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Abstract 

 
 

In general, the creation of laminated composite plates requires a thorough understanding of 

failure mechanisms and accurate modeling. This work focuses on two main objectives. The first 

primary objective is to analyze the failure behavior of laminated plates and beams under various 

static and hygrothermal loads with different boundary conditions, utilizing analytical and 

numerical methods through finite element analysis. The First Ply Failure (FPF) analysis is 

performed using a refined rectangular plate element formulated based on the Classical 

Lamination Theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure 

criteria, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict 

failure mechanisms. These criteria are implemented within the finite element code to predict 

the different failure damages and responses of laminated plates and beams from the initial 

loading to the final failure, in order to comprehend the effect of different types of loads on the 

FPF load.  Sometimes, designers need to make holes in different shapes in the laminate to meet 

the design requirements and for practical reasons. Cutouts alter the behavior of materials and 

create undesirable stress concentrations around these holes. For this reason, the second 

objective of this work is to determine the stress concentration factor and stress resultant in an 

infinite plate with an unsymmetrical stacking sequence of laminated plates that include a 

circular hole of various sizes under arbitrary axial, biaxial, and shear loading at infinity. This is 

done using a general analytical solution that extends the Greszczuk's method by introducing 

different arbitrarily oriented in-plane loads. In the current solution, the formulations of the 

effective moduli of unsymmetrical composite laminated plates are presented. The accuracy of 

this analytical solution is assessed by contrasting its findings with the results of finite element 

models and analytical results obtained using the complex variable approach, revealing a high 

level of agreement between these results. This demonstrates the validity and accuracy of the 

present analytical solution. The Tsai-Wu failure criterion is also used to calculate the FPF and 

show the effect of the presence of the circular hole on the FPF loads. 

 

Keywords: Laminated composite , Failure load, Finite element, First ply failure FPF, Stress 

concentration, Hole, Cutout, unsymmetrical composite laminated. 

 



 

 
 

  الملخص

 
هدفين على هذا العمل  يركز .بشكل عام ، يتطلب إنشاء الألواح المركبة المصفحة فهماً شاملاً لآليات الفشل والنمذجة الدقيقة

حرارية  رطوبةو ساكنةالهدف الأساسي الأول هو تحليل سلوك فشل الألواح والروافد المصفحة تحت أحمال  .رئيسيين

تم إجراء  .حدية مختلفة ، وذلك باستخدام الطرق التحليلية والرقمية من خلال تحليل العناصر المحدودة شروطمختلفة مع 

 (CLT) وحة مستطيل مصقول تم صياغته بناءً على نظرية التصفيح الكلاسيكيةباستخدام عنصر ل فشل الطبقة الاولئ  تحليل

وتساي  تسايو تم استخدام العديد من معايير الفشل ، بما في ذلك معاييريق هذا الهدف ، لتحق .لحساب الضغوط داخل المستوى

تم تنفيذ هذه المعايير ضمن خوارزمية العنصر المحدد للتنبؤ بأضرار  .،و اقصئ اجهاد ، للتنبؤ بآليات الفشل هاشين و هيل

ى الفشل النهائي ، من أجل فهم تأثير أنواع مختلفة من الفشل المختلفة واستجابات الصفائح الرقائقية من التحميل الأولي إل

في بعض الأحيان ، يحتاج المصممون إلى عمل ثقوب بأشكال مختلفة في الصفيحة  .الأحمال على حمل فشل الطبقة الأولى

ل هذه سلوك المواد وتخلق تركيزات إجهاد غير مرغوب فيها حو فتحاتتغير ال .لتلبية متطلبات التصميم ولأسباب عملية

لهذا السبب ، الهدف الثاني من هذا العمل هو تحديد عامل تركيز الضغط والضغط الناتج في لوحة لا نهائية مع  .الثقوب

تسلسل تكديس غير متماثل من الصفائح المصفحة التي تتضمن ثقب دائري بأحجام مختلفة تحت محوري تعسفي ، ثنائي 

من خلال إدخال أحمال  Greszczuk لك باستخدام حل تحليلي عام يوسع طريقةتم ذ .عند اللانهاية المحور ، و تحميل القص

تم تقديم تركيبات المعادلات الفعالة للألواح الرقائقية المركبة الغير في الحل الحالي ،  .مختلفة بشكل تعسفي داخل الصفيحة

نماذج العناصر المحدودة والنتائج التحليلية التي تم تقييم دقة هذا الحل التحليلي من خلال مقارنة نتائجه مع نتائج  .المتماثلة

هذا يوضح  .تم الحصول عليها باستخدام النهج المتغير المعقد ، مما يكشف عن مستوى عالٍ من التوافق بين هذه النتائج

تأثير  وإظهار (FPF) أيضًا لحساب حمل فشل الطبقة الأولى تسايو يسُتخدم معيار فشل .صحة ودقة الحل التحليلي الحالي

 FPF وجود الفتحة الدائرية على أحمال

  

، تركيز الإجهاد ، ثقب ،   FPF ، فشل الطبقة الأولى العناصر المنتهيةمركب مصفح ، تحميل فشل ،  :الكلمات الرئيسية

 .مركب غير متماثل
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Chapter 1 

 

General Introduction 
 

 
 

1.1 Research background 
 

The development of modern technologies requires the use of materials with high mechanical 

properties suited for their intended purpose. Nowadays, composite materials have become 

essential and are gradually becoming an alternative to conventional materials, thanks to the 

advantages they present. High-performance composite materials are used to manufacture 

aircraft, marine vehicles, and various structures. Due to their properties such as high specific 

strength, stiffness, and lightweight, the application of these composite materials has now gone 

beyond the bounds of aircraft design and has reached the realm of civil engineering. 

Laminates are one of the most sought-after composite materials and are commonly used in 

structural elements. They're formed by stacking several layers, with each layer having a 

different orientation, resulting in varying mechanical characteristics depending on the 

directions considered. When the layers of a laminate are identical on both sides of the mid-

plane, it's considered symmetric, and designers often prefer them due to their ease of 

construction and analysis. In contrast, designers often avoid unsymmetrical laminates due to 

the difficulty of analyzing their behavior. These plates exhibit a distinct structural behavior that 

not found in the classical materials. However, the behavior of these unsymmetrical plates has 

to be understood. As composite technology advances, the use of unsymmetrical laminates to 

satisfy design requirements effectively and affordably has become more common. However, 

plates or beams made of composite materials are subjected to various influences, such as 

mechanical load (static and dynamic loads), which can weak them and lead to structural failure.  

In addition, composite laminates are exposed to a range of thermal and moisture conditions 

during production and preservation, and are also used in a variety of environments, including 

high and low temperatures, humidity, solar radiation, and erosion hazards (rain, hail, dust, and 

sand)[1, 2]. Temperature and humidity are the most important environmental factors.which 
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induce stress and strains. Where the stiffness and strength of composites are affected by 

variations in moisture and temperature [3], which generates complex strain and stress in 

laminated composite plates because material characteristics might fluctuate significantly 

between layers. The elastic modulus and strength of composite laminates will decrease as 

temperature and moisture concentrations rise. As a result of the change in the environment, 

hygrothermal internal tensions are formed. These stresses often cause significant deformation 

and may possibly lead to the structure's failure. 

Sometimes designers need to make holes in different shapes in the laminate in order to meet 

the design requirements and for various practical reasons. For example, in civil engineering, 

holes are used as doors, windows, and others. And in many cases, holes are used to reduce 

weight. These structures with openings are subjected to different types of loading, which leads 

to the creation of stress concentrations around the opening [4, 5] and sometimes leads to cracks 

and failure of the structures. Therefore, the study of the stress on infinite plates with perforations 

or openings subjected to various types of loading is an interesting field of analysis for many 

researchers. 

To predict the failure strength of notched composite laminates accurately, it is important to have 

a simple and correct method to determine the stress distribution. This is because the mechanical 

behavior of notched composite laminates is more complex than unnotched ones due to their 

unique features such as heterogeneity, anisotropy, and stress gradients. 

Therefore, the most significant criterion for the safety design of laminated composite structures 

is failure. Failure analysis of laminated composite materials is far more complicated than that 

of isotropic materials. In general, the creation of laminated composite plates requires a thorough 

understanding of the damage and failure modes, as well as accurate modeling. To date, many 

failure criteria have been proposed to predict the behavior of composite structures. 

Analyzing the failure of a laminate is more challenging compared to a single layer as it involves 

accurately predicting the strength of each layer. This requires assessing the local stress levels 

of each layer and applying appropriate failure criteria. If a single layer fails, it doesn't 

necessarily imply that the entire laminate will fail, but it does indicate the start of the failure 

process. The load at which the first layer fails is referred to as the First Ply Failure (FPF) load. 
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1.2 Motivation 
 

To fully leverage the advantages of composite materials, it is imperative to understand their 

complex behavior, especially when exposed to different types of loading, as this can lead to 

their weakening. Additionally, structures are not only subjected to loads or forces but also 

environmental factors such as temperature and humidity, which can weaken their strength and 

cause failure. Therefore, these factors must be taken into account when calculating the strength 

of failure, whether in non-perforated or perforated plates. Perforation is also considered a major 

cause of failure, as the presence of cutouts leads to the weakening of plates due to local stress 

concentration. The area around these holes is often where cracks initiate and can also be the 

source of a sudden rupture. Designers are concerned about stress concentration and stress 

distribution around openings, which must be defined in order to forecast the failure load. Hence, 

this work focuses on extending Greszczuk's analytical solution to calculate stress distribution 

in an infinite plate with an unsymmetrical stacking sequence containing circular holes subjected 

to arbitrary in-plane loadings. Designers often avoid unsymmetrical laminates due to the 

difficulty of analyzing their behavior. However, it is important to understand the behavior of 

these unsymmetrical plates as composite technology advances and the use of unsymmetrical 

laminates to satisfy design requirements effectively and affordably becomes more common. 

Since the application of unsymmetrical laminates to structures differs from that of regular ones, 

stress concentration problems for such laminates must be addressed. The finite element method 

is a versatile and powerful mathematical tool to handle such complex problems. Understanding 

the influence of different parameters on stress concentration and failure load is critical to 

making the most of composites. Therefore, the most significant criterion for the safe design of 

laminated composite structures is failure. The drawbacks of existing methods to find stresses 

and strengths and to ensure the integrity of laminated composite plates motivated us to analyze 

and determine stress analysis and failure loads. 
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1.3 Objective of the present study 
 

The primary objective of this study is to analyze the failure behavior of laminated plates and 

beams under various static and hygrothermal loads with differing boundary conditions, utilizing 

analytical and numerical methods through finite element analysis. To comprehend the effect of 

different types of loads on the first-ply failure load, we will employ one of the available failure 

criteria in the literature. Additionally, we will determine the stress concentration factor and 

stress resultant in an infinite plate with an unsymmetrical stacking sequence containing a 

circular hole of varying sizes under arbitrary axial, biaxial, and shear loading at infinity using 

a general analytical solution. Furthermore, we will present the formulations of the effective 

moduli of unsymmetrical composite laminated plates. The main objectives of this work can be 

summarized by the following points: 

 The first ply failure load (FPF) and damage location of a composite plate and beam 

subjected to bending loads using different failure criterions . 

 To study the effects of several parameters, such as fiber orientations, stacking 

sequences, and boundary conditions, are considered to determine and understand their 

effects on the strength of laminated beams. 

 analyze the effects of hygrothermal conditions (temperature and moisture) on the failure 

load and mechanism of laminated composite beams using various failure criteria. 

Several parameters were investigated. 

 The present thesis work also focuses on extending the previous analytical solution of 

Greszczuk to calculating the stress distribution (SCF) and stress resultant around a 

circular hole in an infinite plate with an unsymmetrical stacking sequence under 

arbitrary axial, biaxial, and shear loading at infinity. 

 The effects of several parameters were studied, such as the stacking sequence of 

different materials, fiber orientation, load orientation angle, size of the hole, and type of 

load, on stress concentration and failure load. 
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1.4 Plan of the thesis 
 

The thesis is divided into six main chapters, each of which covers a specific aspect of the 

research conducted to achieve the stated aims and objectives. 

 In the first chapter, a broad introduction to the thesis is given, along with its objectives. 

The study's context, the problems being addressed, and the objectives of the work were 

all specified. 

 

 Chapter 2 provides an overview of the literature, encompassing general information on 

composite materials as well as specific details on laminated plates and a summary of 

various approaches and theories. Additionally, it presents a systematic review of 

existing literature, including previous models for predicting the strength of laminated 

plates, and previous solutions for isotropic and anisotropic plates with perforations 

under in-plane loading. 

 

 Chapter 3 presents the mathematical formulations of the finite element method and the 

failure load prediction using different failure criteria. In addition, it includes the 

formulation of stress concentration around circular holes in unsymmetric laminated 

plates using a general analytical solution. Moreover, the chapter covers the formulations 

of the effective moduli of unsymmetrical composite laminated plates. To account for 

the behavior of real structures where the plates are not infinite, we use and present the 

finite-width correction factor given by Tan. 

 
 

 Chapter four presents and analyzes the results obtained for the non-perforated plates and 

beams subjected to static and hygrothermal loads. The first section of this chapter covers 

the validation of the numerical element used in the study. The results are compared with 

analytical results and those found in the literature. In the second section, we conduct a 

parametric study, including the failure study of laminated plates and beams subjected to 

static bending, in-plane loading, and hygrothermal environmental conditions. Different 

failure criteria are used in this study.  

 



Chapter 1                                                                                                    General Introduction 

6 
 

 Chapter 5 presents the results and discussion for perforated laminated plates. This 

chapter investigated the distribution of stress concentration around circular holes in 

unsymmetrical laminated plates with perforations. The first validates an extended 

analytical solution by calculating the stress distribution and stress resultants in an 

infinite plate with an unsymmetrical stacking sequence under arbitrary axial, biaxial, 

and shear loading at infinity, while several parameters such as fiber orientation, stacking 

sequence, bondary conditions, load orientation, and hole size are considered. 

 
 

 Chapter 6 summarizes the main findings and conclusions of the present research while 

also discussing the contributions and suggestions for future study.
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Chapter 2 

 

Generality and Literature Review 
 

 

2.1 Introduction :  
 

For thousands of years, humans have used composite materials in a variety of applications. 

Composites have been utilized since 1500 B.C., when early Egyptians and Mesopotamian 

immigrants employed a combination of mud and straw to make sturdy and lasting structures. A 

brick block's composition of mud and straw provides it with high resilience to squeezing, 

ripping, and bending. Straw was still utilized to strengthen ancient composite artifacts such as 

ceramics and boats [6, 7]. And this was the beginning, using simple and available natural 

materials. 

After several years, plastic scientists developed. At that time, the only source of adhesives were 

natural resins taken from animals and plants. Plastics such as polystyrene, polyester, and 

phenolic were developed in the early twentieth century. These novel synthetic materials have 

overcome natural resins. However, for some structural applications, polymers by themselves 

might not offer sufficient strength. Therefore, reinforcement is required to provide strength and 

stiffness. For this reason, Owens Corning created the first glass fiber in 1935 [8] When 

fiberglass was mixed with a plastic polymer, the result was a lightweight and rigid structure. 

