1, DQ2, DQ3 As Double 
        DQ1 = (3 * a) / (1 - a) ' (3 * a + b) / (1 - a) 
        Dim Sqrt3 As Double = Sqrt(3) 
        DQ2 = 2 * b * Sin(Theta - 2 * PI / 3) 
        DQ2 = Sqrt3 + DQ2 / Sqrt3 
        DQ2 = Sqrt3 / (1 - a) 'DQ2 / (1 - a) 
        DQ3 = 2 * b * J * Cos(Theta - 2 * PI / 3) 
        DQ3 = 0 ' DQ3 / (Sqrt3 * (1 - a)) 
        For i = 1 To 6 
            Resultats(i) = DQ1 * FirstSide(i) + DQ2 * SecondSide(i) + DQ3 * ThirdSide(i) 
        Next 
        Return Resultats 
End Function 
 
Public Function DerivativePotentialFunction(Stress() As Double, PsiDegre As Double, Epsilon As Double, 
Sigmat0 As Double,Optional Type As Integer = 0) As Double() 
   Select Case Type 
            Case 0 
                Dim TanPsi As Double = Tan(DegreToRadian(PsiDegre)) 
                Dim Resultats(6) As Double 
                Dim M1(0, 0), M2(0, 0), M3(6, 6), Flow(6, 6), x As Double 
                Dim DQ1, DQ2 As Double 
                Dim J2 As Double 
                InvariantsContraintes(Stress,,,, J2) 
                DQ1 = TanPsi 
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                DQ2 = 3 / (2 * Sqrt((Epsilon * Sigmat0 * TanPsi) ^ 2 + 3 * J2)) 
                FormM3D(Stress, M1, M2, M3) 
                For i = 1 To 6 
                    For j = 1 To 6 
                        Flow(i, j) = (M1(i, j) * DQ1 + M2(i, j) * DQ2) 
                    Next 
                Next 
                For i = 1 To 6 
                    x = 0 
                    For j = 1 To 6 
                        x += Flow(i, j) * Stress(j) 
                    Next 
                    Resultats(i) = x 
                Next 
                Return Resultats 
            Case 1 
                Dim TanPsi As Double = Tan(DegreToRadian(PsiDegre)) 
                Dim Resultats(6), I1, J2, J3 As Double 
                InvariantsContraintes(Stress, I1,,, J2, J3) 
                Dim J As Double = Sqrt(J2) 
                Dim p As Double = I1 / 3 
                Dim FirstSide() As Double = DerativeMeanStress() 
                Dim SecondSide() As Double = DerativeDiviatoricStress(Stress, p, J) 
                Dim DQ1, DQ2 As Double 
                DQ1 = TanPsi 
                DQ2 = 3 * J / Sqrt(3 * J ^ 2 + (Epsilon * Sigmat0 * TanPsi) ^ 2) 
                For i = 1 To 6 
                    Resultats(i) = DQ1 * FirstSide(i) + DQ2 * SecondSide(i) 
                Next 
                Return Resultats 
        End Select 
        Return Nothing 
End Function 
 
Public Function DamageParametres(Approch As Integer, Strain() As Double, SigmaI As Double, SigmaII As 
Double,SigmaIII As Double, Fck As Double, Ieq As Double, bcBakhti As Double, btBakhti As Double, ByRef 
SigmaC As Double,ByRef SigmaT As Double, ByRef SigmaT0 As Double, ByRef Dc As Double, ByRef Dt As 
Double, ByRef D As Double, Comprission As List(Of DoublePoint), Tension As List(Of DoublePoint), 
Ebeton As Double, ByRef DefPlasT As Double,ByRef DefPlasC As Double) As Boolean 
 
        'According to B. Alfarah & al. 2017 
        Select Case Approch 
            Case 0  'Alfarah approach 
                DamageParametres = True 
                Dim r As Double = Rfunction(SigmaI, SigmaII, SigmaIII) 
                Dim St, Sc As Double 'Must evaluate  Dc,Dt  'Eq 19 & 20 
                Dim Hc, Ht As Double 
                Dim StrI, StrII, StrIII As Double 
