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Constant of Planck

Kinetic energy operator
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Auxiliary operators
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Relativistic quantum number

Potentials equation
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Constant of wave function
Dirac matric constants
Laplacian

Kinetic energy

Potential energy

Quantum number
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The mass of particle
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Vector potential

Energy

Radial wave function
Polynomial

LaGrange test function
Lagrangian

Variables

first derivation of R
Second derivation of R
Euler equation

Auxiliary component
first part of Euler equation
determined function.
Lagrange equation constants
Potential function
Strength of Potential
Constant of power
Screening paramater
Wave function

Constant of perturbation
Charge of electron
Normalization

Ansatz function

Wave function parameter
Polynomial

Kratzer potential parameter



Abstract

In order to determine the wave functions and accompanying energy, this study is based on the
solution of the radial Schrodinger equation. The semi-inverse variational approach, an
approximation method, is presented in this work. This approach is applied to different potentials
into the most well-known equations which are the Schrodinger, Klein Gordon, and Dirac
equations, to determine the solution of the energy eigenvalues and associated wave functions.
To demonstrate the accuracy of the computation and the viability of the method, we provided
specific instances. Comparing the results of the study with those from other power ways, the
information gathered demonstrates the efficacity and precision of the procedure.

Keywords: Schrodinger equation, Klein Gordon, Dirac equation, semi-inverse variational

approach, eigenvalues
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Resumé

Afin de déterminer les fonctions d'onde et 1'énergie qui les accompagne, cette étude est basée
sur la solution de I'équation radiale de Schrodinger. L'approche variationnelle semi-inverse, une
méthode d'approximation, est présentée dans ce travail. Cette approche est appliquée a
différents potentiels dans les équations les plus connues que sont les équations de Schrodinger,
Klein Gordon et Dirac, pour déterminer la solution des valeurs propres de 1'énergie et des
fonctions d'onde associées. Pour démontrer la précision du calcul et la viabilité de la méthode,
nous avons fourni des instances spécifiques. En comparant les résultats du travail avec ceux
d'autres méthodes de puissance, les informations recueillies démontrent 1'efficacité et la

précision de la procédure.

Mots clés : équation de Schrodinger, Klein Gordon, équation de Dirac, approche

variationnelle semi-inverse, valeurs propres
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General Introduction

GENERAL INTRODUCTION

Schrédinger's theory was tremendously influential in the development of quantum
physics. Erwin Schrodinger proposed it for the first time in 1926, just after Heisenberg
invented matrix mechanics. These two ideas were the first to formulate some quantum
mechanics concepts [1-3].

We shall concentrate our efforts at the start of this work on the formulation of the
Schrodinger equation for a specific physical condition, because studying a physical system
consists primarily in solving its Schrodinger equation. In particular, the eigenvalues equation,
which arises directly in various quantum physics issues, such as determining the energy levels
of bound states.

In this thesis, we will look at the problem of bound states [4]. However, the symmetry
features of the Hamiltonian can aid in its resolution. We picked a pompous and modern
approach for this purpose: the semi-inverse variation method.

The resolution of the Schrédinger equation associated with a physical system is the
foundation of quantum analysis [5-9]. This resolution is only possible in very specific
instances where the Hamiltonian is sufficiently simple to be easily diagonalizable. In general,
the Schrodinger equation is too difficult to find analytical solutions to. In this work, we
employ one of the many approximations approaches available in quantum physics. These
approximation approaches allow for the generation of analytically approximate solutions that
are near to the genuine answers depending on the quality of the approximations and
computations. Several approximation approaches for calculating the energy spectrum of the
Schrodinger equation for numerous potential functions have been emerged in recent years
[10-15].

Schrodinger employed variational theory as an approximation technique in his early
research, which began at the very beginning of the establishment of quantum theory. Several
researchers have utilized and developed variational approaches for bound state and diffusion

issues since then.
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In recent years, a considerable number of chemists and physicists have expressed an
interest in contributing to the quest for approximate variational solutions to the Schrodinger
equation. Hylleraas was the first to apply the variational principle to quantum systems about
70 years ago [16]. Since then, other advances have been reported in the literature.

In recent years, there has been a lot of interest in finding an exact solution to the
Schrodinger equation for multiple potentials. Many researchers attempted to solve this
equation using various potentials, including Yukawa [17], Morse [18], Rosen-Morse [19],
Woods-Saxon [20], and anharmonic [21], with applications in nuclear structure, quantum
chemistry, and quark confinement.

Professor He. Jihuan devised the semi-inverse approach in 1997 [22]. This approach
was utilized for the first time to create variant formulations for fluid mechanics field
equations. This approach is based on variation calculations. The semi-inverse variational
approach is an effective mathematical tool for developing a variation formulation for a wave
type differential equation. So far, this method provides an effective and best strategy for
establishing variational principles for a wide range of physical issues.

Many strategies, such as factorization [23], were initially proposed by Schrédinger to
tackle the algebraic issue of hydrogen atoms. Later, other approaches, such as Nikivorov-
Uvarov [24], WKB [25], and Ansatz [26], were expanded to generate a broad class of soluble
potentials.

The semi-inverse approach is thoroughly investigated, and several examples are
provided to demonstrate how to develop a variational formulation for a nonlinear problem.
We found that it is difficult to identify a variational principle for nonlinear evolution
equations with nonlinear variables of any order based on the examples provided [27].

The goal of this study is to solve the Schrddinger equation using the semi-inverse
variation approach, which is based on physical quantity variation to derive the Eigen
functions and Eigen value.

The current thesis is divided into four sections. We shall start with an introduction
chapter that will provide a quick summary of the Schrodinger equation in a central potential.

The second chapter directly covers the calculation of Schrodinger equation bound states
using simple potentials such as the harmonic oscillator and hydrogen atom, then more
complicated potentials using the semi-inverse variation approach.

In the third chapter, the same approach is used to determine the bound states of the

Klein Gordon equation with other potentials, such as the Colombian and Kratzer potentials.
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In the fourth chapter, we immediately present the determination of bound states of the
Dirac equation using basic potentials such as the harmonic oscillator and the coulomb one,

utilizing the two separate situations spin symmetry limit case and pseudo symmetry case.
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Chapter 1 Schrodinger equation in central potential

Chapter 1

SCHRODINGER EQUATION IN CENTRAL
POTENTIAL

1.1. Schrodinger equation:

Quantum mechanics is a well-known study having applications in atomic and molecular physics,
light-matter interaction, solid and liquid state physics, materials science, and other fields. It
substitutes observables for classical mechanics notions, which are represented by Hermitian
linear operators operating on the wave function. Schrddinger's equation: the basic equation of
quantum mechanics, defines the system's stationary states and temporal development.
Schrédinger's equation is used in a variety of mathematical contexts, including partial differential
equations, geometry, spectrum and scattering theory, and integral systems. It may be stated in
two ways: the time-dependent Schrodinger equation and the time-independent Schrddinger

equation, as illustrated in equation.

ih 22 = H(F, OP(F, 1) (1.1)

With H = % + V(#,7) is the energy operation; and p = —ih?

The resolution of this equation gives us ¥ (#, ) which is the moment of the system, and we know
Y(7,7) knows all its system.

The issue at hand is that we know how to solve the Schrddinger equation in extremely basic
circumstances and in particular cases, such as the harmonic oscillator and the hydrogen atom.

To find solutions to the Schrodinger equation, we require approximation methods such as the
perturbation method, variational, canonical transformation, and WKB is named after physicists
Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin, who all developed it.
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Chapter 1 Schrodinger equation in central potential

Consequently, the following are the wave functions, additionally referred to as eigenfunctions,
that make up the solutions to equation (1.1):

iEt
Y =tpoeh -2
Whither v, is the amplitude.

The Schrodinger equation becomes the stationary Schrodinger equation for stationary

states that exist independently of time.
HY(#) = EY(7) (1.3)

Where E is the total energy of the system which bears the name of the eigenvalues.

The quantum operator representing the system's overall energy is called the Hamiltonian

operator H:

H=E+V({)= —% A+V(r) (1.4)

Whither V is the potential energy, E. is the kinetic energy and A is the Laplacian.

1.1.1. The stationary Schrodinger equation in one dimension
To determine the energy states and associated wave functions for a mass particle moving

down an axis and bound by potential, we must solve the one-dimensional Schrédinger equation

[2].