This was the industry's first start with fiber-reinforced polymers (FRP). 

Composite materials were used and developed as a result of the needs of the wars "World War 

1 and 2," such as aircraft and military vehicles, due to their strength and lightweight. After the 

end of World War II, the demand for military equipment began to decline. For this reason, many 

researchers tried to introduce composite materials in different industries and markets, including 

boats; the first composite commercial boat was made in 1946. In 1947, an entire vehicle body 

was manufactured from composite and was tested. Furthermore, composite materials entered 

the marine industry, with the marine industry becoming the largest user of composite materials 

in the 1960s. Composites were first employed in infrastructure applications in Asia and Europe 

in the late 1970s and early 1980s. 
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Composite materials also made their way into civil engineering, where the first pedestrian 

bridge was built in Scotland in the 1990s and the first bridge deck for vehicles was built in 

Russell, Kansas. 

Nowadays, the industry with composite materials is constantly and significantly developing, as 

it has entered almost all fields. Composites are employed in a wide range of industries, 

including aircraft, architecture, automotive, energy, infrastructure, marine, military, sports, and 

recreation. 

This chapter begins by presenting a general overview of composite materials, covering their 

definition, classification, and components. Subsequently, it delves into the mechanical behavior 

of laminated composite plates using various theories. The chapter also presents a compilation 

of exclusive research papers that review the failure strength and stress concentration of 

composite materials. 

 

Fig 2. 1: The amount of composite material used in the aircraft industry 
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Fig 2. 2: The use of composite materials in engineering Mighty Buildings, Oakland, California 

 

Fig 2. 3:  AIT Bridges uses a braided fiber-reinforced polymer (FRP) tube filled with concrete 

 

Fig 2. 4: the usage of composite materials in wind turbines. Nolet, 2011 
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2.2 Generality of composite materials : 
 

2.2.1 Composite materials  
 

A composite material is defined as a material system that consists of a mixture or combination 

of two or more distinctly different materials. It can also be defined as two or more chemically 

different constituents combined macroscopically to yield a useful material [9], 

A composite material consists of the assembly of two materials of different natures that 

complement each other and make it possible to obtain a material whose overall performance is 

greater than that of the components taken separately. In addition, composite material consists, 

in the most general case, of one or more discontinuous phases distributed in a continuous phase. 

The discontinuous phase is usually harder, with mechanical properties superior to those of the 

continuous phase. The continuous phase is called the matrix. The discontinuous phase is called 

the reinforcement phase. [10]  

 

Fig 2. 5: Composite material 

2.2.2 Constituent elements of a composite material : 
 

2.2.2.1 Matrix: 
 

In a large number of cases, the matrix constituting the composite material is a polymeric resin, 

which has three main functions: the distribution of the mechanical load on all the 

reinforcements, the cohesion of the fibers for better homogenization of the whole, and the 

protection of the reinforcements from the external environment (thermal or mechanical shocks) 

[11]. The most widely used polymeric resins in composite materials are thermosetting resins 

and thermoplastic resins. 
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The most widely used matrices are as follows (Fig 2.6):  

 

2.2.2.1.a  Thermosetting resins: 
 

A thermosetting resin is a polymer, often called a thermoset are usually formed from low 

viscosity liquids composed of long and independent molecules. Traditionally, thermoset 

polymers are used in fiber reinforced composites. They are an important source of properties, 

excellent mechanical characteristics, and better handling properties compared to thermoplastic 

resin.[12]  The most important thermoset resins for the use in composites are: Phenolics, 

Epoxies, and Unsaturated polyesters . However, the two main resins used are polyesters (70%), 

and epoxies (25%) [13].  

 Epoxy resins are generally used for high-performance applications because their shrinkage is 

significantly lower than that of polyesters, they have good adhesion, good mechanical and 

chemical resistance [13], and they Performs well at high temperatures. As for polyester resins, 

they are still the most widely used matrix materials. They are cheap, easy to work with liquid 

resin at room temperature, and have attractive mechanical, chemical, and electrical properties 

[12]. Phenolic resins with high performance properties such as high temperature. 

The most efficient materials have high mechanical characteristics and a low density. These 

characteristics are presented in Table 2.1.  

Table 2. 1: Characteristics of thermosetting resins [14] 

resin 𝑻𝒇(𝑪°) 
𝝆(

𝑲𝒈

𝒎𝟑
) 

𝜺𝒕
𝑹(%) 𝝈𝒕

𝑹(𝑴𝑷𝒂) 𝝈𝑪
𝑹(𝑴𝑷𝒂) E(Gpa) 

polyesters 60 à 100 1140 2 à 5 50 à85 90 à 200 2,8 à 3,6 

Phenolics 120 1200 2,5 40 250 3 à 5 
Epoxies 290 1100 à 1500 2 à 5 60 à80 250 3 à 5 

Fig 2.6 :  
Fig 2. 6: Classification of Matrix 
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2.2.2.1.b  Thermoplastic resins: 
 

Thermoplastic polymers have unique advantages. The most important advantage is that it 

reduces manufacturing costs and has high impact strength and fracture resistance. These 

attractive mechanical properties produce very good damage-tolerant behavior in composite 

materials [15]. The most important thermoplastic resins are: Polyvinyl chloride (PVC), 

Polyethylene, Polypropylene, Polystyrene,  Polycarbonate, and Polyamide. 

Table 2.2: Characteristics of thermoplastic resins [14]   

resin 𝑻𝒇(𝑪°) 
𝝆(

𝑲𝒈

𝒎𝟑
) 

𝜺𝒕
𝑹(%) 𝝈𝒕

𝑹(𝑴𝑷𝒂) 𝝈𝑪
𝑹(𝑴𝑷𝒂) E(Gpa) 

polyamide 65 à 100 1140 - 60 à85 - 1,2 à 2,5 

Polypropylene 900 1200 - 20 à35 - 1,1 à 1,4 
 

2.2.2.2 Reinforcement : 
 

Fibers are the most important constituent of a fiber-reinforced composite material. The purpose 

of the reinforcement is to support most of the mechanical effort applied to the composite 

material thanks to its high mechanical characteristics (young modules, mechanical strength, 

etc.). [11] and greatly impedes crack propagation. It can be found in the form of fibers, particles, 

or whiskers. 

The most widely used reinforcements are as follows (Fig 2.7): 
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Fig 2. 8:  type of fibers (a: glass , b: carbon ,  c: Aramid , d: steel ) 

Fig 2. 7: Classification of Renforcement 
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2.2.2.2.a. Glass Fibers : 

 

Glass fiber is generally obtained from silica (SiO2) and additives. It has an excellent cost-

performance ratio, placing it at the forefront of the current reinforcement materials used in 

composite structures. There are different varieties of glass fiber: 

 E Glass : much more common, it has good dielectric properties, low costs, and high 

strength . E-glass fiber products have excellent flexibility and are particularly resistant 

to abrasion and vibration.  

 D Glass : excellent electrical properties but low mechanical properties.  

 C Glass : high chemical corrosion resistance 

 R Glass and S Glass : They are suitable for high-performance applications due to their 

higher tensile strength and modulus of elasticity than other glass fibers and their high 

strength heat resistance. 

Table 2. 2: Mechanical characteristics of glass types E, A, R, S and D [11] 

 E-Glass  A-Glass R or S-Glass D-Glass 

Density (
𝑲𝒈

𝒎𝟑
) 2540 2460 2550 2160 

Young's 
modulus (Mpa) 

72000 71000 86000 55000 

Failure strangth 
(Mpa) 

3500 3100 4500 2500 

Elongation at 
break (%) 

4,4 - 5,2 - 

 

2.2.2.2.b Carbon Fibers : 
 

Carbon fibers have very good mechanical characteristics (density is low generally less than 

2000 kg/m3), carbon fibers have excellent temperature resistance in a non-oxidizing 

atmosphere. In fact, their mechanical characteristics are maintained up to approximately 

1,500°C [10] . This property has led to the development of carbon fiber / carbon matrix 

composites, with high thermal resistance. However, their use is limited because the 

manufacturing cost remains high [15]. Some examples of conventionally encountered carbon 

fibers : HM, HR. 

High modulus fibers (HM): for a combustion temperature of 1800 to 2000 °C.  

High resistance fibers (HR): for combustion from 1000 to 1500 °C. [16] 
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2.2.3 Structural of composite materials : 
 

Composite materials typically consist of two or more constituent materials that are combined 

to create a material with the desired properties. the properties of which depend not only on the 

properties of composite materials of the constituent materials but also on the geometrical design 

of the various structural elements. and orientation within the composite structure. 

Composite laminates and sandwich panels are two of the most common structural composites. 

2.2.3.1 Laminate composite materials : 
 

Laminate composite materials are a type of composite material that consists of layers of two or 

more different materials, such as fibers and a matrix, bonded together to create a single material. 

Each layer is referred to as a "lamina" and can have different material properties and 

orientations. 

If all layers or plies in a composite material are stacked in the same orientation, it is referred to 

as a lamina. On the other hand, if the plies are stacked at different angles, it is called a laminate. 

Laminated materials, such as continuous-fiber composites (as shown in Fig 2.9), typically have 

layers, plies, or laminae oriented in a manner that enhances strength in the primary load 

direction [17]. 

 

Fig 2. 9: unidirectional and laminate composite materials 
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However, the detachment of two plies, known as delamination, is the primary weak point of 

this type of material and explains their weak resistance to impact and, more generally, to out-

of-plane stresses (whether direct or induced). 

2.2.3.2 Sandwich composites: 
 

Sandwich structures are composite materials that are experiencing significant growth in their 

use. These structures consist of three main layers with different mechanical characteristics (see 

Fig 2.10): two thin skins, typically laminated, with excellent mechanical properties (high 

modulus of elasticity and high compressive and tensile strength), which are bonded to a thick, 

lightweight core with weaker mechanical characteristics (e.g., foam, wood), whose primary role 

is to resist shear stresses. These layers are joined together through gluing or welding. The 

resulting structure is made of a lightweight, strong, and stiff material with good thermal and 

acoustic insulation properties. The objective of such a process is to constitute a structure that 

makes it possible to reconcile lightness and rigidity. Generally, the choice of materials is made 

with the initial objective of having a minimum mass, then taking into account the conditions of 

use (thermal conditions, corrosion, price, etc.). 

 

Fig 2. 10: Sandwich Structural Components 

 

2.2.4 Composite materials behaviors :  
 

The mechanical behavior of composites and metals differs fundamentally because composite 

materials are often heterogeneous and non-isotropic (orthotropic or anisotropic). You can say 

about a material that it is homogeneous if it has different properties at two different points. and 

be isotropic when it has the same characteristics in all directions. A fiber-reinforced composite 

lamina behaves like an orthotropic material, which means it has three mutually perpendicular 
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planes of symmetry known as principal material directions. On the other hand, anisotropic 

materials have varying properties in all directions and lack planes of symmetry. When normal 

stress is applied to anisotropic materials, it results in not only an extension in the direction of 

the stress but also a contraction perpendicular to it and a shearing deformation. Similarly, the 

application of shearing stress causes not only a distortion in the shearing direction but also an 

extension and contraction. This coupling between both types of loading and both types of 

deformation, known as shear-extension coupling, is a distinguishing feature of orthotropic 

materials under normal stress in a non-principal material direction. In addition, when normal or 

transverse stress is applied to a material, it results in coupling between different types of 

deformation, such as extension-twist or bending-twist. In a thin, symmetric laminated plate, 

there is no bending-extension coupling due to the symmetry of the middle surface. In contrast, 

unsymmetric laminated plates exhibit coupling between bending and extension. 

In this study, the material of each layer is assumed to be linearly elastic and orthotropic, with 

zero stress considered along the thickness directions. Additionally, all layers are perfectly 

bonded together. 

2.2.5 Laminated composite plate theories : 

Laminated plate theories are essential for providing an accurate analysis of laminated composite 

plates; hence, a number of laminated composite theories have been developed and provided 

with a great quantity of literature in order to provide an accurate analysis of laminated 

composite plates.[18] 

To now, most applications involving the study of multilayer structures have favored the use of 

two-dimensional (2D) models. In reality, these models are more practical than 3D models in 

terms of modeling simplicity and necessary calculation efforts. In general, laminated plate 

theories may be classified into two basic categories [19]: 

 Equivalent single-layer approach (ESL) 

 layer-wise approach (LW). 

2.2.5.1 Equivalent monolayer approach (ESL) 
 

In the equivalent monochroving approach, which is the most adopted by researchers, the 

heterogeneous multilayer plaque is treated as a single homogeneous layer equivalent via the 

homogenization technique [20]. The ESL theories give a sufficiently precise explanation of the 
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global laminate response for many applications (e.g., transverse deflection, fundamental 

vibration frequency, critical buckling load, force, and moment resultants). 

Because of the minimal number of dependent variables that must be accounted for, the main 

advantages of ESL models are their inherent simplicity and low computing costs. 

However, ESL models are frequently insufficient for calculating the three-dimensional stress 

field at the ply level [21]. 

In this approach, three well-known theories can be distinguished, namely: 

- Classical Plate Theory (CLPT) 

-  First order shear deformation theory (FSDT) 

-  Higher order theories (HSDT) 

 

2.2.5.1.a. Classical Plate Theory (CLPT): 

The Classical Laminate Theory (CLT) is a widely used engineering approach for analyzing the 

behavior of laminated composite materials, which are composed of two or more layers of 

different materials. It is a simplification of the more complex three-dimensional theory of 

elasticity and is based on the assumption that the laminate behaves as a homogeneous, 

anisotropic material. It was initiated by Kirchhoff [22] in 1850, then continued by Love [23] at 

the beginning of the 20th century. 

The CLT assumes that the layers in a laminate are perfectly bonded to each other and that the 

laminate is thin relative to its other dimensions (the CLPT being applicable to any planar 

structural element having a thickness to width ratio smaller than 1/10 that acts as a plate [24, 

25]). It also assumes that the stresses and strains in the thickness direction of the laminate are 

negligible compared to those in the plane of the laminate. 

The CLPT theory is based on the assumption that lines normal to the median plane before 

deformation remain straight and perpendicular to the average surface after deformation (Fig. 

2.11). which indicates that transverse shear strain and transverse normal strain are zero ( 0z 

, 0z  , 0xz yz   ). 

Using these assumptions, the CLT can provide a simple way to calculate the mechanical 

properties of a laminate, such as its stiffness and strength, based on the properties of the 
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individual layers and their stacking sequence. The theory can also be used to predict the 

deformation and failure behavior of laminates under different loading conditions. 

Despite its simplifications, the CLT is widely used in the design and analysis of composite 

structures in aerospace, automotive, and other industries due to its efficiency and accuracy in 

predicting the behavior of laminates. 