                SigmaT = 0 
                SigmaT0 = 0 
                SigmaC = 0 
                Dc = 0 
                Dt = 0 
                D = 0 
                ValeurPropre(Strain, StrI, StrII, StrIII) 
                Dim DefT As Double = r * Max(Max(StrI, StrII), StrIII) 
                Dim DefC As Double = -(1 - r) * Min(Min(StrI, StrII), StrIII) 
                Dim DefCpl, DefTpl As Double 
             Hc = 0.9 
                Ht = 0 
                Dim b As Double = 0.9 
                Dim Newb As Double 
                Dim Fcm, Ftm, Fc0, Ft0, Defcm, Deftm, Eci, E0, Gf, Gch, Wc As Double 
                Fcm = Fck + 8 
                Ftm = 0.3016 * Fck ^ (2 / 3) 
                Defcm = 0.0007 * Fcm ^ 0.31 
                Eci = 10000 * Fcm ^ (1 / 3) 
                E0 = Eci * (0.8 + 0.2 * (Fcm / 88)) 
                Gf = 0.073 * Fcm ^ 0.18 
                Gch = Gf * (Fcm / Ftm) ^ 2 
                Wc = 5.14 * Gf / Ftm 
                Deftm = Ftm / E0 
                Fc0 = 0.4 * Fcm 
                Ft0 = Ftm 
                Dim ac, at, bc, bt As Double 
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                ac = 7.873 
                at = 1 
                bc = (1.97 * Fcm / Gch) * Ieq 
                bt = (0.453 * Fck ^ (2 / 3) / Gf) * Ieq 
                Sc = 1 - Hc * (1 - r) 
                St = 1 - Ht * r 
                Dim ElaticDefor As Double = 0.4 * Fcm / E0 
                Dim iter As Integer = 0 
                Do 'Lancer iteration 
                    iter += 1 
                    If DefC >= 0 And DefC <= ElaticDefor Then 
                        SigmaC = SigmaCI(DefC, E0) 
                        DefPlasC = 0 
                        '   If DefC <> 0 Then DamageParametres = False 
                    ElseIf DefC > ElaticDefor And DefC <= Defcm Then 
                        SigmaC = SigmaCII(DefC, Defcm, Fcm, Eci) 
                        DefPlasC = DefC - SigmaC / E0 
                    ElseIf DefC > Defcm Then 
                        SigmaC = SigmaCIII(DefC, Defcm, Fcm, Gch, Ieq, b, E0) 
                        DefPlasC = DefC - SigmaC / E0 
                    End If 
                    If DefT >= 0 And DefT <= Deftm Then 
                        SigmaT = SigmaTI(DefT, E0) 
                        DefPlasT = 0 
                        '   If DefT <> 0 Then DamageParametres = False 
                    ElseIf DefT > Deftm Then 
                        SigmaT = SigmaTII(DefT, Deftm, Ieq, Wc, Ftm) 
                        DefPlasT = DefT - SigmaT / E0 
                    End If 
                    Dc = 1 - (1 / (2 + ac)) * (2 * (1 + ac) * Exp(-bc * DefPlasC) - ac * Exp(-2 * bc * 
DefPlasC)) 
                    Dt = 1 - (1 / (2 + at)) * (2 * (1 + at) * Exp(-bt * DefPlasT) - at * Exp(-2 * bt * 
DefPlasT)) 
                    D = 1 - (1 - St * Dc) * (1 - Sc * Dt) 
                    If Dc < 0 Then Dc = 0 
                    If Dt < 0 Then Dt = 0 
                    If D < 0 Then D = 0 
                    If DefPlasC = 0 Then 
                        SigmaC = Fc0 
                        DefCpl = 0 
                    Else 
                        DefCpl = DefPlasC - SigmaC * Dc / (E0 * (1 - Dc)) 
                        If DefCpl < 0 Then DefCpl = 0 
                    End If 
                    If DefPlasT = 0 Then 