P(x) = EYP(x) (1.5)

h? d?
[‘ﬁ@* V)

With —o0 < x < +0

1.1.2. The stationary Schrodinger equation in two dimensions
The Schrodinger equation is stated as follows since the potential in this situation is

dependent on two dimensions [3]:

2 2 2
B () o

9

V(x,y) = EP(x,y) (1.6)




Chapter 1 Schrodinger equation in central potential

This particle is moving in a potential that is dependent on 7 and V(?), which may or may

not be central. The spherical coordinates, which are more suited to the Laplacian A, should be

used instead, and they are denoted as follows:

10 0 L?
= (2 ) - _ 1.7)
A r26r<r 67‘) h2r?
With
1 0 9] 1 92
2 _ _p2 T cinp (1.8)
F=-h Isin@é@ (Sln900)+sin2902<pl

which makes it possible to write the Schrodinger equation for a central potential under the form:

h* (10,0 L? -n*[ 1 o 0 1 9°
B (100a0y By R0 0y 1o
2m\r? or ar) her? 2m |r?sin 6 96 068/  1r2sin“00°¢

+ V(r)}lll(r, 6,9) = EY(1,6,9)

(1.9)

1.1.2.1.  Separation of variables:
The expression (1.9) shows that all the dependence on 8, ¢ is contained in the operator L?
With
[H, 1] = 0 (1.10)
And
[H,L,] =0 (1.11)

The three observables H, L?,L, admit a complete system of proper functions so that we have

HY(1,6,9) = EP(1,6,0) (1.12a)
L*Y(r,6,9) = l(L+ Da*Y(, 6, 9) (1.12b)
L(1,6,9) = mup(r,0, p) (1.12¢)

10



Chapter 1 Schrodinger equation in central potential

The specific functions common to L?, L, corresponding to the values [ and m of and fixed
are the spherical harmonics Y;™ (6, ). The functions ¥ (1, 6, ¢) are therefore necessarily

the product of a radial function R(r) by the spherical harmonic Y™ (8, ¢) ,that to say:

Y(r,0,9) = R(r)Y™(6,¢) (1.13)
using the fact that
L2Y(r,6,9p) = L2 R(r)Y™(6, ) (1.14a)
= R(ML*Y™(6, ¢) (1.14b)
=1L+ DA*R(MY™ (6, 9) (1.15)

we end up with the following radial equation.

h* (10 ] (L + 1)h?
“om\Z7ar " 3r) ) T o = (1.15)
[ 2m (rz or (T 67‘)) + i ++V(r)|R(r) = ER(r)
With [ is the orbital quantum number

1.2.  Schrodinger's equation in a central potential:

The velocity of a particle submerged in a central potential \/(r), which relies solely on the
coordinates' distance from the origin, is invariant for any rotation and hence exhibits spherical
symmetry.

We have shown that the shape of the Laplacian in spherical dimensions is:

10 0 L?
= (r2 =)+ ——— (1.15)
A r2or (r ar) * h?r2
With
h d d
= —(sing — — — (1.16a)
L, ; (sm(p %0 cot 8 cos @ 6g0>
h 0 0
L, . ( cosq)ae cot@smgoa(p>

11



Chapter 1 Schrodinger equation in central potential

ho
L,=-

- (1.16c¢)
i dp

Wither L = L3 + L3 + L

The parameter | from equation (1.15) affects the radial functions. On the other hand, these
functions have an eigenvalue E,, ; attached to them. Therefore, R,,; may be used to represent the
radial functions. The major quantum number and the quantum number, represented by the

indices n, [, and n > [ + 1, respectively,

The Schrodinger equation is revised to read:

l A2 (li(ﬂi) G 1)> +V(r)l Ry, = EyRo, (1.18)

“2m\r2or or r2

Posing R, ; = % and by multiplying the two sides of the equation by r, after some

simplification, we obtain for U,, ; the following differential equation:

2
[_h_ <li(r2 i) + L+ D) + Vgr)] Up, = @ Un, (1.19)

2mr \r2or or 2 T

By multiplying the two sides of the equation by r we find:

2 2 1
l_Zh_m <06r2 * l(l:; )> + V(T)l Uni = En1Un, (1.20)

We revise Schrodinger's equation. We see that for a particle with an effective potential as,
Eqg. (1.1), the Schrodinger equation in one dimension is entirely comparable to this equation.

h2l(l+ 1) (1.21)
2mr?

- The quantity is the centrifugal potential (the force tends to move the particle away from

Veff = V(T') +

the centre of force O).
- This potential is zero for [ = 0 the particle can then come to O: we can see that R,,; # 0
forr=0.

- If L # 0 this potential tends to infinity when r tends to zero:

Vepp(r) — cowhen - 0

12
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The figure 1 represent the variation of coulomb and effective potential and their difference

between them:

¢ Example: E4
V,(r)
a
Vir)=-—
() r Vot
r
R+ a
Ve (r) = 2ur’ T Wr)

Fig.1.1: example of a potential

and prevents the particle from coming to O. We can see that:
Ry =0forr=0ifl#0

In the following we will study the general characteristics of the solutions of the Schrédinger

equation [4].
1.2.1. Behaviour at the origin of the solutions (r - 0):

We know that, for r tending towards zero, the potential V (r) remains finite neither, or
at least does not tend towards to infinity nor faster than % where V (r) must satisfy the

following condition [8]:
limr2V(r)=0->V(@r > 0) = riawith a<? (1.22)
Consider a solution of equation (1.20) and assume that it originally behaves like r?:
Uni(r)rso = ar? (1.23)

where « is an arbitrary constant and p a power to be determined.

By deferring (1.23) in equation (1.20), and by equalling the coefficient of the dominant

term to zero, we obtain the following equation:

13
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-p(p—-1) =1+1) (1.24)

this equality is verified for:
p=-l (1.25a)
p=p=0U+1) (1.25b)

For a given value of E,, ;, we can therefore find two linearly independent solutions of the

equation. The acceptable solutions of the equation cancel each other out regardless of [, as:

Uni(r)yo = art*? (1.26)

Therefore, we must add to equation (1.20) the condition:
Up(r)=0 (2.27)
Therefore, we must retain the regular solutions which perform the function wnlm(r, 0, o)
that is to say a solution of the Schrédinger equation everywhere, including the origin.

1.2.2. Asymptotic behaviour
Suppose that the potential V() tends asymptotically towards zero faster than %
lim rV(r);50 =0 (1.28)

equation (1.20) reduces to:

2

0 2
5 Uni() + KUy, =0 (1.29)

Whither k = /% and because V(r) is cancelled at infinity and l(l:l)

2

tends to zero, the energy

spectrum has two parts:
IfE <0:Up(r) = exp(£kr)

IfE > 0:Up,(r) = exp(zikr)

14
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exp(xkr)

In the first case, we have R,, ;(r) = , energy is quantified; it is a bound state and

the exponential solution of the positive argument is to be rejected, but in the second case, we

exp(tikr)

have R, ,(r) = , and we find a divergent spherical wave expressing a well at the origin

and the energy is continuous, we are then in a state of diffusion.
1.3.  Perturbation theory:

Most quantum mechanics issues have no analytic solution; only a few idealized situations
have an accurate solution to the Schrodinger equation. As a result, developing approximation
approaches is critical. The theory of disturbances deals with circumstances in which a slight
variation from an ideal (solvent) system might explain the real physical system. The actual
system's Hamiltonian H is thus expressed as [5]:

H=Hy+V (1.30)
or H and H, differ little. H, denote Hamiltonian of the non-disturbed system, while V represents
a small perturbance.

a- We divide the operator H in two parts one H, "simple" and independent of time, and

verified the equation to V,
HOllpa) = Ellpa) (131)

the second "small" part called perturbation.

b- We substitute in the Schrodinger equation and E we look for | (7, t)) in terms of

|, (7, t)) and the matrix elements of V

consider a physical system described by the energy operator.

P2 .
H = % + Ep(7, 1) (132)

We divide H intwo parts H = Hy, + V , with Hy|y,) = €,|¥,) such that €, |y, ) are known.

So, we resolve the equation:
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HYa) = Eqlibe) (1.33)
1.3.1. Rayleigh -Schrodinger method:

We write E, and |¢@,) as a series.

Eq=E® +AELP + 2 EP + - (1.34)
0= 0@ + 200 + 22 0@ 4 .. (1.35)

With A is a constant, in the end of calculation, we tend 1 to 1

replacing in (1.34) and (1.35) equation (1.33)

Hlpq) = Eql®q) (1.36)
(Ho + V)|9a) = Eql@a) (1.37)
o+ (o 420+ 3 60+ ) .