 

Fig 2. 11:  Deformed and undeformed geometries of a plate edge under the Kirchhoff hypothesis [26] 

 

The displacement field according to the CLT is given by the following equations:  
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Where 0u , 0v
 and 0w

 are the mid-plane displacement components of the plate element 

Since Kirchhoff theory ignores transverse shear deformation, it cannot be applied to thick 

plates, where shear deformation effects are more significant. Thus, it is only suitable for thin 

plates [27]. 
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2.2.5.1.b First Order Shear Deformation (FSDT): 
 

First-order shear deformation theories (FSDTs) are enhancements over the classical laminate 

theory (CLT) [27]. This theory takes into account the shear deformation effects that occur in 

such structures, which are not considered in classical beam and plate theories. 

This theory is essentially based on the following Reissner-Mindlin hypothesis: the transverse 

straight lines before deformation will still be straight after deformation, but they are not normal 

to the mid-plane after deformation. (because of the effect of transverse shear) [28, 29] (Fig. 

2.12). 

 

Fig 2. 12: Deformed and undeformed geometries of a plate edge under the Reissner-Mindlin 

hypothesis [26] 

 

The displacement field of the first-order theory is written as follows: 
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Where x and y  are the rotations of the normal around the axes (x, y), respectively. 
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 Shear correction factors: 
 
A shear correction factor, denoted k, is added to correct for the mismatch between the actual 

(3D) transverse shear stress distribution and those assumed in the first-order theory. These 

factors are introduced as parameters in the constitutive relationships between transverse shear 

forces and transverse shear strains. For homogeneous, isotropic materials, the first concept of 

FC was presented by Reissner [30-32]. He proposed a value of 5/6 which is widely used, 

employing a calculation method based on considerations of static equilibrium and energy 

equivalence. 

2.2.5.1.c. Higher-order shear deformation theories (HSDT): 
 

Many researchers [33, 34] have proposed refined theories called "higher order shear 

deformation theories" (HSDT) to overcome the limitations of the previous theories. These 

limitations include the difficulty in determining the stresses and their distributions with respect 

to the plate's thickness. The HSDT theories utilize a non-linear variation of the displacement 

field, which is depicted in Fig 2.13, to more accurately represent the deformations and 

transverse shear stresses without needing to use CF correction factors. Additionally, the HSDT 

theories can take into account the possibility of warping of the plate's cross-section during 

deformation [35]. 
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Fig 2. 13: Kinematics of deformation in different ESL theories (CLPT, FSDT,HSDT) 

 

2.2 Literature Review 
 

2.2.1 Failure loads: 
 

The most significant criterion for laminated composite structure safety design is failure. Failure 

analysis of laminated composite materials is far more complicated than failure analysis of 

isotropic materials. The strength of a laminate is affected by several parameters, such as the 

laminate orientation angle, stacking sequence, load, stiffness, and hygrothermal environmental 

conditions, which impact stresses that affect laminate strength. For this reason, a laminate's 

failure analysis is more difficult than that of a single laminate; it necessitates the correct 

prediction of the strength of each laminate by measuring stresses on its local axis in each 

laminate and applying appropriate failure criteria. When a single laminate fails, it does not 

signify that the entire laminate fails; rather, it marks the start of the failure process, and it is 

called the first ply failure (FPF) load, which is defined as the load in which the first ply fails. 

         The failure criteria are divided into two groups: interactive and non-interactive. Non-

interactive failure criteria are a type of failure criterion that assumes that the different failure 
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modes that a material or structure can undergo, such as tensile failure, compressive failure, or 

shear failure, are independent of each other (there is no interaction between the lamina stresses). 

This simplicity makes non-interactive failure criteria more commonly used in practice, 

especially in situations where it is difficult to predict how different failure modes might interact. 

While non-interactive failure criteria are generally simpler to use, they do have some 

limitations. Because they assume that different failure modes are independent of each other, 

they may not be accurate in all situations. In some cases, interactive failure criteria may be 

necessary to accurately predict failure in complex structures or materials. Interactive failure 

criteria are a type of failure criterion that takes into account the interactions between strengths 

from multiple directions that a material or structure can undergo (there is an interaction between 

the lamina stresses). These criteria are more complex than non-interactive failure criteria but 

are necessary in situations where it is important to understand how different failure modes might 

interact. 

         Various analytical approaches have been developed in the literature to characterize and 

model the failure behavior of composite plates. Some of these approaches focus on the behavior 

of each component of the material, such as the fiber/matrix interaction called "macro" , to 

understand their interactions and influence on the overall behavior of the plate. Conversely, 

"macro" approaches are based on global failure criteria at the structure's scale, such as the First-

Ply Failure Theories. These methods help to identify the "damage" zones of the structure and 

provide an overall rating for each layer. 

In general, the creation of laminated composite plates necessitates a thorough 

understanding of the damage to failure and an accurate modeling. Until now, many failure 

criteria have been offered in order to predict the behavior of composite structures Tsai–Wu 

[36], Tsai–Hill [37], Hoffman [38], Maximum stress [39], maximum strain [39], quadric 

surfaces [40] and modified quadric surfaces [41] are the most extensively utilized failure 

theories. They cannot forecast the failure mode of composite constructions (fiber or matrix). 

Failure theories such as Hashin [42], Norris [43], Hart-Smith [44], Sun [45] and Davila. [46], 

Puck [47] and Catalanotti [48] used these criterion to forecast fiber-dominated and matrix-

dominated composite structure failures. 

Tsai-Hill failure criterion directly adapts to the von-Mises criterion [49]. R. Hill 

introduced one of the first interactive failure criteria applicable to anisotropic materials [10, 

50]. In the case of unidirectional composite materials, V.D. Azzi and S.W. Tsai [51] simplified 

the Hill fracture criterion in-plane stresses. In 1973, Hashin proposed two different failure 
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criterions, the first related to fiber failure and the second to matrix failure. In order to improve 

the prediction capabilities of the Hachin criteria, many researchers, including Sun and Puck, 

have proposed some modifications. Sun et al. [45] proposed an amendment to the failure of 

matrix compression for the Hachin criteria. Puck [47, 49] proposed a three-dimensional 

criterion that considers the tractions interaction on the fracture plane. In the same context, 

Davila [46] proposed new failure criteria for polymer laminates reinforced by fiber, which are 

denoted LaRC03. This criterion can predict matrix and fiber failure and fracture angle (are used 

Mohr-Coulomb effective stresses for determining the angle of fracture plane) for matrix failure 

under transverse compression by maximizing the Mohr-Coulomb effective stresses. Kim et al. 

[52] used a beam finite element method with layer-wise constant shear (BLCS) under bending 

loads to study the progressive failure of laminated composite beams using Tsai–Wu and 

Maximum stress failure criteria to predict the failure at Gaussian points of each damaged beam. 

On the other hand, Nazargah et al. [53] developed a four-node quadrilateral partial mixed plate 

element with few degrees of freedom. This finite element model is based on a parametrized 

mixed variational concept established recently by for static and free vibration analysis of 

functionally graded material (FGM) plates supported by Winkler-Pasternak elastic foundations. 

The provided model was validated by comparing it to the results of the three-dimensional (3D) 

theory of elasticity as well as the results of the classical and high-order plate theories available 

in the literature. In addition, a high-performance finite element model for bending and vibration 

analysis of thick plates has been developed by Nazargah [54] based on the parametrized mixed 

variational principle. For the bending and vibration analysis of multi-layered composite plates, 

Nazargah et al. [55] presented a unique mixed-field theory with a small number of unknown 

variables [55]. Irhirane et al. [56] have studied bending failure for graphite-epoxy laminates. 

The laminate composites have been modeled using eight-node isoparametric plate bending 

elements using first-order shear deformation theory (FSDT). On the other hand, different failure 

criteria theories are used to predict damage. Moncada et al. [57] used various failure theories to 

study the progressive failure of laminated composites and compared the results obtained by 

each of them. The generalized and high-fidelity generalized of cells micromechanics method, 

coupled with classical laminated theory, are used. It was shown that the numerical results agree 

with the experimental results. In addition, Hasan et al. [58] studied the failure analysis and 

shape control of smart laminated composites containing different types of piezoelectric 

materials under coupled thermal, electrical, and mechanical stimuli. They used various failure 

criteria, such as Tsai-Wu, Tsai-Hill, and Maximum stress criteria, to predict the first-ply failure 

FPF and ultimate laminate failure. Daniel [59] proposed a new nonlinear constitutive model to 
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describe composites' behavior and failure criteria under static and dynamic loading. M. Lezgy-

Nazargah [60] investigated composite laminated beams' progressive failure analysis. The 

RHGB (refined high-order global-local beam) theory is used in his finite element formulation. 

Several failure criteria were used to describe the failure behavior of laminated composites and 

predict the FPF and UFP (ultimate failure load) of composite laminates with different loads, 

fiber orientation, and boundary conditions. 

Moreover, composite laminates experience various thermal and moisture conditions 

during manufacturing and storage, which create stress and strain. Changes in temperature and 

moisture affect the stiffness and strength of composites, resulting in complex stress and strain 

in the plates. The elastic modulus and strength of composite laminates decrease as temperature 

and moisture concentrations increase, leading to the formation of hygrothermal internal 

tensions. These tensions can cause significant deformation and even structural failure. 

Hygrothermal stresses, which affect the performance of composite laminates, are generated due 

to exposure to moisture and temperature fluctuations. If a mechanical load is applied to the 

same laminate, it creates thermomechanical stress. Moreover, when the laminate is exposed to 

moisture, in addition to thermal and mechanical strain, it generates hygro-thermo-mechanical 

stress. 

The thermal and hygrothermal behavior of laminated composite materials has received 

much attention by many investigators. Wu et Tauchert.[61, 62] studied the analysis of 

symmetric and antisymmetric plates subjected to a 3D variation of temperature (constant and 

linear varying thermal fields) using the classical laminated theory (CLT). They found that the 

effects of thermal membrane-bending coupling were significant in laminated plates with a small 

number of layers when compared to those with a high number of layers. Reddy and Hsu [63] 

used a finite-element formulation based on the FSDT for analyzing composite laminated plates 

subjected to uniform and sinusoidal temperature variations. They used several parameters (fiber 

orientation, aspect ratio, side-to-thickness ratio, and boundary condition) to show the effects on 

deflections and stresses of the plate. Ram et al. [64] investigated the effects of moisture and 

temperature on the bending behavior of laminated composite plates using a quadratic, eight-

noded, isoparametric element with five degrees of freedom at each node. An anti-symmetric 

cross-ply laminate was used to obtain the deflection and stress resultants for a simple and 

clamped boundary condition at different moisture concentrations and temperatures. Chen [65] 

studied the thermal deformation and stress analysis of composite laminated plates using the 

finite element method.  
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Ray et al. [66] used an isoparametric element with eight nodes based on the first-order shear 

deformation theory (FSDT) to investigate the first-ply failure of symmetric and antisymmetric 

laminated composites under linear temperature loading. To achieve this goal, Tsai-Wu and 

Hoffman failure criteria are used. In a similar context, Zhang et al.[67] conducted a progressive 

failure analysis of composite materials in hygrothermal environments (i.e., temperature and 

moisture) to predict the failure of composite laminates. The model included constitutive 

equations accounting for hygrothermal strains. Additionally, A. Choudhury and colleagues [68] 

investigated the failure analysis of laminated composite plates under thermomechanical and 

hygro-thermo-mechanical loads for various parameters (i.e., stacking sequences, thicknesses, 

and fiber orientation angles). They employed different failure criteria, such as maximum stress, 

maximum strain, Tsai-Wu, and Tsai-Hill. Furthermore, they calculated the first-ply failure and 

the last-ply failure loads. 

 

In order to test the reliability and accuracy of the computational tools used for analyzing the 

structural integrity, Hinton, Kaddour, and Soden [69, 70] conducted a comprehensive 

investigation to characterize the accuracy and validity of numerous failure predictions in 

composite laminates. This project is known as the "First World Wide Failure Exercise (WWFE-

I)." 

The WWFE-I aimed to bring together experts from around the world to compare and evaluate 

the accuracy and reliability of different computational tools used to predict the failure behavior 

of polymer composite laminates when subjected to complex loads . The exercise was designed 

to provide a platform for international collaboration and sharing of knowledge 

 

In addition to testing the computational tools, the WWFE-I also aimed to identify any 

weaknesses or areas for improvement in the tools and to make recommendations for future 

research and development. By establishing a standardized and collaborative approach to 

evaluating the reliability and accuracy of computational tools. 

 

Among the most commonly used and common failure criteria that can be mentioned are : 

Maximum stress and strain failure criteria 

Two commonly used failure criteria for modern composites are the maximum stress criterion 

and the maximum strain criterion. These criteria originated from conventional failure criteria 

for isotropic materials that were established long before the availability of modern composites. 
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These criteria were derived from conventional failure criteria for isotropic materials predating 

the availability of modern composites. They have found their way into contemporary 

engineering design tools like Abaqus and Ansys. These criteria are favored in certain 

applications due to their simplicity, particularly when a quick estimate is needed. They also 

provide clear insights into failure modes and can be applied to genuinely orthotropic materials, 

not just transversely isotropic materials. However, criticisms of these criteria stem from the 

absence of interactions among stress or strain components, leading to less accurate predictions, 

especially in situations involving competing stress or strain factors. Nevertheless, researchers 

have made efforts to adapt or modify these criteria to address their specific limitations [71]. 

The maximum stress criterion, being less complex, is widely employed to predict composite 

material failure. It is a linear, stress-based criterion that is dependent on failure mode and does 

not consider stress interactions (The mathematical formula is detailed in Chapter 3). 

Tsai-Wu failure criteria 

The Tsai-Wu failure criteria is a widely used material failure theory used in composite material 

analysis. It is named after two researchers, Edward Tsai and Alan Wu, who proposed this theory 

in 1971. The Tsai-Wu failure criteria uses a quadratic polynomial expression to predict the 

failure of composite materials.Usually, these equations are derived by adjusting them to 

experimental test results [72]. The theory uses the principal strains and stresses of a composite 

material to calculate the values of various parameters such as Fi, Fij, and Fijk. These parameters 

are related to the strengths of the material in its principal directions. The third-order tensor Fijk 

is usually neglected in practice due to the large number of material constants required. The Tsai-

Wu failure criteria equation takes into account the interaction between the various stresses and 

strains that a material may experience, this criteria is unrelated to failure modes. 

Tsai and Wu's [36]Tensor Polynomial Criterion is the most comprehensive polynomial criterion 

for composite materials, and it can be expressed in tensor notation as : 

                                                           1i i ij i j ijk i j jF F F                                                              (2.1) 

In a 3-D case, i, j, and k take values from 1 to 6 (i, j, k = 1, ... , 6). The parameters Fi, Fij, and 

Fijk are connected to the strengths of the lamina in its principal directions. However, due to the 

significant number of material constants required, the third-order tensor Fijk is often ignored 

for practical purposes. As a result, the overall polynomial criterion becomes a simpler quadratic 

expression, according to a commonly used approach given by :  
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                                                (2.2) 

Equation (2.2) is written in expanded form as follows: 
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                  (2.3) 

Where 1 11 L      , 2 22 T      ,  '3 33 T
      ,  '4 23 TT

      ,  '5 13 LT
     , 

6 12 LT     

In the case of an orthotropic composite material subjected to a plane stress state in the planes 

(1, 2) = (L, T), the relationship (2.3) is written as 

                                
2 2 2

1 1 2 2 6 6 11 1 12 1 2 22 2 66 62 1F F F F F F F                                        (2.4) 

The parameters Fi and Fij can be expressed using the breaking stresses, measured in various 

tests. 