                        SigmaT = Ft0 
                        DefTpl = 0 
                    Else 
                        DefTpl = DefPlasT - SigmaT * Dt / (E0 * (1 - Dt)) 
                    End If 
                    If DefPlasC <> 0 Then 
                        Newb = DefCpl / DefPlasC 
                        If Convergence(Newb, b, 0.0001) Or iter > 400 Then 
                            Exit Do 
                        End If 
                        b = Newb 
                    Else 
                        Exit Do 
                    End If 
                Loop 
                SigmaT0 = SigmaTI(Deftm, E0) 
            Case 1 'According to Bakhti approach 
                DamageParametres = True 
                Dim r As Double = Rfunction(SigmaI, SigmaII, SigmaIII) 
                If SigmaI > 0 Then 
                    SigmaI += 0 
                End If 
                Dim St, Sc As Double 'Must evaluate  Dc,Dt  'Eq 19 & 20 
                Dim Hc, Ht As Double 
                Dim StrI, StrII, StrIII As Double 
                SigmaT = 0 
                SigmaT0 = 0 
                SigmaC = 0 
                Dc = 0 
                Dt = 0 
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                D = 0 
                ValeurPropre(Strain, StrI, StrII, StrIII) 
                Dim DefT As Double = r * Max(Max(StrI, StrII), StrIII) 
                Dim DefC As Double = -(1 - r) * Min(Min(StrI, StrII), StrIII) 
                Dim SigT As Double = r * Max(Max(SigmaI, SigmaII), SigmaIII) 
                Dim SigC As Double = -(1 - r) * Min(Min(SigmaI, SigmaII), SigmaIII) 
                Hc = 0.9 
                Ht = 0 
                Dim Fcm, Fc0, Ft0, Ftm, Defcm, Deftm, Eci, E0, Gf, Gch, Wc As Double 
                Fcm = Fck + 8 
                Ftm = 0.3016 * Fck ^ (2 / 3) 
                Defcm = 0.0007 * Fcm ^ 0.31 
                Eci = 10000 * Fcm ^ (1 / 3) 
                E0 = Eci * (0.8 + 0.2 * (Fcm / 88)) 
                Gf = 0.073 * Fcm ^ 0.18 
                Gch = Gf * (Fcm / Ftm) ^ 2 
                Wc = 5.14 * Gf / Ftm 
                Deftm = Ftm / E0 
                Fc0 = 0.4 * Fcm 
                Ft0 = Ftm 
                Dim ac, at, bc, bt As Double 
                ac = 7.873 
                at = 1 
                bc = bcBakhti 
                bt = btBakhti 
                Sc = 1 - Hc * (1 - r) 
                St = 1 - Ht * r 
                DefPlasC = FindInelasticStrain(0, 0.05, 0.00001, Fc0, ac, bc, E0, DefC) 
                DefPlasT = FindInelasticStrain(0, 0.005, 0.000001, Ft0, at, bt, E0, DefT) 
                Dc = 1 - (2 * (1 + ac) * Exp(-bc * DefPlasC) - ac * Exp(-2 * bc * DefPlasC)) / (2 + 
ac) 
                Dt = 1 - (2 * (1 + at) * Exp(-bt * DefPlasT) - at * Exp(-2 * bt * DefPlasT)) / (2 + 
at) 
                D = 1 - (1 - St * Dc) * (1 - Sc * Dt) 
                If DefPlasC = 0 Then 
                    SigmaC = Fc0 
                Else 
                    SigmaC = Fc0 * ((1 + ac) * Exp(-bc * DefPlasC) - ac * Exp(-2 * bc * DefPlasC)) 
                End If 
                If DefPlasT = 0 Then 
                    SigmaT = Ft0 
                Else 
                    SigmaT = Ft0 * ((1 + at) * Exp(-bt * DefPlasT) - at * Exp(-2 * bt * DefPlasT)) 
                End If 
                SigmaT0 = SigmaTI(Deftm, E0) 