= (E(Sf’) +AED + 2 EP + ) (0P + 29 + 22 9P + )

by using the terms which have the same power of 4 we will have:

A0 = Hy| (p(0)> E©) (pm)) (1.39a)
3 = Holo®P) +Viel) = ELloP) + EP10l”) (L39b)
22 5 Hylp® )) n V|¢(1)> E(0)|<p<z>> E(1)|<p(1)> E(2)|<p(°)> (1.39c)
A S Hylp™ > + V]l 1)> (o>|(p<n>> + ED|pn 1)> 4. (")I¢(°)> (1.39d)

by solving systems of equations, we will have ECEO), ES), Eé") and |<p(0)> I<p(1)> ) |<P(n)>

terms of €, and Vg

we multiply on the left by (y,| , we find
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ES = €5 = (el Holtbe) (L.40a)
EQ = (WulV 1Y) (1.40b)
EP = <¢a|V |<p(1)> (1.40¢)
perturbed order energy n
£ = <¢a|V|<p(” “) (1.40d)
but
E, = E‘go) 4+ AE(l) + 22 E(Z) n
= €0 + MialHolthe) + 2(a|V] o) + - 2 V|0
= €4 + MY |V| {|(P(O)> + /1| (p(1)> + /12|(p(1)> 4o 1|(p(n 1)>}
=&+ A(d’aIVl@a) A=1
So

Ey = E¢ + (Yol V]pa) (1.41)

1.3.2. Determining the perturbed states:

We have |<p(0)> l,) then we develop |g0(1)> in base of {|y,) }

9") = th e S) (1.422)

I<p(”> ZC“)IM (1.42b)

l
by substituting (1.42b) in the 2" equation of the previous system of equation (1.43):

Holo ) + Vi) = Ealo”) + EL o) (143)
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D COHo ) + Vi) = €q ) € Holpn) + EL 1)
l

l

We multiply on the left by (ll}ﬁl , we find:

Z C V€81 + (Wp|V|va) = €a Z CV g+ EM 6y
l l
(1) _ @ (1)

v,
CSO(Eq — €5) = Vpo = C{P = —L—
p (e 8) = Ve = G (€a — &)

90”) = Zc“)hpl)
0") = Z ey W)

therefore, the wave function of operator H is known to the order.

Vie
00) = W) + ) e )
1 a

to evaluate the energy of order 2 we substitute ¢, in Eéz)

ED = (pa|v]ol) = ] (B Legy o)

E(Z) — Vla(djalVllljl) 5 E(z) _ IVlaI
¢ (Ea — &) © T LiE-E)

Where

So, we can determine |<p§2)>

02} = Pl

l

Replacing |<pé2)> by its value in equation (1.51) of equation system

HO|¢(2>>+V|¢<1)> _ E(0)|<p(2)>+ E<1)|(p<1)>+ E(2)|<p(0)>

18
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HOZC(”W + VZ el

(1.53)
oy Zc@wm + aaz(s S0+ EE )
Multiplying by (y|
2 NV VaaV1aVpt
ZC €ﬁ5ﬁl+z(€ —ey = & Ky + (1.54)
| lal ValVirVirg
Eqi€a + ““+Z(£ sy Z(%—so(sa—sa* (1:59)
Vll’Vl'a
|<pa>—|¢a>+z(g |¢l>+z(>3 3@ gy T (1.56)

1.3.3. Wigner — Brillouin (w-b) method:

We expose here a second method called (w-b) and is different from the previous one ,where H is

energy operator with: H|g,) = E,|®,)
We write H inthe form H = Hy +V
With: Holga) = Eql@a) , {[$a)} complete base

We search |¢,) with the form serial base {|y,)}:

19a) = Caliba) + ) Gl

l¥a

We remark.

<¢a| Ziza CilY1) |§0é1)> =0= Z Ci61q

lza

We suppose: C, = (W le,) =1

e, |(pa) = |lpa) + Zl;ta Cl|¢l> o (%)

back to the eigenvalue equation:

19
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H|@q) = Eql@q) (1.57)
(HO +V )l‘pa) = Eal(pa) (1-58)
Vlga) = (Eq — Ho)|9a) (1.59)
Multiplying in the left by (y;|:
@) VieVp 2 VaaVpa
cPep+ z AR (1.60)
) _ _ VlaVﬁl _ VaaVﬁa
Cﬁ (806 Eﬁ) - Z (€, —€) (Sa _ Eﬁ) (1.61)
l
Where
@ _ ViaVpi  VaaVa
% T L e ) Ea £ (162)
(2) ) _ Vla nl _ VaaVna 1.63
08 ) PSS [Z TR T ey e (1.63)
(WgV]0a) = [Ea — €6](¥5]0a) (1.64)
Where
1
R — = 1.65
(e lvs) (E. — &) (Wp|V]pa) = Cs (1.65)
And the expression * decry
00 = la) + ) = Vo) (166)

l+a

We remark |, ) appears in both members:

to have all the terms of the series we successively substitute

0 = W) + 00— (V| {10 + Sl gy eV Ioal)  7e)
lza
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Vi (WlVlgq)
9a) = ) + ;wm -+ ”Z D ot (167b)
Vll’Vl a VarVirVira 1.67
|§0a)— |lpa>+2|¢l) Vla"'z ( (E —81)(E _81) ( C)

l+a

And eigenvalue of H, E, is written.

= (YalHl@a) = WalHol@a) + (WalV]pa) (1.68a)
Ey = E¢ + (YalV]pa) (1.68Db)
VaVia VarVrVirg
E, =€, + ““+Z(E 3 Z(E T R (L680)
(Wp|V]oa) = (Ee — ED(Wp|0a) (1.69)
With
(| 0a) = m(wﬁWkpa) =Cp (1.70)

1.3.4. Exact solution of equation of proper values:

the secularly equation H|¢,) = E,|@,), we develop the solution |¢,) on known base

) = ) Cili)
l

With
HZ Clin) = EaGilip) @.71)

memwl) = £, Z Culblip) 1.72)
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Z(Hkl — E;8,)C, = 0 — secularly.eq (1.75)
]

the explicit form of this equation is:

k=1.... = (Hyy — Eq)Cy + (Hiz — Eg)Co + (Hiz — E)Cayy (Hix — Eq)Cy = 0
k=2.... = (Hz1 —Eg)Cy + (Hzz — Eg)Cy + (Haz — E)Cayy (Hox — Eg)C, = 0

(1.76)
k=x.... = (Hy1 = Eg)C + (Hyo = Eg)Co + (Hyz — E)gCapon s (Hyy — Eq)Cy = 0
(Hll - Ea) Hy; ... Hyy
det(H — IE,) = H,, (Hyy, — E,) ... H,, (1.77)
E (Hxx — Ea)
P(E) =a, +EF +an_EP" '+ 4+ aEl +a,=0 (1.78)

1.3.5. Perturbed harmonic oscillator:

The harmonic oscillator's Hamiltonian equation is represented by the following notation: [6]:

2
;_m 4 % x? (1.79)

We consider that the oscillator is perturbed by the value: V = bx?

We try to calculate the first two perturbed states.