 

Fig 2. 14: Failure criterion from the maximum stress and maximum 
strain and Tsai-We criteria, respectively. 

1i i ij i jF F   
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Tsai-Hill failure criteria : 

The Tsai-Hill failure criteria is a widely used method for predicting failure in composite 

materials. This criteria was developed by Tsai and Hill in 1965 and has been refined and 

extended over the years. This failure criterion considers the interaction between the stress 

components. 

Based on the distortion energy theory, Tsai and Hill proposed that a lamina 

has failed if: 
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2 2 2
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                       (2.5) 

The parameters 1G , 2G , 3G , 4G , 5G , and 6G  are characteristic parameters of the material being 

considered, which are linked to the ultimate strengths X, Y, and S of the material, according to 

the relationships established below. 

In the case of a tensile (or compression) test in direction 1 (L), the Tsai-Hill criterion is reduced 

to: 

                                                              (2.6) 

 

where X is the longitudinal strength in tension and compression in the direction L. Similarly, 

we find: 
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Where Y and Z are the transverse strengths in tension and compression in the direction T and 

T’. 

In the case of a shear test in the plane (L,T), the Tsai-Hill criterion is reduced to: 

                                                                              

(2.9) 
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                                                                                4 2
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Where S12 , S13 and S23 are the shear strengths in the plane (L, T’ ) and (T ,T’). 

Expressions (2.7) to (2.8) make it possible to determine the fracture parameters 1G , 2G , 3G , 

4G , 5G , and 6G  to write Tsai-Hill's criterion in the form: 
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                                (2.12) 

In the case of a plane stress state in the plane (L, T) of the layer of composite material: 
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                                                (2.13) 

2.2.2 Stress concentration : 
 

The assembly of composite elements into a structure frequently; necessitates the creation of 

holes for receiving bolts or rivets or the passage of electrical or phone wires. Openings are used 

in large number of structural elements, such as plates and shells. In civil engineering, openings 

are used as doors, windows, power lines, or sometimes just to allow weight reduction. Cutouts 

alter the behavior of materials and create a very undesired stress concentration around these 

holes [73].  

Often, the designer is concerned about stress concentration and the stress distribution around 

openings that must be defined in order to forecast failure load. For this reason, Numerous 

investigators have studied the distribution of stress in perforated plates using different methods 

such as analytical analysis, finite element analysis (FEA), and experimental techniques. 

Analytical methods have been commonly used to determine the stress distribution by solving a 
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set of differential equations and obtaining a closed-form analytical solution using stress 

functions or other mathematical techniques. However, the complexity of some problems may 

prevent an analytical solution from being found. As a result, the finite element method (FEM) 

is currently one of the most popular methods for stress analysis due to its ability to provide 

accurate solutions for problems with no analytic solution. Additionally, recent advancements 

in experimental methods have produced new techniques, including photo-elasticity, brittle 

coating, electrical strain gauges, and digital image correlation (DIC), for analyzing the stress 

field. 

2.2.2.1 Analytic stress analysis : 
 

2.2.2.1.a Stress concentration of perforated isotropic plates subjected to in-plane loading : 
 

The concept of stress concentration was first introduced in Gabriel Lame's book on elasticity 

theory [74], where he addressed the problem of stress distribution in a plate with a round hole 

under a constant uniform tension. Airy [75] later discovered that, in the absence of body forces, 

there always exists a single auxiliary function, known as a stress function, that can express 

stresses. This stress function is now known as Airy's function. In 1966, Muskhelishvili [76]used 

complex variables to represent Airy's stress function [75], which has become one of the most 

effective methods for analytically calculating stress distribution, particularly around openings 

in an infinite elastic plate. The complex function theory developed by Muskhelishvili is 

considered a powerful tool for stress analysis. 

Furthermore, Howland [77] provided an analysis of stress concentration in a finite plate that 

has a circular opening. In his study, an isotropic plate is considered with a hole located halfway 

between two parallel edges, and sought a solution for the uniaxial tension problem through a 

successive approximation method. Howland presented the results of this analysis for different 

ratios of the diameter of the hole to the width of the plate. 

Lekhnitskii [78] and Savin [79] developed the "Lekhnitskii Formalism," which provides 

solutions for circular, elliptical, triangular, and square holes in orthotropic plates. Their 

approach is based on Muskhelivshili's method. Lekhnitskii[78]  used Fourier series to derive 

the stress functions, while Savin [79] used Schwarz-Christoffel integral mapping. However, 

their solutions are the same. Lekhnitskii [78] focused on anisotropic plates with regular-shaped 

holes under in-plane or bending loading, while Savin [79] focused on simply or multiply 

connected domains in isotropic plates. Since the introduction of the formalism and increased 



Chapter 2                                                                                 Generality and Literature Review 

32 
 

computing power, researchers have expanded their findings to include multiple holes, different 

discontinuities, and various loading conditions. Theocaris and Petrou [80, 81]used the 

Schwartz-Christoffel transformation to map a triangular hole and its exterior onto the interior 

of a unit circle to obtain the stress distribution in an isotropic plate. 

2.2.2.1.b Stress concentration of perforated anisotropic plates subjected to in-plane 
loading : 
 

Often, the designer is concerned about stress concentration and the stress distribution around 

openings that must be defined in order to forecast failure load. For this reason, several 

researchers have sought to determine the SCF for various kinds of geometric cutting under 

various types of stresses using different methods and different analytical approaches [82-84]. 

Green and Zerna [85] studied the anisotropic plates that contained the cutout to address issues 

of values in two-dimensional elasticity. This study was one of the earliest theoretical studies. 

In the same context, Greszczuk's [86] provided a theoretical solution for studying the stress 

concentrations and failure strengths in orthotropic and anisotropic plates under different in plan-

loading  using the Green and Zerna method. Lekhnitskii [78] and Savin [79] calculated the 

stress function for circular, elliptical, square , and triangular openings in infinite orthotropic 

plates under in-plane and bending loadings. 

V.G. Ukadgaonker et al. [87] examined the stress concentration factor (SCF) in orthotropic 

laminates and anisotropic plates around regular and irregular shaped holes under different in-

plane loading conditions using an analytical approach of solution. The results are similar to 

those obtained by FEM solutions. J. Rezaeepazhand and M.[88] proposed an analytical solution 

to study the stress distribution in a plate under a uniaxial tension load with various cutouts 

forms. The analytical solution results are compared to the FEM results. Furthermore, They 

investigated the influence of different parameters, such as material properties, fiber orientation, 

and cutout shapes, on perforated plates, whereas Shivaji Toralkar et al. [89] used analytical and 

FEM to study the influence of fiber orientation, E1/E2 ratio, diameter of the hole, length of the 

plate on the SCF of the laminated plate containing a circular cutout. 

Rybicki and Schmueser [90] studied the stress behavior along the edge of a circular hole in a 

laminated plate using a 3D finite element stress analysis. To ensure the validity of this study, 

the tangential strain distribution around a circular cutout for a [0 / 45 / 0]s   plate exposed to 

uniaxial stress was calculated and the results obtained were compared with laboratory results. 

The distribution of interlaminar normal stress around the circular cutout is then studied, as well 

as the influence of modifications in lay-up angle and stacking sequence. On the other hand, 
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Rezaeepazhand and Jafari [91, 92] conducted an analytical study to examine the influence of 

hole shape and material qualities on the maximum stress concentration (SCF) value and 

position. Lekhnitskii's method [93] was used to calculate the stresses. In the same context, 

Khechai et al. [94] investigated the SCF at the edge of a circular opening in a laminated 

composite plate under uniaxial loading. The finite element method was used based on the CLT, 

and the first-ply failure (FPF) was calculated as well. Many parameters, such the E1/E2 ratio 

and fiber orientation angles are studied to understand their influence on stress concentration. In 

addition, Khechai et al. [73] expanded Greszczuk's analytical solution for determining the stress 

distribution of a composite laminated plate under arbitrarily oriented in-plane loading 

conditions. 

Lekhnitskii [78] and Savin [79] determined the stress function around circular, elliptical, 

square, and triangular opening in infinite orthotropic plates under various in-plane and bending 

loadings. Ukadgaonker et al [87]. analyzed the stress distribution around irregular forms of 

opening in an infinite orthotropic plate subjected to various in-plane loading conditions using 

Savin's method. The FEM solution is employed to validate the results. In addition to this 

Ukadgaonker et Rao[95] studied the stress distribution around triangulair opening in isotropic 

and orthotropic plate subjected to various loading at infintity (uniaxial, biaxial, and shear 

loading). The stress distribution around a triangular hole in an anisotropic plate subjected to 

uniaxial load is studied by Daoust [96] using an analytical solution. They investigated the 

influence of different parameters, such as various degrees of bluntness at the triangle vertex, 

various length/height ratios of the triangular cutout, as well as different orientations of the load, 

on the stress concentration. Whereas Xin Lin Gao [97] used the analytical solution (complex 

potential method) for solving the problem of stress concentration in an infinite plate containing 

an elliptical hole under arbitrary biaxial loading. SIMHA et al [98]studied the stress 

concentration around irregular opening using the analytical solution based on complex variable 

method. in the same context, Magar et al [99]. studied the stress distribution at the edge of an 

elliptical opening in an infinite laminated plate subjected to various in-plane loading in a 

hygrothermal environment using the complex variable method of Muskhelishvili. They studied 

several parameters, such as type of load, fiber angle, stacking sequence, temperature, volume 

fraction of fiber, and environmental conditions on stress distribution. Although this complex 

method is effective and powerful in solving flexibility problems, it is complex and must be 

reformulated whenever the type of load changes. Dharmin et al.[100] and Nagpal et al.[101] 

presented reviews on new analytical methods and techniques for calculating the stress 

concentration around the opening of a laminated composite plate. 
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Designers often avoid unsymmetrical laminates due to the difficulty of analyzing their behavior. 

These plates exhibit a distinct structural behavior that was not introduced within the classical 

materials. However, the behavior of these unsymmetrical plates has to be in aware. As the 

composite technology advances, the use of the unsymmetrical laminates to satisfy design 

requirements effectively and affordably has become more common.  

Since the application of unsymmetrical laminates to structures differs from regular ones; 

solutions toward stress concentration problems for such laminates must be conducted. Among 

the researchers who studied unsymmetical plates. Chen et al. [102] used the complex potential 

approach developed by Chen and Shen [103] to study the moments and stress resultants at the 

edge of opening of infinite unsymmetrical composite laminates subjected to remote uniform 

loading, in addition, they studied the behavior of unsymmetric laminate plates with an elliptical 

hole [104]. Furthermore, Dave et al. [105] used the complex variable approach to achieve a 

solution for stress distribution at the boundary of  an oval hole in an infinite composite plate 

with unsymmetric material characteristics, employing several forms and sizes such as a 

rectangle , a square, a circle, an ellipse, and an eye form. And several parameters such as the 

fiber orientation and loading angle are also investigated. In the same context, Sharma et al. [82] 

used Muskhelishvili’s complex variable method for calculating the distribution of stress 

concentration at the edge of different shapes of opening (circular, elliptical, triangular hole) in 

an infinite composite plate under biaxial loading at infinity. The effects of some parameters, 

such as fiber orientation, stacking sequence, load angle, and shape of hole, are studied. 

The present work focuses on calculating the (SCF) and stress resultant in an infinite plate with 

an unsymmetrical stacking sequence.These last contained a circular hole of multiple sizes under 

arbitrary axial, biaxial, and shear loading at infinity using a general analytical solution. The 

current study starts with fundamental analytical solution for calculating the stress concentration 

in a single ply. Then, general solution is presented to calculate the stress distribution in infinite 

symmetric laminated plates, including the influence of load direction, also the formulations of 

the effective moduli of unsymmetrical laminated plates generated by layer lumping are 

presented. 
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2.2.2.2 Finite element analysis : 
 

The finite element method (FEM) is a numerical method used in engineering to solve a wide 

range of problems. In situations where the problems involve intricate geometries and material 

characteristics, analytical solutions may not be feasible, and numerical methods become 

necessary. As a result, engineers depend on numerical techniques like FEM to obtain acceptable 

solutions. The basic idea of the finite element method is to divide a complex system into 

smaller, simpler parts called "finite elements." Each element is defined by a set of nodes or 

vertices, and its behavior is governed by a set of mathematical equations that describe its 

physical properties. After obtaining the solutions for each element, the next step is to combine 

them by assembling the sub-domains and applying the boundary conditions to obtain the 

solution for the complete system. 

FEM has many advantages over other numerical methods, including its ability to handle 

complex geometries, irregular boundaries, and nonlinear material behavior. It is also flexible 

and can be used to solve a wide range of problems in different fields. 

However, FEM also has some limitations. It requires a high level of mathematical expertise and 

computational resources, and the accuracy of the results depends on the quality of the mesh and 

the selection of appropriate elements and numerical methods. 

The Finite Element Method (FEM) is a commonly used numerical technique for analyzing 

material behavior, including stress, strain, and failure. As previously mentioned in the section 

above, several studies have utilized FEM to evaluate the strength of failure using different 

criteria. FEM has also been applied in various investigations to calculate and analyze the stress 

distribution in perforated plates. In the following section, we will highlight some studies that 

have employed FEM to analyze the stress distribution in perforated plates. The Finite Element 

Method (FEM) is utilized in another major class of mathematical approaches for analyzing 

stress distribution in perforated plates. 

Several researchers have investigated the problem of stress distribution around holes in 

composite plates using FEM. Louhghalam et al [106]. studied the stress concentration around 

rectangular openings using a complex-variable conformal mapping approach coupled with the 

FEM. Talib et al. [107] used the FEM to study the effect of a circular cutout on Kevlar-29/epoxy 

composite laminated plates. The different orientation angles of Kevlar-29 fiber were 
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investigated. An experimental investigation was also carried out to investigate the performance 

of these effects under compressive and tensile loads. Chen [108] developed a special finite 

element for evaluating the stress concentration around a circular hole in complex structures and 

used the complex variable formulation to derive a special set of stress functions that embody 

the stress concentration effects of a hole. In addition, to solve stress concentration problems in 

plane elasticity, Piltner [109] proposes a special finite element formulation with circular and 

elliptical holes and internal cracks.  A special hole element were developed by Wang et al. [110] 

to analyse the stress concentration of an infinite isotropic solid with elliptical hole, using the 

special fundamental solutions for an infinite domain containing a single elliptical hole which 

are derived based on complex conformal mapping and Cauchy integrals. This element was 

specifically used in the region near the hole boundary, while regular elements were used at other 

locations. Additionally, the stress concentration factors for cracks are also calculated by using 

these special finite elements. 