                If Dc < 0 Then Dc = 0 
                If Dt < 0 Then Dt = 0 
                If D < 0 Then D = 0 
            Case 2 'From curves 
                DamageParametres = True 
                Dim r As Double = Rfunction(SigmaI, SigmaII, SigmaIII) 
                Dim St, Sc As Double 'Must evaluate  Dc,Dt  'Eq 19 & 20 
                Dim Hc, Ht As Double 
                Dim StrI, StrII, StrIII As Double 
                SigmaT = 0 
                SigmaT0 = 0 
                SigmaC = 0 
                Dc = 0 
                Dt = 0 
                D = 0 
                ValeurPropre(Strain, StrI, StrII, StrIII) 
                Dim DefT As Double = r * Max(Max(StrI, StrII), StrIII) 
                Dim DefC As Double = -(1 - r) * Min(Min(StrI, StrII), StrIII) 
                Hc = 0.9 
                Ht = 0 
                Sc = 1 - Hc * (1 - r) 
                St = 1 - Ht * r 
                DefPlasC = FindInelasticStrainFromCurve(DefC, Comprission, Ebeton) 
                DefPlasT = FindInelasticStrainFromCurve(DefT, Tension, Ebeton) 
                SigmaC = FindStressFromCurve(DefPlasC, Comprission, Dc) 
                SigmaT = FindStressFromCurve(DefPlasT, Tension, Dt, SigmaT0) 
                D = 1 - (1 - St * Dc) * (1 - Sc * Dt) 
                If Dc < 0 Then Dc = 0 
                If Dt < 0 Then Dt = 0 
                If D < 0 Then D = 0 
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        End Select 
End Function 
 
Public Function FindInelasticStrain(IntrevalStart As Double, IntrevalEnd As Double, Precesion As 
Double,Fc0 As Double, ac As Double, bc As Double, E0 As Double, TotalStrain As Double) As Double 
        Dim IntervalMidde As Double = (IntrevalStart + IntrevalEnd) / 2 
        'Find total strain intervale 
        Dim TotalIntrevalStart, TotalIntrevalEnd, TotalMiddelInterval As Double 
        Dim SigmaC1, SigmaC2, SigmaC3 As Double 
        SigmaC1 = Fc0 * ((1 + ac) * Exp(-bc * IntrevalStart) - ac * Exp(-2 * bc * IntrevalStart)) 
        SigmaC2 = Fc0 * ((1 + ac) * Exp(-bc * IntervalMidde) - ac * Exp(-2 * bc * IntervalMidde)) 
        SigmaC3 = Fc0 * ((1 + ac) * Exp(-bc * IntrevalEnd) - ac * Exp(-2 * bc * IntrevalEnd)) 
        TotalIntrevalStart = IntrevalStart + SigmaC1 / E0 
        TotalMiddelInterval = IntervalMidde + SigmaC2 / E0 
        TotalIntrevalEnd = IntrevalEnd + SigmaC3 / E0 
        If TotalStrain < TotalIntrevalStart Then 
            Return 0 
        End If 
        If Abs(TotalStrain - TotalIntrevalStart) < Precesion Then 
            Return IntrevalStart 
        End If 
        If Abs(TotalStrain - TotalMiddelInterval) < Precesion Then 
            Return IntervalMidde 
        End If 
        If Abs(TotalStrain - TotalIntrevalEnd) < Precesion Then 
            Return IntrevalEnd 
        End If 
        If TotalStrain > TotalIntrevalStart And TotalStrain < TotalMiddelInterval Then 
            Return FindInelasticStrain(IntrevalStart, IntervalMidde, Precesion, Fc0, ac, bc, E0, 
TotalStrain) 
        End If 
        If TotalStrain > TotalMiddelInterval And TotalStrain < TotalIntrevalEnd Then 
            Return FindInelasticStrain(IntervalMidde, IntrevalEnd, Precesion, Fc0, ac, bc, E0, 
TotalStrain) 
        End If 
        Return Nothing 
    End Function 
End Class 
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