The energy operator is

H=Hy+V (1.80)

We get

PZ

—+1kx2 + bx?
2m = 2

(1.81)

We know
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h h
Tw(an’ +a*ta)P, = /m;u (a+a*) (1.82)

h
_ o+
x=t 2mw (a=a”) (1.83)
2
: + h 2 +2 +_ o+ (1.84)
V=nb|i (a—a*) | =-b (a +a" —aat—a a) '
2mw 2mw
yo b [2H o a+z] (1.85)
2mow Ll hw
ES = (@lVla) = (PolV o) (1.86)
hb 12Hy 5 .2 >_ 2hb (fl_w> 1.87
<1/)0 2mo h(x) —a a ]lpo _mezh 2 ( )
hb
D _ (1.88)
Eq 2mw
The second one
(1) ® Vi |® 1.89
<¢°|V| > Z(s —€) (1.89)

We calculate first the value of V,,

Vie = UVIa) = oo (1| 2 [2Ha _ 2 +°]|a) (1.90)
o = %{hw - (lla’la) = (1]a*’])] (1.91)
We write
ala) = Vala — 1) » a?|a) = Jala — D|a — 2) (1.92)
a*la) =(a+ Dla+1) - a*’|a) = /(a + D(a + 2)|a + 2) (1.93)
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hb ( 2
Vig = —{— €l — Jala — D{l|la — 2)8,4_» — /(@ + D(a + 2)6l,a+2} (1.94)
2mw (hw
So
2
5@ _ Z ( hb )2 4 €,° 5 Jala —1) 5
0 = 2mw ((C( _ 1))2 El - Ea @ gl - 8(1 -
(1.95a)
2
\/(a + D(a+2)
- El S lLa+2
(24
5@ _ ( hb )2 _al@=1) (e+D(a+2) (1.95b)
0 2mw €a—2— €4 €at2 — Eq
We know
1
E, = hw (n + E) (1.96)
Eg2— &g =hw(la—2—a) =—-2hw (1.97)
Eqr2 — &g =hw(a+2—a) =2hw (1.98)
L E® _ h?b? [—a(a—1) _(@+D(a+2) (1.99)
0 =
4miw?| —-2hw 2hw
h%b%? 1
D= ———— [a(a—1) - (a+ D(a+2)]
4m2w? 2hw (1.100)
hb?
_ 2 _ g2 2, —
= Sz [ —a—a* —3a — 2]
—hb? [ N 1] 5@ —b? " [ N 1
—_— —| - [ — —_
2m2e3 [T 72 0 2m2at T T2 (1.101)
g _ “b’ho (1.102)
0 4m2w*
So, the perturbation became:
h hb b%h
E=g,+EV +E® =221 @ (1.103a)

2 2mew 4Amie*
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2
E=h—w<1+ b __b ) (1.103b)

Another way for solution

2

P, 1
H = HO + bxz — L + _kxz + bxz (1104)
2m 2
sz mw* 2 _ B : 2b X2 Py ‘1 2,2 (1.105)
—%-F[ > +blx —2—+ ma) +% —%+2mﬂ
hQ  h 2b  hw 2b hw b b?
— T2y 2 ~ _ (1.106)
CEEg =t 2 T e~ 2 < 2mw?  2m2w* )
V (llVla)
(1)> Z la _
a
y= {ﬂ -4 2} (1.107)
2mow hw
2Ho |\ _ ia21as — (ila*? 1.108
Vie = 5o (1 522 a) = ttla?1e) - 1) |} (1.108)
" 2mw {ha)z Eadia
(1.109)
- Z Va(a — D{l|a — 2|y;) — z V(a+ 1) (a+2)lla + ZWH)}
l+a l+a
w/a(a—l Jala—1
= Vo)~ g ——¢ |¢a+2>] (1.110)
mw a+2
For ¢ = 0 we have:
—hb \/_hb
DO\ _ Tme V2I¥2) T |2) (1.111)
Pa >_ 2hw — 2hw
(1>> V2 1) (1.112)
¢ 4 mwz 2
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1.4. Variational method:

We are aware that the undisturbed Hamiltonian H_0's associated eigenvalues and
eigenvectors must be known in order to use the stationary perturbation method, but we are
unable to divide the total Hamiltonian H of the system into the principal part H_0 and the

disturbance W, making it very challenging to solve the equation for the values H.

Since solving this problem involves knowing the energy of the ground state, we must
instead apply the variational approach, a straightforward approximation technique that is
extremely helpful in many quantum physics situations. or finding the precise solution is quite
tough. It is based on a series of mathematical operations that we shall list here briefly [7].

1.4.1. Principle of the method

Using test state and the parameters a = {a,, a,, ... } the variational approach may be used
to approximate the energy of the ground state of a quantum system defined by a Hamiltonian H.

The method's applicability for any state results from the inequality, which makes it legitimate.

[8]

(alHla)
(alay = Fo

Where E, is the energy of the ground state |y,). Indeed, if the kets v,, form a basis of

(1.112)

eigenvectors of H.

Moreover, we show that any function a such as Ef,; is stationary, is a proper function of H ,
i.e.,

if a=1y,+ d6a,sodE = 0 (atthe first order of energy) E,,

oragain E = E, + 6E = E,

8(Efq(ala)) = 6((ala)) (1.113)

= §(Ejq){ala) + Ejg6(a])|a) + Efq{als(la)) (1.114)
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= 8((aH|a) + (al5H|a) + (alH (8]a)) (1.115)
o 8{(al}(H — E)|a) + (al(H — E)5{|a)} = 0 (1.116)
In integral form, we have:
[8a*(H—E)adt =0 and, [ a*(H — E)dadt = 0 (1.117)
(H—Ejg)a=0 (1.118)

which is equivalent to:
Thus, any function a = v, , such as E[ is stationary, is a proper function of H
Remark:

e the equation of E[,; is independent of (a|a) and the phase of a.

e the result is found in the particular case (a|a) = 1.

The equation of E[,) gives a superior limit of energy (E,) of the ground state. We suppose, in

fact, that we can develop

la) = Y a,|n), (alH|a) = Y|a,|?E, = Ey Y|a,|? = Eq(ala) (1.119)

Always with

Hln) = E,|n) (1.120)

where we took use of the fact that, by definition, the energy levels E,, are greater than the ground

state, E,, = E,. The wave function y(x) can be written with the parameter a as :

P(x) = Pa(x) = (x]a) (1.122)

depends on whatever option is selected to most closely approach (x|0), the ground state's actual

wave function, which is itself unknown. Therefore, by doing a straightforward reduction on all

27



Chapter 1 Schrodinger equation in central potential

the parameters, we may obtain a decent approximation of the energy of the ground state

depending on the physics of the issue and the shape of the function ¥ = ¢,:

_ i (WalHq) 1.122
E=min“e, Wa = o (1.122)

The variational approach, commonly known as the Rayleigh-Ritz method, entails determining

Ej4 from a test function that relies on a few variables. (These factors also affect E[,;...)

To get the closest possible value of E_O for this combination of parameters and this function a,

we minimize E[g.
Thus, the selection of a depends on the entire question!

The original circumstances of the issue being examined are attempted to be respected, and the

system's symmetry features are utilized.

Select a ground state test function that is affected by one or more variational factors «; :

lpa = lp( all aZI a3l ) (1123)

Let's start by calculating
(WalHIp,)
E(ay,ar,aas,..) = ————— (1.124)
(ot ts ) =g Ty

then use the set of equations to find the values of the variational parameters «; that minimize the
energy:

0E(ay, ay, as, ) —0 (1.125)

(')a:l-

The minimal value of E( a4, a5, a3, ...) S0 produced provides the best approximation, by excess,
of the basic energy as acquired with the test function (1.121), and the equation (1.122) appears as

a minimization or extremization principle (stationarity requirement).

The search for excited states takes a somewhat different approach. We already know that the
function ¥, which represents the excited level, is orthogonal to the function y,, which

represents the ground state.
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As a result, E approaches

— ancnlen > anCnlel — E1 (1126)
ZnlCul?  XnlCal?

The inequality becomes an equality in the only case where all C,, are zero, except C; which is

E

equal to 1, in which |y)is only the exact state of |E;).
1.4.2. Variational Method for the Hydrogen Atom:

According to the following, the hydrogen atoms Hamiltonian [9]

gt o (L127)
2m T

Where indicates the proton-electron pair's decreased mass (m ~ 1 for the hydrogen atom)
and the inter-particle spacing. We can now make an informed approximation for our
wavefunction shape by considering what occurs when the electron is separated from the proton.
Because the electron is linked to the proton, we would expect ip — 0 asymptotically, hence the
chance of it being an infinite distance away from the proton will trend to zero. A reasonable
wavefunction ansatz may be a negative exponential function of the kind[10].

W, = Ae~c" (1.128)

With c is a single parameter of variation. We can now operate on the wavefunction using
our Hamiltonian from equation (1.5) by constructing the time independent Schrodinger equation
shown in equation (1.1). To give our Laplacian operator in the Hamiltonian the proper form,
which is where the math gets a bit more difficult, we must follow a number of small, simple
steps. It is preferable to depict the Laplacian using spherical polar coordinates because of the

spherical symmetry.