Conclusion 

This second chapter is dedicated to the acquisition of the knowledge necessary about composite 

materials to study our problem. In the first, we presented some general notions concerning 

composite materials as well as a brief review of approaches and theories used to analyze the 

behavior of multilayer composite structures. In the second part of this chapter, a compilation of 

exclusive research papers is presented that reviews the failure strength, some failure criteria 

found in the literature, and stress concentration of composite materials 
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Chapter 3 

 

Mathematical Formulation 
 

 

 

3.1. Introduction  
 

The purpose of this chapter is to expose the mathhematical formulation of the finite element 

used in order to study the failure mechanisms and the first ply failure (FPF) load. The FPF 

analysis is performed using a rectangular plate element with 6 degrees of freedom at each node. 

The present element is formulated based on the classical lamination theory (CLT) to calculate 

the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-

Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These 

criterions are implemented within the finite element code to predict the different failure 

damages and responses of laminated beams from the initial loading to the final failure.  

Sometimes designers need to make holes in different shapes in the laminate in order to meet 

the design requirements and for various practical reasons. For this, understanding the behavior 

of perforated laminates is necessary for the design of these complex structures.  The second 

part in this work focuse to study the stress concentration factor in an infinite plate with an 

unsymmetrical stacking sequence of plates that include a circular hole under arbitrary loading 

at infinity using a general analytical solution. The Greszczuk's method is extended by first 

introducing different arbitrarily oriented in-plane loads. Then, in the current solution, the 

formulations of the effective moduli of symmetrical and unsymmetrical composite laminated 

plates are presented this solution used only if the assumption that the plate is infinite in size. 

However, to emulate as much as possible the true structural behavior when the plates are not 

infinite, the finite-width correction factor given by Tan [111] is added. 
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3.2 Finite element formulation 
 

The finite element used in this investigation is a rectangular element of 24 degrees of freedom 

per element. Fig 3.1 shows the geometry and nodal variables of the element 

    

Fig 3. 1 : Geometry and nodal variables of the element (Rectangular plate element) 

 

The current element has four (4) nodes, each with six degrees of freedom. The nodal degrees 

of freedom of the present element are  
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The presented element is a combination of a membrane element and a rectangular plate element 
with a high degree of accuracy. The membrane displacement of the developed element, through 
the element, can be expressed in terms of the interpolation functions as 
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Where  e
m  is the membrane displacement vector of the element. The Eq. (3.1) can be written as 
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The interpolation functions can be used to express the membrane strain-displacement relation 

as 
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The transverse displacement w of the element is expressed as 
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The displacement function of the plate element, given by Eq. (3.6), can be written in a vector 

form as 
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With ( , )w x y is the displacement function of the plate element and  T  is the constant 

parameters vector. As the plate element requires four degrees of freedom per node, 
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The plate displacements through the element can be expressed in terms of the nodal 

displacements as 
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So 
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Where the interpolation functions of the plate element are written as 
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The present element is based on the CLT, so the in-plane and out-of-plane displacements are 

given using eq. (3.14). On the other hand, based on the strain-displacement relation, the 

curvatures k can be given as 
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3.2.3 Kinematics relation 
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Based on Kirchhoff assumptions, the displacement field [94, 112] according to the CLT is given 

by the following equations:  

0

0

0

( , , ) ( , )

( , , ) ( , )

( , , ) ( , )

w
u x y z u x y z

x
w

v x y z v x y z
y

w x y z w x y


 




 


                                                                                  (3.14) 

Where 0u , 0v
 and 0w

 are the mid-plane displacement components of the plate element. The 

strain-displacement relations can be expressed as 
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                                                                    (3.15) 

3.3 Composite materials 
 

By adopting the classical laminate assumptions, the resultant forces N and moments M are 

related to the mid-surface strains ε0 and to the curvatures k by: 

    

0N A B

M B D k

    
    

                                                                                                             (3.16) 

Where the matrices [A], [B], and [D] are known as extensional, coupling, and bending rigidity 

matrices, respectively. These rigidities can be defined by: 

 
 

/ 2
2

/ 2

, , (1, , )
h

T

ij

h

A B D Q z z d z




   
                                                                                                   (3.17) 

With ijQ  denoting the coefficients of elasticity of a layer in the global coordinate system (x, y, 

z) of the laminate forming an angle  with the local coordinate system. The finite element used 

in this investigation is a rectangular element of 24 degrees of freedom per element. Figure 1 

shows the geometry and nodal variables of the element 

The relationship between stress and strain can be written as 
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                                                                                        (3.18) 

The ijQ  reduced stiffness components are expressed by : 
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,    66 12Q G  (3.19) 

The stress-strain relations for a layer k, expressed in the global coordinate system of 

laminated, are thus written: 

 

(3.20) 

 

where ijQ  are the coefficients of the stiffness matrix of a given layer k. They are expressed by 

the following relationships: 

 

 

 

                       (3.21) 

 

 

With sins    and cosc   

3.3.1 Plate subjected to hygrothermal environmental loading (temperature and moisture) 
 

The stress–strain relation of the composite laminated plate subjected to hygrothermal load (temperature 

rise ΔT and moisture rise ΔC) in the local coordinate is given by 
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                             (3.22) 

Where  t and m  are the thermal and moisture deformations, respectively, and which are 

given by relation: 
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 (3.23) 

Where 1 , 2 , 1  and 2  are thermal and moisture expansion coefficients, respectively. And 

T  and C  are the temperature and humidity or moisture rise, respectively . 

 

The stress–strain relation of each layer of the composite laminated plate subjected to 

hygrothermal load (temperature rise ΔT and moisture rise ΔC) in the globale coordinate is given 

by                 
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                     (3.24) 

 

 Stress Resultants 

The mid-plane forces of a plate and the moments are related to the deformations and curvatures 

by the following expressions: 
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             (3.25) 

And can be written as: 
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                                          (3.26)  

The thermal force and moment resultants are defined by: 

 
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The moisture force and moment resultants are defined by: 
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 stiffness matrix 

The total potential energy of a plate subjected to a distributed transverse loading is given by: 

'VU                                                                                                                                  (3.29) 

The equilibrium configuration is defined by the minimization of the total potential energy which 

means the cancellation of its first variation. 

0 VU                                                                                                                         (3.30) 

The element stiffness matrix eK  
 can be obtained as 

                        dsBDBBBBBBBBABK f
T

fm
T

ff
T

mm
T

m
e                             (3.31) 

The matrix  eK  can be written in the form:  

         eeeee KKKKK 4321                                                                                                                       (3.32) 

With : 

      m
T

m
e BABK 1 : Elementary membrane stiffness matrix. 

      f
T

m
e BBBK 2 : Elementary membrane-bending coupling stiffness matrix  

      m
T

f
e BBBK 3 : Elementary bending-membrane coupling stiffness matrix  
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 4

Te
f fK B D B           : Elementary bending stiffness matrix 

To obtain the total stiffness matrix of the structure, the elementary stiffness matrices are 

assembled. 

3.4 The steps to calculate Strain and stresses in a laminated  
 

A computer program is developed for calculating local strains and stress distributions in a 

laminated beam, subjected to the applied forces and moments, using the steps listed below: 

1- Calculate the values of the reduced stiffness matrix [Q] for each ply using its three 

elastic moduli, E1, E2, G12  and ν12. 

2- Use the [Q] matrix produced in step 1 and the ply angle to determine the value of the 

transformed global reduced stiffness matrix [ ]ijQ for each ply. 

3- Knowing the thickness tk, of each layer, find the coordinates of the top and bottom of 

each layer hi, i = 1…, n, and the total thickness h of the laminate using the following 

equations 

              




n

k
kth

1                                                                                                                          (3.33) 

4- The location of the mid-plane is h/2 from the top or the bottom surface of the laminate. 

The z-coordinate of each ply k surface (top and bottom) is given by 

 Ply 1: 

2/0 hh 
 (top surface) 

          11 2/ thh   (bottom surface). 

 

 Ply k: (k= 2, 3,.., n-2, n-1) 





 

1

1
1 2/

k

k thh
 (top surface). 





k

k thh
1

2/
 (bottom surface). 

 Ply n: 
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nn thh  2/1  (top surface). 

2/hhn   (bottom surface). 

5-  Using the matrix from step 2 and the position of each layer from step 3, to calculate the 

three stiffness matrices [A], [B], and [D] using Eq. 3.17. 

6- Substitute the stiffness matrix values found in step 4 and the applied forces and moments 

in Eq. 3.16. 

7- Solve the six simultaneous equations, Eq. 3.16, to find the mid-plane strains and 

curvatures. 

8- Now that the position of each layer is known, find the global strain in each layer using 

the following expression 
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                                                                                                      (3.34) 

9-   To find the global stresses in each lamina, use the following stress-strain expression:  
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10-   To find the local strains, use the following transformation equation: 
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                                                                                                      (3.36) 

11-   For finding the local stresses, use following the transformation equation 
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                                                                                                               (3.37) 

3.5 Failure Criterion 
 

As mentioned previously, the main objective of this study is to determine the failure load of 

laminated beams subjected to various bending conditions. Three different families of failure 
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criteria are adopted in this investigation. The first is the maximum stress criterion (there is no 

interaction between the lamina stresses). The second criteria are Tsai-Hill and Tsai-Wu (there 

is an interaction between the lamina stresses). The last one is the Hashin criterion. 

3.5.1 Maximum stress failure criterion 
 

The maximum stress failure criterion has the advantage of being simple in form and easy 

to apply, but this criterion ignores the interactions between different stress components (one 

can assume that there is no interaction between stresses or strain components). If one of the 

following conditions is verified, failure initiation begins. 

   

1 1
1 1

2 2
2 2

12

1 for 0 and 1 for 0;

1 for 0 and 1 for 0;

1

t c

t c

X X

Y Y
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  



   

   


                                                                                     (3.38) 

where 1 , 2  and 12  are the ply normal and shear stress components, tX and cX are the 

longitudinal strengths in tension and compression, respectively. tY  and cY are the transverse 

strengths in tension and compression, respectively. S is the in-plane shear strength. 

 

3.5.2 Tsai-Hill quadratic failure criterion 
 

Tsai-Hill failure criterion directly adapts to the classic Von-Mises criterion [49]. Then, Tsai 

and Hill made some modifications to apply this criterion to anisotropic materials. Contrary to 

the maximum stress criterion, this failure criterion considers the interaction between the stress 

components. 

 

2 2 2

1 2 1 2 12
2

1
X Y X S

                 
                                                                                                           (3.39) 

3.5.3 Tsai–Wu failure criterion 
 

The Tsai-Wu failure criterion is widely used in anisotropic materials and is based on the 

total strain energy failure theory [94]. This criterion takes account of the interaction between 

stresses. When a laminate's failure index approaches 1, the Tsai-Wu criterion predicts failure. 
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1, , 1,2,...,6i i ij i jF F i j    
                                                                                     (3.40) 

Based on this criterion, the failure load can be calculated using the following expression: 

2 2 2
2 2 2 21 2 1 2 12 1 2
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                                                         (3.41) 

By designating the value of   that causes failure as f , Eq. 3.41 can be rewritten as: 

2 1 0f fA B   
                                                                                                                         (3.42) 
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3.5.4 Hashin failure criterion 
 

The Hashin criterion is a failure criterion that is physically based. This criterion can predict 

the failure modes and mechanisms of unidirectional composites. It is based on four main modes 

of material failure, as presented in Table 3.1. 

Table 3. 1. Failure modes based on Hashin criterion 

Failure modes Mathematical 

expression 

Fiber failure in tension  

11 0   

2 2

11 12 1
tX S

        
    

Fiber failure in 

compression 11 0   

2

11 1
cX

 
 

   
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Matrix failure in tension  

22 0   

2 2

2 2 1 2 1
tY S

        
    

Matrix failure in 

compression 22 0   

2 2

22 12 1
cY S

        
    

 

3.6 Stress concentration  
 

3.6.1 Stresses in infinite anisotropic plates containing a circular holes: 
 

Greszczuk [86] provides the first rough analytical solution for an anisotropic single lamina 

subjected to uniaxial load as illustrated in Fig. 1a, employing Green and Zerna's [85] analytical 

solution. This solution enables us to determine the circumferential stress   at any location 

around the hole’s periphery as:         

                                                        1
1 2 3 x                                                    (3.44) 

With 

    1 1 2 1 2 1 21 1 1 2cos 2                   

    2
2 1 2 1 24 1 cos 2 sin                

                                             3 1 24 1 sin2 sin cos                                            (3.45) 

   2 2
1 1 2 21 2 cos 2 1 2 cos 2                      

 

The constants 1  and 2  are calculated as follows: 

                                                        1 1 / 1      ,    2 1 / 1                                  (3.46) 

With 

 
1

1 2
2 2        

  ,      
1

1 2
2 2        

   ,    
2

12
122

E

G
    ,    

2

1

E

E
  ,                     (3.47) 

Where 1E , 2E  are the elastic modulus, 12G is shear modulus, 12  Poisson’s ratio in material. 

And θ is the fiber orientation angle.   
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The approximate analytical solution for cases of anisotropic plates under biaxial or shear 

loading conditions as illustrated in Figs 3.2(b) and 3.2(c) can be found by decomposing the 

applied stress into the stress components linked to the axes of symmetry of the material [113]. 

 

 

 

 

 

  

        

  

 

Arslan et al.[113] Greszczuk's[86] analytical solution for determining the circumferential stress 

at the edge of a circular cut. After superposition, the resulting formula for circumferential stress 

at a location   along the border of an aperture in anisotropic plates is    

                                                        1
1 1 2 2 3 3M N M N M N                                            (3.48) 

With 

    1 1 2 1 2 1 21 1 1 2cos 2N                   

    2 1 2 1 2 1 21 1 1 2 cos 2N                   

                                                                   3 1 24 1 sin2N                                               (3.49) 

   1 1 cos 2 1 cos 2 / 2x yM           

   2 1 cos 2 1 cos 2 / 2x yM           

a b c 

Fig 3. 2: anistropic composite single-ply with an opening under different kinds of loading: a: uniaxial 

load, b: biaxial load, c: shear loading 
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 3 sin 2 / 2x yM        

 

3.6.2 Stresses in infinite laminated plates containing circular holes: 
 

The circumferential stress at the boundary of the opening in a laminated plate containing a 

several plys; with various material characteristics and various fiber orientation angles as well, 

can be roughly determined from the preceding given solutions when using the equivalent elastic 

constants corresponding to a symmetric laminated composite plate. Once the laminate's 

resultant stresses are understood, the multilayer plate theory is used to calculate the local 

stresses in each ply. Here, symmetry and a uniform thickness of the laminate are assumed. Each 

lamina is uniform, orthotropic, and precisely connected to the next. The stiffness moduli Aij 

values for symmetrically laminated plates [114] can be calculated based on the classical 

laminate theory CLT by taking     1
A a

  

Where 

                             
* * *
11 12 16

1 * * *
21 22 26
* * *
61 62 66

a a a

a H a a a

a a a



 
   
  

,    
2

1,2,3,4

2

cos 2 , cos 4 ,sin 2 ,sin 4

H

H

V dz   


   (3.50) 

 

                                      

*
11 1 1 2
*
22 1 1 2 2
*
12 4 2 30

a U V V H

a U V V U

a U V U

    
         

        

 , 

*
66 5 2
*
16 3 4 2
*
26 3 4 3

0

0 0.5

0 0.5

a U V H

a V V U

a V V U

     
        

        

 (3.51) 

Where H denotes the total thickness of the plate and jU designates the laminate invariants in 

terms of reduced stiffness ijQ  matrix components, which are described as: 

 1 11 22 12 663 3 2 4 /8U Q Q Q Q     

 2 11 22 / 2U Q Q   

                                                           3 11 22 12 662 4 / 8U Q Q Q Q                                           (3.52) 

 4 11 22 12 666 4 /8U Q Q Q Q     

 5 11 22 12 662 4 /8U Q Q Q Q     
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 These are the invariants provided for the entire laminate via the composite's reduced stiffness 

matrix components. The circumferential stresses at the boundary of the aperture (corresponding 

to the varied loads) for symmetric laminated plates can be found by replacing 1  and 2  in Eq 

(3.46) with 1x  and 2x  as follows: 

                                                       ' '
1 1 / 1x     ,    ' '

2 1 / 1x                                (3.53) 

With: 

            
1

1 2
' ' '2 ' 2        

,   
1

1 2
' ' '2 ' 2        

,  '

2
y

xy
xy

E

G
   and  ' y

x

E

E
   (3.54) 

 

With xE , yE , xyG , and xy  denoted the equivalent elastic constants for the symmetric laminated 

plate. 