0% e 1(02 1 0 1 aZ>

o2yt 2\ T aneae T sinze T 992 (1.129)
We can make this simpler by realizing that our wavefunction only needs the radial solution
since we are only interested in the spherically symmetric ground state of the hydrogen atom. This

means that our wavefunction has no angular components. The current form of the Laplacian is
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02 20
.07 20 (1.130)
v or? + ror
2C
V2, = (Cz _ T) oCr (1.131)

We can now construct an energy expression using equation (4) and equation (8)

o (Ch% — 2eM)m
E(C) = lpl;Hw‘/’ldf: 2” (1132)
1%1 C_
2.2
:hzc _e2C (1.133)

By recasting the problem into atomic units, we can dispose of the annoying # and e giving

2

E(C) = %_ c (1.134)
A plot of E(C) is seen below
10 5
c
L
5_
:5 " d é 1IO
C
Fig.1.2: the ground state energy variation as function C
The final result from our minimization is
E = —0.5 Hartrees (1.135)
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1.5. Wentzel — Kramers — Brillouin (WKB) Approximation:

The BKW Brillouin, Kramers, and Wentzel equations in physics Approximation is a
technique created in 1926 that enables the analysis of a quantum device's semi-classical regime.

The wave function increases asymptotically to the power of the quantum of action's first order .

The Schrodinger equation is obtained from the wave propagation equation according to the
BKW method's fundamental tenet. Therefore, we must discover classical mechanics in the limit
h — 0 just as we discover geometric optics in the theory of wave optics when the wavelength is

A — 0 right arrow.

The WKB approach is most commonly used for 1D issues, but it may also be used for 3D

spherically symmetric problems.

The wave function is often expressed as ansatz:

Y@ t) = A, exp <%S(F, t)) (1.136)

The amplitude A and the action S are the two unknown functions; one of these two
variables is typically regarded as "slowly varying." In fact, we shall only examine this problem

here for the one-dimensional example when 7 = R is utilized [14].
1.5.1. WKB Approximation formula:

Denote by ¥ the wave function, stationary solution of the Schrodinger equation, of a

particle of mass m moving in the potential V (r) [15]:

h? d?
l— gz T V(T)l Y(R) = EY(R) (1.137)

The WKB approximation consists in writing the wave function in the form :

C_
p(R

YWKB(R) = €y e%fp + e_if:lfp (1.138)

p(R

3
3

Where p(R) = \/Zm(E — V(R)) is the local impulse of the particle.
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1.5.1.1. Physical meaning
Note the simple physical meaning:

1- In the conventionally allowed region, the faster the particle, the more its probability of

presence decreases. Indeed, at the place where E > V(R), the probability of presence []? will

be proportional to %.

2- In the classically forbidden region the probability of presence [|? will be exponentially

1
decreasing in e wlPl Indeed, at the place where E <V(R), we then have

p(R) = i\/Zm(E — V(R)) and the exponentially increasing term will generally be divergent and
therefore not physical, the normalization of the wave function then imposes C, = 0.
Demonstration

By showing the different orders of the power development of A we set

. " e
W(R) = e%[“°<R)+701<R)+(7) o2(R)+-- (1.139)
Ordre 0:
By using only g, in y we immediately obtain
—a’ (R) + iha!'(R) + p%(R) (1.140)

The order 0, which is called the classical approximation, consists in not keeping any term in A.
We obtain

oo(R) = F [p sop(R) ~ er/ P (1.141)
Ordre 1:

The following order is the B. K. W. approximation itself.
Using the previous formula, with o, + ?01 (R) instead of g, , and keeping only the terms in A

we get immediately 20y + o' = 0
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Using the value of a,(R) = + [ p (R) , we can deduce g, (R) = cte +%ln|p(R)| and

wWKB(R)=ﬁe%“’+%e‘%” (1.141)
NI p

1.5.2. Stationary phase WKB method

The wave function therefore generalizes the free motion of a particle. However, it is not
satisfactory at the cusps x, and —x, where p = 0 and where therefore the wave function
diverges. MASLOV, a Russian physicist of the XXth century circumvented this problem by
noting that one could remove the singularity by carrying out the connection of the wave function

in phase space (p, s). [16]

V(%)

X

Fig.1.3: Harmonic potential well

To switch from one representation to another, we give the following two formulas:

P = e‘%x”¢(x)dx (1.142)

1
V2nhj
Where Y (p) represents the Fourier transform of y(x)

1
\V2mh

P(x) = e%"”gb’@dx (1.143)
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Although we frequently are unable to calculate these formulas precisely, we may still obtain an
approximation since the WKB wave function is itself an approximation. The stationary phase

approach is used to achieve this. In fact, if we have an integral of the following type:

[ = f AP dx (1.144)

With s a very large real parameter (in our case: %), the phase of the function oscillates very

quickly. The notable contributions for the integral are therefore close to the points x, where

¢,(x0) = 0 (Which correspond to the places where the phase oscillates less quickly). We can

therefore carry out a limited expansion of ¢ around x,, and we obtain:

[~ f A)els(Pe058" Cox?) o (1.145)
With 8x. ¢ (x,) = 0

If in the neighbourhood of x,, the amplitude A(x) varies slowly with respect to the exponential,

we can approximate A(x) by A(x,) and thus get it out of the previous integral. This becomes

SO:

I ~ A(xg)esE) f AG)es? 0?4 (1.146)

Using the Fresnel integral formula:

L ("™ o3 dx = via = Jape T (1.147)
—— | e 2@ dx = ia = |a|?e *al .
V2m f_oo
Finally, we got
2 1
LI Y i (1.148)
I =~ A(xy) S0l tiz
s (xo)

Where + corresponds to the sign of phase s¢" (x,)

Now let's apply this method to equation (1.142):
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_ c dx i %o
@) = erll " Pdx—p) (1.149)
VWJ P12
We identify:
1
Alx) = - (1.150)
lp(x)|2
Then:
P(x) = jxopdx — px (1.151)
We have:
Ale) =—— (1.152)
Ip(x0)12
¢"(x0) = P’(xo) (1-153)

Thus, using equation (27), we finally obtain:

) = — f Rt Ceo)+igsgn[" xo)] (1.154)
Ip(x0)p(x0)'I2
In the representation p, the passage from A to B does not pose a problem, there is no

singularity. According to the expression of ((p), we have ¥(p,) = ¥(p, )e*z (at e and, the

second derivative changes sign at x0). By performing the inverse Fourier transform, we go back

to the x representation, we have Yz (x) = Y, (x)eﬂ% . The wave function, at the cusp, therefore,

undergoes a phase shift of + g This is independent of the shape of the potential. [17]
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Fig.1.4: Representation of p as function of x
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Chapter 2

THE RESOLUTION OF SCHRODINGER
EQUATION WITH THE SEMI INVERSE
VARIATIONAL METHOD

2.1. The Semi-inverse variational method:

Professor He. Jihuan proposed the semi-inverse approach in 1997 [1]. For the first time,
this strategy was utilized to provide variational formulations for field equations in fluid
mechanics. This approach is based on variation calculations. Before we go into the details of this

technique, remember the Schrddinger equation radial for a potential with spherical symmetry.

Several notable researchers, including Abdelouahab Zerarka [2-4], Zhou Xin-Wei [5,6],
and Liu Hong-Mei [7,8], have calculated the eigenvalues of the Schrodinger equation. Several
earlier research on this strategy [9-25] have recently been published. The implementation of this
approach in many systems produced good results when compared to other methods such as
,Nikiforv-Uvarov method ,WKB approximation and factorization method etc., and this technique

is highly significant in dynamic theory, indicating the efficacy of this methodology.

The major goal of this study is to provide a variational framework for searching solutions in
the quantum domain using the semi-inverse variational approach [26], which is based on
resolving the Schrodinger equation and therefore finding the wave function and energy
eigenvalues. This approach used the radial component of the Schrodinger equation with various
potentials such as the Yukawa potential, screened coulomb potential, and anharmonic one. The
option of this possibility is to compare the findings obtained by the semi-inverse variational

approach with other methods to see how precise it is.

40



Chapter 2 The Resolution of Schrodinger Equation with The Semi-Inverse Variational Method

The expression for the radial Schrodinger's equation is:

h? 10 9] I(l+1)
_ | == (y2 = =
[2m< S () + = ) + V(r)l R(r) = ER(r) 2.1)
This equation may be rewritten in the form of
—-h%1 0 9]
(2= — = 2.2
2m r? dr (r 67‘) W) —ER =0 22)
w(r) the effective potential is provided using the form:
% 1(1+1) (2.3)

w(r) =V()+ pTe—

[ is the quantum number, and A the Planck constant and m is the mass of the particle. We can

write the equation 1 in the form of

32 32 32
AR _Ch d—R+(w(r)—E)R=O (2.4)

UGrs R; R R™) = 2m dr?  2m dr

And so:

2 2

—h —
U(r;R;R;R") = o R" — o R+w@)—E)R=0 (2.5)

Where exhibitors’ " and " are the partial derivatives with respect to r

2.1.1. Euler’s equation:

au d (6U> (2.6)

R~ dr\aR"
It is simple to confirm that this requirement is not met when we apply the consistency condition
(2.6) to the equation (2.5). Therefore, we recast the equation using an auxiliary factor called g(r).

[27,28]:
Y(r;R;R";R") = g(r)U(r;R;R";R") =0 (2.7)
And in the equation. (2.3), U is replaced by Y. Now the consistency condition is satisfied

provided that. g(r) = 12

Y RiRGRY) = 12U iR RY) = g2 iR ARy By R = 0
n R - A =2m’ drz madr "V mRs (2.8)
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So, this equation can be derived from a specific function as a stationary condition.

Now, using a particular function as a stationary condition, the differential equation (2.6)
may be obtained. We use the semi-inverse approach, which is currently the best way for deriving
variation principles for many physical issues, to determine this functional. The semi-inverse
method's fundamental concept is demonstrated in. We create a broad functional procedure for the

equation in an alternate form as:

J(r) = j+ooL(r;R;R’;R")dr (2.9)
0

Which L(r; R; R"; R"") is the function of lagrange (where lagrangian) depends on and its
derivatives, guise reads:

2 2
L= %(7‘ C;—f) +b(w(r) — E)(rR)? + F (2.10)

is an unknown function depending on R or of its derivatives.

a and b are arbitrary constants to be determined.

The goal is to look for the wave function R (r) which minimizes the integral of the relation
(2.10). This is done by calculating the variations §j = 0(the stationarity condition). The

stationary condition is satisfied if the Euler-Lagrange equation is satisfied.

L d (6L) _
OR dr\oR')
oL d (0L
o _ 4 <_) _ (2.11)
OR dr \OR’
By applying this equation to the previous Lagrangian, we obtain the following equation:
ah? _d°R h?dR O6F
2l g — E)r2 — 2.12
o T g2 2am I + 2b(w(r) — E)r<R +6R (2.12)
We refer to g—z as the variation derivative of F with respect to R, expressed by:
6F OF d(@F)_I_d 0%F 213
SR OR dr\OR') = dr\OR" (213)
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We look for the quantitiesF, @ and b so that equation (5) identifies with the equation original.
So,we found a = b =% andF =0

1]

=5 |z (d—R) + (w(r) — E)Rzl r2dr (2.14)

dr

So, the Lagrangian of the problem can be written as:

*®1[h% (dR\’
J@r) = f - —(—) +(w(r)—E)Rzlr2dr (2.15)
o 2|2m\dr
Now the theory is ready to use. For application, we will propose the anharmonic potential
potential:
1 1
Vr(r) = Emwrz + Ephwrz (2.16)
So, we write functional test:
+ 00
J(r) = j L(r;R;R,)dr (2.17)
0
2
Where L(r;R;R,) = = (r %) + F(R)
We use the stationary form
h2 d dR\* S8F h?> d/  dR\
P —_— 2 ___ _— = — 2 — 2p2 (218)
2mdr (T dr) + 6R 2mdr (T dr) +w(r) = E)r°R

it follows that g—; = (w(r) — E)r?R? then we can find F with:

F= %(W(r) — E)r?R? + F, , with F, is a constant equal 0 .Finally we can write the Lagrangian

Like
%/ dR\? 1
P 1  n2p2 (2.19)
L(r; R; R,) —4m(r—dr) +2(w() - Er?R
We find
1[ A% /dR\?
— | = (== ") — 2|2 (2.20)
L > 2m(dr> + (w'(r) E)er dr

So, the Lagrangian of the problem can be written as:
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*®1[h? (dR\?
= Zl=(= "(r) — 2|2 2.21
J(r) fo 5 Zm(dr) + (w'(r) — E)R*|r4dr (2.21)
The theory is now prepared for use. We will use the radial isotropic harmonic oscillator, which is

denoted as follows:

R2il+1) 1 5
! = — - 2.22
w'(r)=V()+ S T— + zpha)r (2.22)
Therefore, we create a functional test:
+o0
J(r) = j L(r; R; R,)dr (2.23)
0

1[A% /dR\* [(R2(+1) 1 1
. R — = (== i S i 24 2 _ 2 2.24
L(r;R; R,) > IZm(dr) +< Gy~ +2mwr + thwr E)R l (2.24)

+°°1th dR\? <h21(l+1) 1
) ¢ (M
dr

1
_ (1 Cmort 4 2 _ g |R?|r2 2.25
J(r) fo > |7m + —mwr +2phwr E)R lr dr (2.25)

2mr? 2
Before doing numerical testing, we employ the atomic unit system, where A = 2m = 1, and we
have the analytical solution of the used potential.
Harmonic oscillator with perturbation by a quadratic un potential:

We propose W with form
1
W = Ephwrz (2.26)

Ou p is a real parameter, without dimension with p < 1. H S’écrit alors :

PZ

1 1
H=H — _ 2,2 4 2 2.27
= 0+W—2 +2mwr +2phwr (2.27)

In this situation, the disturbance effect is just changing the Harmonic oscillator's recall constant.

w0’ = w (1 +)p) (2.28)
We see that H is always a Hamiltonian, the Harmonic oscillator, whose pulse has become w"

The study of the value of the eigenvalues of H. They are simply written according to (2) et (3):
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E, = (n + %) ho' = (n + %) hawy/(1 + p) (2.29)

That is to say again, when we develop the radial:

E—( +1)h RN 2.30
n=1\n > w >t3 (2.30)

2.1.2. Test functions:

1-R = ae~**

We substitute the wave function R = ae™*"” in equation (2.25) we get:

For the simplification calculus in Mathematica [29] we replace the value of energy E by the

symbol t ,we found J(a, k) the results in terms of a and:

T
N aZJ; (12k? — 8kt + 3(1 + p)w?) (2.31a)
](a; ) = 64k5/2

The stationary condition provides the following expressions.

[ 2 2
da 32k5/2
2 | 2 _ 2
9(a, k) o 3a \g(élk 8kt +5(1 + p)w*) -
ok 128k7/2 (2.31c)

The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition f0°<|R|2r2dr

Always with Mathematica we get:

2 2 2 2

The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition f0°<|R|2r2dr
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We deduce that this result corresponds to the configuration:n = 1,1 = 0 (state 1s), since the

wave function R, is given by:

2 3 o' 2 3 (wy/p+1)
Ry = —w'? re 2" or (wfp+1)*re” 2 v’

Nar: i

1,54

1,04

0,5

0,0

0 2 2 6 8 10
r(A)

Fig.2.1. The wave function Ry, forw = 1and p = 1073
2-R = are~*r*

With the same method and by Mathematica we found J(a, k) the results in terms of a and:

3a2\g (—8ek + 20k? + 5(1 + p)w?)

_ (2.32a)
Jak) = 512k7/2
The stationary condition provides the following expressions.
n 2 2
da 256k7/2
n 2 2
ok 512k9/2

The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fo‘lelzrzdr
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Always with Mathematica we get:

w/p+1 o' AndE_Sw p+1 50’

k = —
2 2 2 2
The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fO°C|R|2r2dr

We deduce that this result corresponds to the configuration:n = 1,1 = 1 (state 1p), since the

wave function R,; is given by:

22, e, 242
w re 2 ou

NEN V3Vm

The wave function graph R, for w = 1 and p = 1073 is shown in the figure 2.2

S (oo ,

re 2

(07 71)

Ry, =

0,8
0,6
0,4

0,2 o

0,0 T T T
o] 2 4 6

r(A)

Fig.2.2. The wave function R;; forw = 1 and p = 1073

_ 2
3-R = ar?e7kr

With the same method and By Mathematica we found J(a, k) the results in terms of a and:

15a2 |5 (—8ek + 28k? + 7(1 + p)w?)

J(a, k) = (2.33a)

2048k9/2
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The stationary condition provides the following expressions.