Khechai et al. [73] extended the prior solutions of Greszczuk [86] and Arslan [113] to calculate 

the stress distribution in single layer and multilayered composite plates exposed to uniaxial, 

biaxial, and shear loading directed at an arbitrary angle   with respect to the x-axis (as shown 

in Fig 3.3). 

 
Fig 3. 3: Laminated plate with arbitrarily oriented fibers under general loading conditions 

 

By using the static equilibrium equation, the stresses created in each layer of the laminate due 

to oriented fiber and loading must be resolved into components (along the fiber direction, 

transverse direction, and shear) related to the material's axes of symmetry. 
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The stress distribution function might then be calculated using superposition. The stress 

distribution for the multilayered composite plate under general-directed loading as illustrated 

in Fig 3.3, can be determined  

                                                                       1
1 1 2 2 3 3 4BC B C B C C

                                    (3.55) 

With 

    1 1 2 1 2 1 21 1 1 2cos 2C x x x x x x             

     2 1 2 1 2 1 21 1 1 2cos 2C x x x x x x             

                                                                    3 1 24 1 sin2C x x                                             (3.56) 

   2 2
4 1 1 2 21 2 cos 2 1 2 cos 2C x x x x                 

       1 1 cos 2 1 cos 2 / 2 sin 2B S                  

       2 1 cos 2 1 cos 2 / 2 sin 2B S                  

     3 sin 2 / 2 cos 2B S             

The laminate equivalent elastic constants are only for balanced and symmetric laminates. If the 

laminate is not balanced or symmetric, these solutions cannot be employed [5] 

 

3.6.3  Effective Moduli for unsymmetrical laminated plates: 
 

In the anisotropic plate, the constitutive equations of a lumped sub-laminated plate are obtained 

from the CLT as: 

                                                                   
0

T

a b N

b d Mk

     
    
    

                                                 (3.57) 

With 

                                                                       
1

T

a b A B

b d B D


   

   
   

                                               (3.58) 

With 0 and kare mid-plane strain and curvature, respectively. And N , Mare the force and 

moment resultants, respectively. A, B, and D are extensional, coupling and bending stiffness of 

the lumped sub laminate, respectively. 

Chen and Chan [115] derived equations for calculating the effective equivalent elastic modulus 

while accounting for shear and bending deformations. These equivalent moduli were 

determined by elements of the matrix P, which was described as follows: 
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                                                                               1 T
P a b d b

                                            (3.59) 

 

The effective modulus, xE  and yE can be calculating as 

                                                     
2

16
11

66

1
xE

P
P t

P


 

 
 

,  
2

26
22

66

1
yE

P
P t

P


 

 
 

                                    (3.60) 

Similarly, xy and xyG can be written as 

              

16 26
12

66
2

16
11

66

xy

P P
P

P

P
P

P




 


 ,  

   2 2
66 16 22 12 26 16 26 112

11 22 12

1

1
2

xyG

P P P P P P P P t
P P P


 

   
  

      (3.61) 

With t is total thickness of the lumped layers. 

 

3.6.4 The correction factors for finite-width for an anisotropic plate containing a circular 
hole : 
 

In engineering design, we typically use the term "stress concentration factor" (SCF) 
TK  , which 

is the ratio of the circumferential stress   to the reference stress of the gross cross-section 

(applied stress), to assess the structural integrity of a material. The solutions mentioned above 

are only applicable if the size of the opening is small compared to the dimensions of the plate, 

under the assumption that the plate is infinite in size. However, to emulate as much as possible 

the true structural behavior when the plates are not infinite, the finite-width correction factor 

given by Tan [111] is added in the preceding solution. 

Tan [111] calculated the finite width correction factor of anisotropic and orthotropic plate with 

a central elliptic opening. The finite width correction factor is given by (for orthotropic 

laminates) 

                                 3 6 213(1 ) / [2 (1 ) ] ( ) ( 3)[1 ( ) ]2
T

T
T

K
M K M

K
   


                                     (3.62) 

   2 31
( ) 1 8 [3(1 ) / [2 (1 ) ]] 1 1

2
M                        (3.63) 

 

                                                         (3.64)/D W 
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Chapter  4 

 

Results and Discussion - failure load of non-perforated 
laminated 

 
 

4.1. Introduction : 

 

This chapter presents the results of failure loads under both static and hygrothermal loading 

conditions, as well as their analyses. The first part of this chapter aims to validate the present 

element by calculating the displacement and first-ply failure load (FPF) under different loading 

conditions and boundary conditions, while also validating the stress and effort resultants under 

temperature and moisture. The refined rectangular plate element used in the analysis is 

formulated based on the classical lamination theory (CLT) to calculate in-plane stresses. 

Several failure criteria, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are 

utilized to predict failure mechanisms, as discussed in the previous chapter. The numerical 

results obtained from the present element are compared favorably with those from analytical 

approaches and those found in the literature. In the second part of this chapter, a parametric 

study is conducted to investigate several parameters, such as fiber orientations, stacking 

sequences, boundary conditions, load types, and the effects of temperature and moisture, to 

understand their impact on the strength of these laminated beams. 

 

4.2. Validation of the present element: 
  
In order to assess the performance of the present element to convergence, various examples are 

studied considering symmetric laminated beams and plates with different stacking sequences, 

different loadings, geometry, and boundary conditions. The numerical results obtained are 

compared with analytical solutions and other numerical results found in literature based on 

high-order finite element models. Before beginning this examination, a convergence study of 

the current element should be performed to ensure that the present finite element performs. The 



Chapter 4                                                                                                  Results and Discussion 
 

60 
 

obtained results are extracted from FORTRAN and MATLAB codes written by the authors 

based on the proposed formulations mentioned in the preceding sections. 

4.2.1 Simply supported cross-ply laminated beam [902/0]s under a concentrated load 

In the first example, a simply supported (SS) six-layer laminated beam subjected to a 

concentrated load P=100 kN is considered (see Fig 4.1). The concentrated load is applied at the 

mid-span of the beam (three-point bending test). The thickness of each layer is 2 mm. 

  

 

Fig 4. 1: Simply supported laminated beam [902/0]s under a concentrated load 
 

The geometric and the mechanical characteristics of the laminated beam are presented in Table 4.1. 

Table 4. 1: Geometrical parameters and mechanical proprieties 
 

1E
 

(MPa) 

2E  
 (MPa) 

12G  
(MPa) 

12v  P  
(kN) 

Length  L 
(mm) 

Width b 
(mm) 

Thickness h 
(mm) 

123× 𝟏𝟎𝟕 8.5× 10଻ 4.1× 10଻ 0.25 100 1000 200 12 

 

The numerical results obtained by the present element are compared with the analytical 

solution. The maximum value of the analytical displacement is calculated using the following 

relation  

3

48 eq

PL
w

E I


                                                                                                                                      

With         
3

11

12
eqE

D h


                                                                                                                           

The convergence of the transverse displacement, using different mesh sizes, is tabulated in 

Table 4.2. 
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Fig 4. 2: The meshed configuration of the laminated beam 
 
Table 4. 2: Displacement convergence of a simply supported beam subjected to a concentrated load. 

 

Mesh size 4×2 8×4 10×4 12×6 20×8 40×8 Analytical 
displacement 

Displacement 0.56671 0.56676 0.56677 0.56678 0. 5668 0.56681 0.567 

Error (%) 5.114E-2 4.232E-2 4.056E-2 3.880E-2 3.52E-2 3.35E-2    - 

As can be observed, the current finite element has a high convergence rate. By using only 10×4 

elements, it is almost adequate to determine the maximum deflection of the laminated beam 

with enough engineering accuracy. In addition, for mesh size (40×8) elements, the error 

percentage of the transverse displacement predicted by employed element is around 3.35E-2% 

compared to the analytical solution. Based on prior convergence studies, it is clear that (40 × 8) 

elements are most sufficient to get more precise results. Therefore, all the subsequent results 

are obtained using (40×8) elements. 

4.2.2. FPF analysis of a simply supported cross-ply [908/08]s beams 

The second example is considered in order to verify the present element's ability and validity 

in predicting the FPF strength of beams with various geometrical parameters. In this example, 

the FPF load and its corresponding displacement of cross-ply laminated beams [908/08]s are 

predicted using the present element. The analyzed beams are SS, and a concentrated load is 

applied at the mid-span of the beams. The laminated beams are made of graphite/epoxy and the 

material characteristics, geometrical, and strength parameters are listed in Table.4.3. 

Table 4. 3: Geometric and material properties of AS4/3502 graphite/epoxy. 

 1E   

(MPa) 

2E
 

 (MPa) 

12G   

(MPa) 

12v   tX    

(MPa) 

cX
   (MPa)
 

tY        

(MPa) 

cY
(MPa) 

S
 

(MPa)
 

141200 11500 6000 0.3 2343 1723 51 223 86 

Laminate Length  L 
(mm) 

Width b 
(mm) 

Thickness h  
(mm) 

Lay-up     

A1 139.7 24.84 4.648 [908/08]s     
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A2 152.4 25.65 4.547 [908/08]s     

 

The FPF analysis of the considered beams has also been examined by M. L. Nazargah [59] 

using a high-order global-local (HO-GL) finite element model, Kim et al. [52] using a beam 

finite element with LW constant shear, and the analytical results obtained by the CLT. One can 

see in Tables 4.4 and 4.5 that, by using different failure criteria, the predicted FPF loads and 

their corresponding deflections produced by the current element are in good agreement with the 

numerical and analytical results. Therefore, the performance of the developed element is 

confirmed both in terms of good accuracy and a quick rate of convergence.  

Table 4. 4: FPF load (N) of the laminated graphite/epoxy beams. 
 

Failure criteria Analytical 
results based 

on CLT 

Numerical 
results based on 
HO-GL model 

[60] 

Numerical 
results based 
on LW theory 

[52] 

Numerical 
results based 
on Present 

element 

 

A1      

Hashin 325 303 - 356 Layer 1 

Maximum Stress 325 304 307 356 Layer 1 

Tsai-Hill 325 304 - 356 Layer 1 

Tsai-Wu 327 304 307 361 Layer 1 

A2      

Hashin 295 274 - 325 Layer 1 

Maximum Stress 295 275 307 325 Layer 1 

Tsai-Hill 295 275 - 325 Layer 1 

Tsai-Wu 297 275 307 329 Layer 1 

 

Table 4. 5:  Displacement (mm) using FPF load of the laminated graphite/epoxy beams. 
 

Failure criteria Analytical results 
based on CLT 

Numerical results 
based on Present 

element 

A1   

Hashin 3.210 3.513 

Maximum Stress 3.210 3.513 

Tsai-Hill 3.210 3.513 

Tsai-Wu 3.229 3.562 

A2   

Hashin 3.900 4.293 

Maximum Stress 3.900 4.293 

Tsai-Hill 3.900 4.293 

Tsai-Wu 3.927 4.346 
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4.2.3. Clamped  supported cross-ply laminated plate [0/90]s under a concentrated load 

study consists of square [0/90]s laminated plates with sides a=b = 10 cm. The plates are clamped 

on the four sides (CC) and subjected to concentration load (Failure load = 1410 N). The elastic 

properties used in this study are given in Table 4.6. The convergence of the displacement 

obtained is presented in Table 4.7 and shown on Fig 4.3. 

Table 4. 6:  Material property. 
 

𝑬𝟏(MPa) 𝑬𝟐 (MPa) 𝑮𝟏𝟐 (MPa) 𝒗𝟏𝟐  a et b (mm) h (mm) 
141000 9340 4500 0.35 100 (0.5/0.5/0.5/0.5) 

𝑿𝒕 (MPa) 𝒀𝒕 (MPa) 𝑿𝑪 (MPa) 𝒀𝑪 (MPa) S (MPa)  
1500 180 1000 240 150  

 

Table 4. 7: Convergence of the displacement for a clamped laminated plate subjected to a 

concentrated load. 

 

Mesh Displacement (mm) 

2*2 1,9166 

4*4 2,1357 

6*6 2,1867 

8*8 2,2003 

10*10 2,2066 

Analytic displacement 2,1750 

 

 

Fig 4. 3: Convergence of the displacement for a clamped laminated plate subjected to a concentrated 

load 

 

One can see from table 4.7 and Fig.4.3 that, the numerical results obtained by the present 

element compare favorably with those obtained by the analytic solution. It is observed that the 
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results are very close to the reference results, which demonstrates the accuracy of the present 

element. 

4.2.4. Simply supported cross-ply laminated plate [0/90/0] under a uniforme loading 

 

In this example, a rectangular laminated plate is simply supported (SSSS) with fiber orientation 

[0/90/0] and subjected to uniform load; two thickness ratios are used: 0.01 and 0.02. The results 

obtained using the present element are compared with those obtained by Reddy [116] and the 

first-order shear deformation theory (FSDT). Table 4.8 shows the convergence of the transverse 

displacement using various mesh sizes. The mechanical characteristics are: 1 174.6E   GPa , 

2 7E   GPa ,  12 13 3.5G G   GPa, 23 1.4G   GPa, 12 13 0.25    

The maximum value of the analytical displacement is calculated using the following relation  

3
22

4
0

10
wE h

w
q a

  

Table 4.8: Convergence of the displacement for a simply (SSSS) laminated plate subjected to uniform 

load.  
3

22
4

0

1 0
w E h

w
q a

  

 

 

 

 

 

 

 

 

 
Table 4.8 shows that the results are quite close to those obtained by in addition to those found 

by first-order shear theory and higher-order theory [117] , indicating that the current element, 

in general, gives accurate results when compared to the literature. 10 * 10 mesh division was 

used for the entire plate analysis. 

Mesh Thickness ratio h/a 
0.01 0.02 

2×2 0.68103 0.6220 

4×4 0.6696 0.6399 

6×6 0.6694 0.6669 

8×8 0.6693 0.65193 

10×10 0.6693 0.6545 

Reddy [116] 0.6705 0.6838 
First-order shear deformation 

theory[116] 
0.6697 - 

higher-order theory[117] 0.6713 - 
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However, the second and third test examples are taken into consideration in order to verify the 

viability and capability of the present element and to assess the stress of beams subjected to 

uniform temperature and moisture. 

4.3.Validation of plate subjected to Hygrothermal environmental condition 

4.3.1 Simply supported cross-ply laminated plate subjected to uniforme temperature  

A symmetric laminated plate [0/90] s simply supported (SS) subjected to a uniform temperature 

T = 50 °C the thickness of each layer is 0.5. A 10x10 mesh division has been adopted. The 

mechanical characteristics of the laminated plate are presented in Table 4.9. The stress and 

stress resultants of laminated materials are presented in Table 4.10 and compared with an 

analytical solution.   

Table 4. 8: Geometrical parameters and mechanical proprieties. 
 

 1E   

(MPa) 

2E
 

 (MPa) 

12G   

(MPa) 

12v  T  

(C°) 1  2  1  2  

142000 10300 7200 0.27 50 -9e-7 2.7e-5 1e-2 2e-1 

tX    

(MPa) 
cX

   (MPa) 
tY        

(MPa) 
cY

(MPa) 

S
 

(MPa) 

    

2280 1440 57 228 71     

 
Table 4. 9:  Stress convergence of a simply supported beam subjected to uniform temperature. 

 

 Nx Ny Nxy 
x  y  xy  

Present element  11.2034 11.2034 0 12.924 12.924 0 

Analtical 11.203 11.203 0 12.925 12.925 0 

 

The results of stress and effort resultants on laminated materials are determined and compared 

with analytical results. The results show excellent agreement with the analytical solution. 

4.3.2.Simply supported cross-ply laminated plate subjected to uniform moisture 

A simply supported (SS) four-layer laminated plate subjected to uniform moisture C=0.05 . 

The mechanical characteristics of the laminated plate are presented in Table 4.9. The stress and 

efforts resultant are presented in table 4.11 
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Table 4. 10:  Stress convergence of a simply supported beam subjected to uniform moisture. 
 

 Nx Ny Nxy 
x  y  xy  

Present element  204.280 204.280 0 88.018 88.018 0 

Analytical 204.281 204.281 0 88.018 88.018 0 

 

The stress and effort results of a symmetrical beam subjected to uniform moisture equal to 5% 

are shown in Table 4.11. The results are compared with an analytical solution. This finding 

shows that the result obtained by the current element provides excellent agreement with the 

analytical solution, which indicates the performance and accuracy of the present element.  

4.4.Parametric study: 

4.4.1. Effect of boundary condition and stacking sequences on the FPF load in laminated 

plate: 

After the convergence test, the accuracy of this element was validated. Now, one can use it 

to analyze the influence of boundary conditions and the direct influence of fiber orientation 

angle on the failure load and also determine the damage location.  A Tsai-Wu failure criterion 

is used to determine the FPF load of plates with stacking sequence  0 /
s

  under concentrated 

load. Different boundary conditions are considered as given in table 4.12. The results are 

presented in table 4.13 and Figs 4.4 and 4.5. ). The elastic properties used in this study are given in 

Table.4.6. 

Table 4. 11: Boundary conditions employed in numerical tests. 
 

 Boundary conditions 
CC 2

0; 0; 0; 0; 0; 0
w w w

u v w
x y x y

  
     

   
2

0; 0; 0; 0; 0; 0
w w w

u v w
x y x y

  
     

   
 

 

SS 2

0; 0; 0; 0; 0; 0
w w w

u v w
x y x y

  
     

   
2

0; 0; 0; 0; 0; 0
w w w

u v w
x y x y

  
     

   
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Table 4. 12:  The FPF strength of simply supported and clamped laminated plates with different 

stacking sequences. 

 

Boundary 
condition 

Stacking 
sequences 

Failure load 

 Analytical Results Present element Location 

 
 
 

CC 

[0°/0°]s 1650 1140 Bot 4 
[0°/15°]s 1680 1160 Bot 4 
[0°/30°]s 1732 1220 Bot 4 
[0°/45°]s 1800 1300 Bot 4 
[0°/60°]s 1850 1360 Bot 4 
[0°/75°]s 1880 1400 Bot 4 
[0°/90°]s 1880 1410 Bot 4 

 
 
 

SS 

[0°/0°]s 1210 905 Bot 4 
[0°/15°]s 1230 930 Bot 4 
[0°/30°]s 1290 990 Bot 4 
[0°/45°]s 1340 1040 Bot 4 
[0°/60°]s 1370 1080 Bot 4 
[0°/75°]s 1370 1100 Bot 4 
[0°/90°]s 1370 1102 Bot 4 

 

 

Fig 4. 4: The FPF strength of simply supported laminated plates with different stacking sequences. 
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Fig 4. 5: The FPF strength of clamped laminated plates with different stacking sequences. 
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Fig 4. 6: Damage distributions of fixed supported laminated plates [0/90]s under concentrated load. 
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It is observed that, for both boundary conditions, by increasing the fiber orientation angle, there 

is an increase in failure load, and when the stacking sequences are [0/75]s and [0/90]s, the 

failure loads  are almost constant for both boundary conditions. The maximum failure load 

obtained using the present element is 1410 N for clamped plates and 1102 N for a simply 

supported laminated with [0/90]s. The first surface failure (FPF) is the bottom side of the fourth 

layer. 

4.4.2.The FPF load of Laminated Beams : 

 

After establishing the accuracy of the present element, a comprehensive analysis of bending, 

and damage of multilayered beams is carried out. The effects of loading, boundary conditions, 

number of layers, and stacking sequences are investigated and discussed in detail. The 

following analysis is focused on glass/epoxy beams using the present element, and the results 

are compared to the analytical solution based on the CLT. 

4.4.2.1. Effect of loading and boundary conditions on the FPF strength  
 

After validating the performance of the presented elements for the analysis of cross-laminated 

beams, this section considers a number of numerical tests to study the transverse deformation 

and FPF strength. Table 4.14 presents both loading and boundary conditions, for which the 

numerical results are obtained, where CC, SS, and CF respectively indicate: fully clamped, fully 

simply supported, and clamped from one side and free from the other, respectively. 

Table 4. 13:  Boundary conditions used in the numerical tests. 
 

Abbreviations Restrained edges  

CC 2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

      
SS 2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

     
 

CS 2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

   
2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

   
 

 

CF 2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

      
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CC with two 
concentrated 

loads 

2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

     
 

 

CC with a 
distributed load 

2

0, 0, 0, 0, 0, 0
w w w

u v w
x y x y

  
     

      
 

The laminated beams are made of glass/epoxy, and their corresponding geometrical and 

material characteristics are given in Table 4.15. 

Table 4. 14: Geometric and material properties of glass/epoxy beams. 
 

1E  

(MPa) 

2E  

 (MPa) 

12G  

(MPa) 

12v  tX    

 (MPa) 

cX  

(MPa) 

tY   

(MPa) 

cY  

(MPa) 

S  

(MPa) 
141000 9340 4500 0.35 1500 1000 180 240 150 

Laminate Length  L 
(mm) 

Width b 
(mm) 

Thickness 
h  (mm) 

Lay-up     

A3 1000 100 2 [0/90]s     

 

Table 4.16 presents the comparisons of maximum transverse displacement and FPF loads of 

glass/epoxy laminated beams using various failure criteria. 

Table 4. 15:  Displacement (mm) and FPF load (N) of glass/epoxy laminated beams. 

Boundary condition Failure theory Displacement FPF load 

  Analytical 
results based 

on CLT 

Numerical 
results based on 
present element 

Analytical 
results based 

on CLT 

Numerical 
results based 

on present 
element 

 

Tsai-Wu 305.44 300.92 490.00 482.00 

Hashin 284.87 287.22 457.00 489.00 

Max Stress 284.87 242.89 457.00 389.00 

Tsai-Hill 286.74 242.89 460.00 389.00 

 

Tsai-Wu 649.40 611.52 260.00 245.00 

Hashin 606.94 534.15 243.00 214.00 

Max Stress 606.94 534.15 243.00 214.00 

Tsai-Hill 609.44 536.65 244.00 215.00 

 

Tsai-Wu 2515.52 2436.60 63.00 61.00 

Hashin 2315.88 2276.90 58.00 57.00 

 Max Stress 2315.88 2316.80 58.00 58.00 

 Tsai-Hill 2355.81 2316.80 59.00 58.00 

Tsai-Wu 365.06 360.38 327.00 330.00 
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Hashin 340.50 334.19 305.00 306.00 

Max Stress 340.50 352.76 305.00 323.00 

Tsai-Hill 342.73 336.38 307.00 308.00 

 

Tsai-Wu 235.54 238.71 291.00 295.00 

Hashin 219.35 212.25 271.00 278.00 

Max Stress 219.35 239.74 271.00 314.00 

Tsai-Hill 220.97 213.01 273.00 279.00 

 

Tsai-Wu 237.48 234.55 0.0076 0.007 

Hashin 221.86 217.80 0.0071 0.0065 

Max Stress 221.86 237.90 0.0071 0.0071 

Tsai-Hill 221.86 217.80 0.0071 0.0065 

 

On the other hand, the transverse deflection distributions of glass-epoxy laminated beams using 

various boundary conditions are presented in Fig 4.7.  

 

CF 

 

CS 

 

CC 

 

CC 2loads 

 

SS 

 

CC With 
distributed 

load 

 

Fig 4. 7: The transverse displacement distribution of FPF for different boundary conditions in glass-

epoxy laminated beams 
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The numerical results are obtained for various schemes of loading and different boundary 

conditions. These results are compared to those obtained by the analytical solution based on the 

CLT. 

As can be seen in Table 9, for both displacement and FPF load results, there are no significant 

differences between the present results and the analytical solutions. For example, by using the 

Tsai-Wu failure theory, the maximum displacements obtained by the present element and CLT 

are almost the same, and they equal 300.92 mm and 305.44 mm, respectively. On the other 

hand, by considering the same example, the predicted FPF loads obtained using the Hashin 

criterions are 460.00 N and 457.00 N, respectively. Moreover, it can be observed that the BC 

and loading have a remarkable impact on the FPF loads.  

 

4.4.2.2. Effect of stacking sequences on the FPF strength and deflection of FPF 
 

In the present section, clamped and simply supported glass/epoxy multilayered beams are 

studied. The computational results are obtained for various symmetric stacking sequences. Two 

different configurations of stacking sequences,  0 /
s

  and 90 /
s

  , are considered to see the 

direct effect of fiber orientation on FPF load and deflection of FPF. Furthermore, by using 

Hashin criterion, the damage mechanism and location can easily be detected. Tsai-Wu criterion 

is also adopted for comparison purpose. In these examples, we kept the same geometrical and 

mechanical properties of the previous beams and changing only fiber orientation and the 

support conditions. 

The FPF results of glass/epoxy beams subjected to a concentrated load at the mid-span of the 

beams are highlighted in Tables 4.17, 4.18 and Figs 4.8 and 4.9 Tables 4.19, 4.20 and Figures 

4.10 and 4.11 show the transverse deformation caused by the FPF load of glass/epoxy beams. 

Table 4. 16:  FPF loads (N) of clamped and simply supported [0°/θ°]s glass/epoxy beams. 
 

BC Lay-up Tsai-Wu criteria Hashin criteria 

  Analytical 
results based 

on CLT 

Numerical 
results based on 

the present 
element 

Analytical 
results based 

on CLT 

Numerical results based on the 
present element 

Load Dominant Failure 
Mode Type 

CC [0°/0°]s 547.0 542.0 510.0 407.0 Fiber compression 

[0°/15°]s 506.0 503.0 471.0 401.0 Interface 

[0°/30°]s 477.0 475.0 444.0 393.0 interface 
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[0°/45°]s 478.0 475.0 446.0 389.0 interface 

[0°/60°]s 484.0 480.0 451.0 388.0 interface 

[0°/75°]s 488.0 482.0 455.0 389.0 interface 
[0°/90°]s 490.0 482.0 457.0 389.0 Fiber compression 

SS [0°/0°]s 284.0 269.0 270.0 231.0 Fiber compression 

[0°/15°]s 271.0 258.0 265.0 228.0 Fiber compression 

[0°/30°]s 252.0 243.0 254.0 221.0 Fiber compression 

[0°/45°]s 246.0 237.0 246.0 215.0 Fiber compression 

[0°/60°]s 251.0 239.0 243.0 213.0 Fiber compression 

[0°/75°]s 257.0 243.0 243.0 213.0 Fiber compression 

[0°/90°]s 260.0 245.0 243.0 214.0 Fiber compression 

 

Table 4. 17: FPF loads (N) of clamped and simply supported [90°/θ°]s  glass/epoxy beams. 
 

BC Lay-up Tsai-Wu criteria Hashin criteria 

  Analytical 
results based 

on CLT 

Numerical 
results based on 

the present 
element 

Analytical 
results based 

on CLT 

Numerical results based on the 
present element 

Load Dominant Failure 
Mode Type 

CC [90°/0°]s 207.0 206.0 193.0 186.0 Fiber 
compression 

[90°/15°]s 148.0 142.0 137.0 131.0 Fiber 
compression 

[90°/30°]s 130.0 121.0 121.0 111.0 Fiber 
compression 

[90°/45°]s 107.0 98.0 100 94.0 Matrix tensile 

[90°/60°]s 97.0 95.0 92.0 90.0 Matrix tensile 

[90°/75°]s 98.0 98.0 94.0 92.0 Matrix tensile 

[90°/90°]s 99.0 97.0 95.0 93.0 Matrix tensile 

SS [90°/0°]s 109.0 104.0 102.0 95.0 Fiber 
compression 

[90°/15°]s 111.0 106.0 103.0 96.0 Interface 

[90°/30°]s 87.0 82.0 88.0 83.0 Matrix tensile 

[90°/45°]s 65.0 62.0 66.0 63.0 Matrix tensile 

[90°/60°]s 53.0 51.0 54.0 52.0 Matrix tensile 

[90°/75°]s 50.0 49.0 50.0 48.0 Matrix tensile 

[90°/90°]s 51.0 49.0 50.0 48.0 Matrix tensile 

 

Table 4. 18:  deflection of clamped and simply supported [0°/θ°]s glass/epoxy beams. 
 