VA
da 1024k9/2
VA
81(a, 10 105a2\/; (—8ek + 20k? + 9(1 + p)w?) (2.330)
ok 4096k 11/2

The resolution of the algebraic system provides the values of k and the constant a can be
determined via the normalization condition f0°(|R|2r2dr

Always with Mathematica we get:

7wp+1 _ 50’

2

wp+1 _
=

k = — And E =
The resolution of the algebraic system provides the values of k and the constant a can be
determined via the normalization condition fo(lelzrzdr

We deduce that this result corresponds to the configuration:n = 2,1 = 1 (state 2p), since the

wave function R, is given by:

4 w’ 4 7 (wy/p+1)
Ry = ——aw' 122" ou (wyp+1)*r2e” 2 i
15Vn V15vm

The wave function graph R,; for w = 1 and p = 1073 is shown in the figure 2.3

0,6

0,2

0,0

T T T
(o] 2 4 6

rA)

Fig.2.3. The wave function R,; forw = 1and p = 1073
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Chapter 2 The Resolution of Schrodinger Equation with The Semi-Inverse Variational Method

2-R = (ar? + b)e ¥*

By Mathematica we found J(a, b, k) the results in terms of a and k :

1
J(a,b, k) = W\/g (4k(24abk(—2e + k) + 16b*k?(—2e + 3k) + a*(—30e

(2.34a)
+ 33k)) + 3(35a? + 40abk + 16b%k?)(1 + p)w?)
The stationary condition provides the following expressions.
0@, k) \f 4k (24bk(~2e + k) + 2a(—30e + 33k)) + 3(70
- 2048k9/2 (4k(24bk(~2e + k) + 2a(—30e + 33K)) + 3(70a
(2.34b)

+ 40bk) (1 + p)W2)>

\/g(4k(24ak(—26 + k) + 32bk%(—2e + 3k)) + 3(40ak + 32bk?)(1 + p)w?)

dj(a k)
FT 2048k9/2
oJ(ak) 1 \/ﬁ 4k(24ak(—2e + k) + 32bk2(—2e + 3k)) + 3(40ak
b 2048K572 \y 2 (Hr(24ak(=2e + k) (=2e+3k)) +3(40a
(2.34¢)
+32bk?)(1 + p)W2)>
a](ark) \/7 2 2
- 4096k11/2 (—5a?(56ek — 44k? — 63(1 + p)w?)
(2.34d)

+ 16b2%k?(—8ek + 4k?* + 5(1 + p)w?) + 8abk(—40ek + 12k?
+ 35(1 + p)w?))
The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition f0°c|R|2r2dr

Always with Mathematica we get:

_ 2bw P+l ' 7w/p+1 5w
a= 2ot g = -

3 2 2 2 2

The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fo‘lelzrzdr
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We deduce that this result corresponds to the configuration:n = 2,1 = 0 (state 2s), since the

wave function R, is given by:

2V3 20 w’ 2v/3 2w/p +1 wy/p+1
Ryp = —— (1 - —)r2e” 2" ou (1- er)e_ z "
NENC: 3 5V 3
1,0 A
o 0,5
0,0 T
2 4 6
r(A)
-0,5 -
Fig.2.4. The wave function R,, forw = 1and p = 1073
2-R = ar3e~*’
By Mathematica we found J(a, k) the results in terms of a and:
2 T, _ 2 2
@k 105a \/;( 8ek + 36k* +9(1 + p)w*) (2.352)
= 8192/ 11/2
The stationary condition provides the following expressions.
. 2 2
9(a, k) ~ 105a\/;( 8ek + 36k~ +9(1 +p)w*) (2.35h)
da 4096k 11/2
2 T 2 2
8j(ak) B 945a J;( 8ek + 28k~ + 11(1 + p)w*) (2.35¢)
ok 16384k13/2
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Chapter 2 The Resolution of Schrodinger Equation with The Semi-Inverse Variational Method

The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fO°C|R|2r2dr

Always with Mathematica we get:

4

w,/p+1 +
=" =2 And E =20 =22
2 2 2 2

The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fooclRlzrzdr

We deduce that this result corresponds to the configuration:n = 3,1 = 0 (state 3s), since the

wave function R,; is given by:

42 o’ 442 7 (w/p+1)
Ryp = ———a' 132" ou———(w/p+1)*rie” 2 e
105V V105V

The wave function graph R, for w = 1 and p = 1073 is shown in the figure.

0,6

0,4

0,2

0,0 T T T
0 2 4 6

rA)

Fig.2.5. The wave function Ry, forw = 1and p = 1073
2-R = (ar? + b)e **

By Mathematica we found J(a, b, k) the results in terms of a and:
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J(a,b k) = I(4k(40abk( 2e + 3k) + 16b2k?(—2e + 5k)

8192k11/2
i - 5 (2.36a)
+ a®(=70e + 115k)) + 5(63a* + 56abk + 16b*k*)(1 + p)w?)
The stationary condition provides the following expressions.
gak) 1 3\/ﬁ 4k (40bk (~2e + 3k) + 2a(—70e + 115k
90 8192k11/z | 3y 7 (4 (40Dk(=2e + 3k) + 2a(—70e )
(2.36b)
+ 5(126a + 56bk)(1 + p)w2)>
dJ(a, k) I(4k(40ak( 2e + 3k) + 32bk?(—2e + 5k))
b 8192k11/2
(2.36¢)
+ 5(56ak + 32bk*)(1 + p)w2)>
0 (a, k) 1 Jﬁ 2 2 2
= T 1e38ai 15 E(—7a (72ek —92k* —99(1 + p)w*)
+16b2k?(~8ek + 12k? + 7(1 + p)w?) + 8abk(—56ek + 60k> (2.36d)

+ 63(1 + p)w?))
The resolution of the algebraic system provides the values of k and the constant a can be
determined via the normalization condition folelzrzdr

Always with Mathematica we get:

e (Casel:

We deduce that this result corresponds to the configuration: n = 0,1 = 0 (state 0s),
o Case 2:

2bw,/p+1
a = ——’kz
5 2 2 2 2
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The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fO°C|R|2r2dr

We deduce that this result corresponds to the configuration:n = 3,1 = 1 (state 3p), since the

wave function R,; is given by:

31 =

2\/§< 20’ > @ 2\/§< 2w /p + 1 2) _op+ ,
— re 1————7r“|re

— 72 2
3V 5 3V 5

1,0

0,0

r(A)

Fig.2.6. The wave function Ry, forw = 1and p = 1073

2.2. Resolution the Schrodinger equation with some different potentials:
2.2.1. Yukawa potential:

A Yukawa potential, also known as a screened Coulomb potential, is a potential in particle,
atomic, and condensed matter physics named for the Japanese physicist Hideki Yukawa. The

potential takes the shape of the form [29]:

—amr
e

VYukawa(r) = —§2 (2-37)

r
where § is a magnitude scaling constant and the amplitude of potential, m is the mass of the

particle, r is the radial distance to the particle, and « is another scaling constant.

For A = m = 1, we express : the Lagrangian of the problem as below can be written as:

53



Chapter 2 The Resolution of Schrodinger Equation with The Semi-Inverse Variational Method

1T dR\? [l + 1 —Ar
](T)=f E[(E) +< (2:2 )—Voer —E)Rzlrzdr (2.38)
0

—Ar
And as a result, we may utilize values like A = ﬁ and set V(r) = -V, eT as Yukawa

potential in these stages, where R(r) = ae~*" is the radial trial function. R(r) is substituted in

equation (2.38) for this reason, we may express Lagrange's overall functionality as follows:

1
J(a k) = E“Z(E_T_F) (2.39a)

£ g4~ (10100—+ 207 ) (2.39b)
@k 1 , 1 32 6t
ok 16 (‘EJ’( T +2k)3+ﬁ (2.390)
1000

For all applications in this study, the k, E, and other variables are determined by solving the
nonlinear system of equations dj using the Mathematica package. Noting that E represents the
energy value, which has previously been employed in Mathematica, we obtain the following
outcomes: k ~ 0.999999, E ~ 0.499001 and R;, = ae~ 09999997,
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1,0

0,51

0,0

T T T 1
o] 2 4 6 8

r(A)

Fig.2.7. The wave function R, for Yukawa potential (V, = 1,1 = 0.0001).

We'll continue with another example, A = ﬁ we expressed the general functional of LaGrange

as below:
1 8 2t
— A2 _ _
J(a k) = 16 a k 1 5 k3) (2.40a)
(m + 2k)
The stationary condition provides the following expressions:
J(ak) 1 1 8 Zt)
=—a(-- - - —
1 3 (2.40b)
da 8 'k (o0 + 2k)? k
oJ(a,k) 1 32 6t
ok " 16 Tt Sk (2.40c)
(foo + 2K

Always with our packaging we get, k ~ 0.999926, E ~ 0.4990075 and R,, = ae 09999267
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1,04

0,5

0,0

T T T 1
0] 2 4 6 8

rA)

Fig.2.8. The wave function R, for Yukawa potential (V, = 1,1 = 0.001).