BC Lay-up Tsai-Wu criteria Hashin criteria 

  Analytical results 
based on CLT 

Numerical results 
based on the 

present element 

Analytical results 
based on CLT 

Numerical results 
based on the present 

element 

CC [0°/0°]s 301.983 299,92 281,557 225,25 
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[0°/15°]s 286.829 285,94 266.989 227,99 

[0°/30°]s 283.879 282,89 264.24 234,11 
[0°/45°]s 293.687 292,02 274.026 239,22 

[0°/60°]s 301.156 299,110 280.622 241,82 

[0°/75°]s 304.23 301,0 283.675 243,00 
[0°/90°]s 305.437 300,92 284.866 242,89 

SS [0°/0°]s 629.087 595,23 598.076 511,16 

[0°/15°]s 614.999 584,27 601.383 516,34 

[0°/30°]s 601.368 578,19 606.141 525,86 

[0°/45°]s 609.634 585,81 609.634 531,45 

[0°/60°]s 629.137 597,82 609.085 532,79 

[0°/75°]s 643.149 607,38 608.114 532,40 

[0°/90°]s 649.40 611,52 606.94 534,15 

 

Table 4. 19: Deflection of clamped and simply supported [90°/θ°]s glass/epoxy beams. 
 

BC Lay-up Tsai-Wu criteria Hashin criteria 

  Analytical results Present element Analytical results Present element 

CC [90°/0°]s 623.482 620,43 581.314 560,25 

[90°/15°]s 532.822 512,07 493.22 472,49 

[90°/30°]s 653.232 611,30 608.01 561,0 
[90°/45°]s 706.818 651,10 660.578 624,96 

[90°/60°]s 754.393 741,3 715.507 702,72 

[90°/75°]s 812.226 813,20 779.074 763,65 
[90°/90°]s 826.519 810.30 793.125 777,36 

SS [90°/0°]s 1314.711 1253,5 1230.28 1145,0 

[90°/15°]s 1501.663 1434.8 1393.435 1299,4 

[90°/30°]s 1545.721 1460,9 1563.488 1478,7 

[90°/45°]s 1577.599 1508.7 1601.870 1533,1 

[90°/60°]s 1620.306 1561,0 1650.878 1591,6 

[90°/75°]s 1661.383 1628,2 1661.383 1595,0 

[90°/90°]s 1706.522 1639,1 1673.06 1605,7 

 

                                 (a) CC Tsai-Wu                                        (b) CC Hashin 

547

506
477 478 484 488 490

542
503

475 475 480 482 482

[0/0]s [0/15]s [0/30]s [0/45]s [0/60]s [0/75]s [0/90]s
0

100

200

300

400

500

600

F
a

ilu
re

 lo
ad

 (
N

)

Lay-up

 Analytical results
 Present element

510
471

444 446 451 455 457

407 401 393 389 388 389 389

[0/0]s [0/15]s [0/30]s [0/45]s [0/60]s [0/75]s [0/90]s
0

100

200

300

400

500

600

F
a

ilu
re

 lo
ad

 (
N

)

Lay-up

 Analytical results
 Present element



Chapter 4                                                                                                  Results and Discussion 
 

75 
 

 

                                  (c) SS Tsai-Wu                                           (d) SS Hashin 
 

Fig 4. 8:  FPF loads (N) of clamped and simply supported [0°/θ°]s glass/epoxy beams using different 

failure criterion. 
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Fig 4. 9: FPF loads (N) of clamped and simply supported [90°/θ°]s glass/epoxy beams using 

different failure criterion. 

 

 

                                          (a)                                                                            (b)  

 
Fig 4. 10: Deflection of FPF load of (a) clamped and (b) simply supported [0°/θ°]s glass/epoxy 

beams using Tsai-wu failure criterion. 

 

 

                                           (a)                                                                        (b) 

 
Fig 4. 11: Deflection (w) of FPF loads (N) of (a) clamped and (b) simply supported [90°/θ°]s 

glass/epoxy beams using Hachin  failure criterion. 
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From Tables 4.17 and 4.18, it is observed that the clamped beam with layers [0°/0°]s has the 

highest FPF load. One can see also from Table 4.17 that, by increasing the fiber orientation 

angle, the failure load decreases until it reaches its minimum value for [0°/45°]s beams then it 

increases to reach a local maximum value for [0°/90°]s. In addition to the previous observations, 

one can see from Table 4.18 and Fig.4.9 that, if the fiber orientation angles are ranging between 

0° and 45°, the failure load is completely affected. The augmentation of fiber orientation angle 

decreases the values of FPF load to reach its minimum value for [90°/60°]s. However, when 

the angle values are 60°, 75°, and 90°, the strength of the beams is not affected too much and 

they are quite close. Thus, whatever the boundary condition is, the increase in the fiber 

orientation angle reduces the flexural stiffness of the beam and therefore decreases the failure 

strength. 

Table 4.19 and Fig 4.10 demonstrates that when increasing the fiber orientation angle, the 

deflection (w) of failure load decreases until it reaches its minimum value of [0°/30°]s beams, 

then it increases to reach a local maximum value of [0°/90°]. One can also see that the beam 

with layers [0°/90°]s has the highest deflection value (w) of the FPF load, in both cases of 

boundary condition (clamped and simply). 

We notice in Table 4.20 and Fig 4.11 for a clamped supported beam that the value of deflection 

decreases with an increase in the fiber orientation until it reaches [0°/15°] and then increases 

until it reaches its maximum value when the fiber orientation [0°/90°]. In the case of a simply 

supported beam, the deflection value of FPF increases as the fiber orientation increases until it 

reaches its maximum value when the fiber orientation is [0°/90°]. 

In addition to the previous observations, one can see from Tables 4.17 and 4.18 and Figs 4.10 

and 4.11 that the deflection of FPF obtained by the present element is very close to the analytical 

results because the value of FPF was also close. 

4.4.2.3. Progressive damage analysis: (Failure index) 
 

One of the main purposes of progressive damage analysis of laminated beams is to evaluate the 

macroscopic damage initiation and propagation using the finite element method. As an example 

of modeling damage growth, the damage initiation and growth in [0°/90°]s glass/epoxy 

laminated beams are studied using the present element and Tsai-Wu criteria. The considered 

beam is clamped from one side and simply supported from the other (CS), and it is subjected 

to a concentrated load at the mid-span of the beam. As the first step for progressive damage 
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analysis, The initial failure load, commonly known as the first ply failure load (FPF), should be 

determined as the first step in a progressive damage analysis. Based on the previous examples, 

the FPF load of this beam is 330N (see Table 4.16). 

After the first ply failure, it can be assumed that the material properties of the failed elements 

are not modified, and the laminated beam is reanalyzed at the current load.  

The load is applied incrementally in steps (step-by-step), and the damage growth in each surface 

of the laminated composite beam is determined using this iterative process. The distributions 

of damage to the laminated beam are shown in Table 4.21. From the figures, it is observed that: 

- The damage starts at the clamped side of the beam, where the stresses are significantly 

higher. 

- The damage starts at the top surface of the first ply. 

- Since the laminate beam is symmetric, one can suppose that the damage occurs 

symmetrically   along the thickness. However, it is not the case considering this 

example.  

- By increasing the applied load, one can see the damage propagation at the top surface 

of the first ply. The damage starts from the clamped side, and it propagates. 

- When the applied load reaches 340 N, the damage occurs at the bottom surface of the 

last layer, and then it propagates by increasing the applied load. 

Table 4. 20: The failure strength distribution for beams  0 / 90
S
  with (CS) boundary condition with 

N=330N 

Layer Top surface Bottom surface 

1 

  

4 

  

N=340N 

Layer Top surface Bottom surface 

1 

  

4 
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N=360N 

Layer Top surface Bottom surface 

1 

  

4 

  

N=380N 

Layer Top surface Bottom surface 

1 

  

4 

  

N=400N 

Layer Top surface Bottom surface 

1 

  

4 

  

 

N=420N 

Layer Top surface Bottom surface 

1 

  

4 

  

N=440N 

Layer Top surface Bottom surface 

1 

  

4 

  

N=460N 
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Layer Top surface Bottom surface 

1 

  

4 

  

N=480N 

Layer Top surface Bottom surface 

1 

  

4 

  

N=500N 

Layer Top surface Bottom surface 

1 

  

4 

  

 

 

N=520N 

Layer Top surface Bottom surface 

1 

  

4 

  

 

4.4.3. Laminated beams subjected to hygrothermal load : 

This section examines several numerical and analytical tests to examine the impact of different 

parameters on the first ply failure and damage location using various failure criteria after 

evaluating the performance of the present element for the analysis of cross-laminated beams 

that have been proved. 
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4.4.3.1. Effect of type loading and fiber orientation on the FPF strength: 
 

Assume a symmetric laminated composite beam [0/θ]s with four layers, subjected to in-plane 

normal Nx and Ny loading. The laminated beams are made of glass/epoxy, and their 

corresponding geometrical and material characteristics are given in Table 4.15. The effect of 

fiber orientation angle on the first ply failure is studied and presented in Tables 4.22 and 4.23 

using different failure criteria (Tsai-We, Tsai-Hill, and Hashin criteria). The numerical and 

analytical results are obtained with different fiber orientations and different failure criteria. 

            

Fig 4. 12: Laminated composite beams with in-plane compressive loading Nx and Ny 
                                                                                                                

 

Table 4. 21: FPF loads (N) of glass/epoxy beams with fiber orientation [0°/θ°]s subjected to 

compressive plane normal (Nx) using different failure criterion 

 

 Nx 
 Tsai-We Tsai-Hill Hachin 
 Present 

element 
Analytical Present 

element 
Analytical Present 

element 
Analytical 

[0°/0°]s 2002 2002 2002 2002 2002 2002 

[0°/15°]s 1344 1344 1388 1388 1394 1485 

[0°/30°]s 1114.5 1115 1150 1150 1159 1188 

[0°/45°]s 1073 1073 1089 1089 1092 1098 

[0°/60°]s 1086 1086 1073 1073 1070 1070 

[0°/75°]s 1117.5 1118 1072 1072 1065 1066 

[0°/90°]s 1134.5 1135 1073 1073 1066 1066 
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Chapter 6     

 

General Conclusions and Summary 

 
 

The determination of failure strength and stress concentration in composite laminates under 

different loading conditions such as bending, arbitrary in-plane loading, and hygrothermal 

loading (temperature and humidity) is one of the key challenges faced by researchers during 

the design of structures. Various numerical and analytical methods are used, along with 

different failure criteria, to address this challenge. 

This work focuses on two main objectives : The first objective is to calculate the failure load of 

laminated composite plates and beams subjected to different loading conditions such as static 

bending load, in-plane load, and hygrothermal loading in order to determine their failure 

mechanisms and the first ply failure (FPF) load. To achieve this, a refined rectangular plate 

element based on classical lamination theory (CLT) is used to calculate in-plane stresses, and 

several failure criteria, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are 

applied to predict failure mechanisms. These criteria are integrated within the finite element 

code to predict the different failure damages and responses of laminated beams from initial 

loading to final failure. The numerical results obtained using the present element are in good 

agreement with the analytical approaches, demonstrating the accuracy of the present element. 

The varying parameters such type of load, boundary condition, fiber orientation, stacking 

sequences, effect of temperature, moisture, and effect of different environmental conditions on 

the strength of laminated beams. 

The second objective is to investigate the effects of presence of opening in composite laminated 

plate. A precise and simple analytical solution has been developed and applied to determine the 

stress concentration factor (SCF), that occurs in an infinite plate containing a circular cutout 

with unsymmetrical stacking sequence when loaded with arbitrary in-plane loading at infinity 

( uniaxial, biaxial, and shear). The current solution was extended based on Greszczuk’s 

solution. The effective moduli of unsymmetrical laminated plates were expressed using Chen 

methode. The effects of several parameters, including the type of loads, unsymmetrical stacking 

sequence, number of layers, hole’s size, and load angle orientation, on the stress distribution 
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around the opening are considered when discussing typical results obtained using the current 

solution. On the other hand, the same previous parameters were considered to predict the failure 

load using Tsai-Wu creteria.. 

The results of the current solution were successfully compared with results obtained by FEM 

and some analytical results obtained using the complex variable approach in order to validate 

the correctness of the solution. 

The following main remarks can be drawn from the results presented in this work: 

 The first ply failure (FPF) loads and maximum transverse displacement of glass-epoxy 

laminated beams were determined and compared using various failure criteria, different 

types of loading, and varying boundary conditions. The results indicate that both the 

boundary conditions and types of loading have a significant impact on the FPF loads. 

 When the beam has a fiber orientation of [0°/90°] and is subjected to uniform 

temperature, the temperature is 783.5 °C, which decreases by approximately 80% 

compared to when the fiber direction was [0°/15°]. 

 The hygro-thermo-mechanical loading is greater than the thermo-mechanical loading, 

which is again greater than the mechanical loading for different orientation angles when 

the plate is subjected to in-plane loading in direction x. 

 Regardless of changes in fiber orientation, the beams exhibit a 0% to 27% increase in 

failure strength value Nx according to the Tsai-We criteria when subjected to a hygro-

thermal mechanical load. This suggests that both temperature and humidity positively 

impact the failure strength of the compressive load Nx. 

 When subjected to hygro-thermo-mechanical loading, the failure strength of Ny 

decreases between 0% and 11.4% for all fiber orientation angles except for [0/90]. In 

contrast, for the [0/90] fiber orientation angle, the failure strength of Ny increases by 

26.8%. 

 The location and value of SCF around the circular cutout (along the edge of the hole) 

are dependent on stacking sequence and fiber orientation for the given material and 

loading conditions. 

 The type of loading has a significant impact on the SCF. 
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 The value of the failure load changes with the type and direction of the load applied, 

and it also changes with the change in fiber orientation of the plate and is affected also 

by hole’s size. 

 

Perspectives : 

 The solution can be extended to determine the stress distribution around circular holes 

in laminated plates, considering hygrothermal loading. 

 

 This solution can be extended to determine the stress distribution in unsymmetric plates 

with elliptical holes subjected to different loadings. 

 

 Study the effect of a hygrothermal environment on the damage of unsymmetric 

laminated plates. 
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3.2.1 In membrane: 
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The presented element is a combination of a membrane element and a rectangular plate element 

with a high degree of accuracy. The membrane displacement of the developed element, through 

the element, can be expressed in terms of the interpolation functions as 

 
1 0 0 0 0

( , )

( , )
0 1 0 0 0

e
m

x y xy x xy xy y xy
u x y a b ab a ab ab b ab
v x y x y xy x xy xy y xy

a b ab a ab ab b ab



        
   
                                   (3) 

Where  e
m  is the membrane displacement vector of the element. The Eq. (3) can be written as 
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The interpolation functions can be used to express the membrane strain-displacement relation 

as 
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3.2.2 In bending 

The transverse displacement w of the element is expressed as 
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The displacement function of the plate element, given by Eq. (7), can be written in a vector 

form as 
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The plate displacements through the element can be expressed in terms of the nodal 

displacements as 
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Where the interpolation functions of the plate element are written as 
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The present element is based on the CLT, so the in-plane and out-of-plane displacements are 

given using eq. (14). On the other hand, based on the strain-displacement relation, the 

curvatures k can be given as 
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