1 .
In the case, 1 = oo e obtain:

J@h) = - - @412)
16 “k (1+20k)? k3
and for the stationary condition provides the following expressions:
(k) 1 1 800 2t
e "3 a(E - m - ﬁ) (2.41b)
dJ(a k) _ laz(_i N 32000 N g) (2410

ok 16 k2 © (1420k)3  k*
For this we get, k ~ 0.99333, E =~ 0.407051 and R;, = ae 09933367,

T T T 1
o 2 a 6 8

r(A)

Fig.2.9. The wave function R;, for Yukawa potential (V, = 1,4 = 0.01).
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Tab.2.1. The eigenvalues of Yukawa potential for different values of A of the state 1s.

A our results Ref [30] Ref [31] \

0.001 —0.499000749500547 —0.4990008
0.002 —0.498002996009470 —0.4980030 —0.4950
0.005 —0.495018687868179 —0.4950187 —0.4901
0.01 —0.490074505845447 —0.4900745 —0.4803
0.02 —0.480296092106669 —0.4802961 —0.4755
0.05 —0.451815942579349 —0.4518164 —0.4518

0.1 —0.407051443942481 —0.4070780 —0.4071

0.2 —0.326729365014589 —0.3268078 —0.3268

0.3 —0.257324659356835 —0.2526452

0.5 —0.146509393838167 —0.1480844 —0.1881

Tab.2.2. The eigenvalues of Yukawa potential for different values of A of the state 2s.

A our results Ref [30] Ref [31]
0.001 —0.123585225161263 —0.1240167
0.002 —0.122592659608282 —0.1230119 —0.1230
0.005 —0.119644376768699 —0.1200743 —0.1201
0.01 —0.114826981119266 —0.1152939 —0.1153
0.02 —0.105542391028958 —0.1061483 —0.1062
0.05 —0.080301645549905 —0.0817711 —0.08175
0.1 —0.046033580447479 —0.0499266 —0.04993

Tab.2.3. The energy eigenvalues of the Yukawa potential with different values of gand Vo = 1
of the state 1s.

() our results Numerical Supersymmetry
[31] [32]
0.002 —0.996005992018941 —0.99600 —0.99601
0.005 —0.990037375736382 —0.99000 —0.99004
0.01 —0.980149011690898 —0.98010 —0.98015
0.02 —0.960592184213339 —0.96060 —0.96059
0.0256 —0.950922321362622 —0.95090 —0.95092
0.05 —0.903631885158696 —0.90360 —0.90363
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The next results are for h = 2m = 1.

Tab.2.4. The eigenvalues of Yukawa potential for different values of Vj of the state 1s.

Vo Our results Numerical Analytical Supersymmetry
[34] [33] [33]

4 —3.2564115515398573 —3.2565 —3.2199 —3.2563

8 —14.458110162539146 —14.4571 —14.4199 —14.4581
—2.5833830563780093 —2.5836 —2.4332 —2.5830

16 —60.85902856720754 —60.8590 —60.8193 —60.8590
—12.990939538350945 —12.8375 —12.9910 —12.9908

24 —139.25934619091115 —139.2594 —139.2201 —139.2590
—31.393767390991638 —11.5959 —11.2456 —11.5951
—11.595667857596096 —11.5959 —11.2456 —11.5951

According to figures 2.7 ,2.8 and 2.9 we identify the ground states 1s and the first excited state
2S.
Table 2.1 and Table 2.2 displays the eigenvalues of Yukawa potential for different values of A of
1s and 2s respectively. It observed that :

- The energy increases when the values of A increases.

- The outcomes are in good agreement with the results in references [30] and [31].
Table 2.3 shows the energy eigenvalues of the Yukawa potential with different values of g and
V, = 1 of the state 1s.We note increasing of energy values when the value g rises, and the results
are very close with another works mentioned in [31] and [32] with error of 0.0001%.
Table 2.4 The eigenvalues of Yukawa potential for different values of V, of the state 1s.We note
increasing of energy values when the value Vj rises, and the results are very close with another
works mentioned in [31] and [32] with error of 0.000013%.
The numerical simulations demonstrate the feasibility and accuracy of our semi-inverse
variational approach in solving the Yukawa potential problem. Our results align well with known
references, showecasing the effectiveness of this method in tackling quantum mechanics
challenges.
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2.2.2. Cornell potential

The known Cornell potential takes the form —g + Br .Forthecaseof a=1andf =1we

express the Lagrange equation as below:

+oo 2
J(r;R; R,) =f %[(Cé—f) +<l(l+1)—%+r—E>Rzlr2 (2.42)
0

2r2

and as a result, we may employ, for instance, the screened coulomb potential V(r) = —% +rin

these stages, where the radial trial function is R() = (a + br + cd)e™*". To solve for r in

equation (2.42), we use R(r). For this reason, we may express Lagrange's overall functionality as

follows:
J(a,b,d, k) = 37K (2k?(b?(15 + k(k(—3 + 2k) — 6t)) + 2abk(6 + k((—2 + k)k
—3t)) + a?k?(3 + 2k((—1 + k)k — t))) + 3d?(105 + 2k(k(-5 (2.43a)
+ 3k) — 15t)) + 12dk(b(15 + k((—=2 + k)k — 5t)) — ak(—5 + k?
+ 2kt)))

The stationary condition offered by the following phrases is used in this instance:

AL — L (2k?(2bk(6 + k((—2 + K)k — 30)) + 2ak*(3 + 2k((—1 + K)k — 1)) —

12dk?(=5 + k? + 2kt))

9j(ab,c k) _ 2k?(2bk(6 + k(=2 + k)k — 38)) + 2ak?(3 + 2k((~1
o= s (2KP(2bk(6 + k(( )k = 3t)) + 2ak? (3 + 2k (( (2.43b)
+ k)k — ) — 12dk*(=5 + k? + 2kt))
OBAD = L (2k*(2b(15 + k(k(=3 + 2k) — 61)) + 2ak(6 + k((—2 + K)k — (2.43d)
3t))) + 12dk(15 + k((—2 + k)k — 5t)) |
9j(ab,d k) _ 6d(105 + 2k(k(—=5 + 3k) — 15 12k(b(15 + k((-2
ad 3250 (6A(105+ 2k(k(=5+ 3k) = 150)) + 12k(b(15 + k(= (2.43e)
+ k)k — 5t)) — ak(=5 + k? + 2kt)))
a](arab];dl k) - _ 16k9 (45d2(28 — 2k2 + k3 - 7kt) + 2k2(2abk(15 - 3k2 + k3
(2.43f)

— 6kt) + 3b2(15 — 2k? + k3 — 5kt) + a?k?(6 — 2k? + k3 — 3kt))
+ 6dk(b(105 — 10k? + 4k3 — 30kt) — 2ak(—15 + 2k? + 5kt)))
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For all of the applications in this paper, we solve the nonlinear system of equations 9]
using the Mathematica packaging. We note that t represents the energy value, and that k and t are
constants that can be found using the normalization condition k = 2.08 , b = 1.297a,d =
1.413a and E =~ 1.3987 and Ryy = a(1 + 1.297r + 1.41312) ¢~2087

T T T
(o] 2 4 6

rA)

Fig.2.10. The wave function R for V(r) = —% + 7.

We'll proceed on to examine a further wave function, R = (ar* + br? + d)e~*", which

we'll insert in equation (2.42) to represent the generic LaGrange functional as follows:

J(a,b,d, k) = (315a2(495 + 2k (k(—9 + 5k) — 45t)) + 3b2k*(105

32k1?
+ 2k (k(=5 + 3k) — 15t)) + 2d%k®(3 + 2k((—1 + k)k — t)) (2.44a)
— 12bdk®(—5 + k? + 2kt) — 30ak?(dk?(—21 + 2k(k + k? + 3t))

+ b(—378 + 3k((7 — 2k)k + 28t))))

and for the stationary condition provides the following expressions:

J(@bdl) 630a(495 + 2k (k(—9 + 5k) — 45t)) — 30k?(dk?(—21
o = o5 630a( (k( ) = 451)) (dk( (2.44b)

+ 2k(k + k2 + 3t)) + b(=378 + 3k((7 — 2k)k + 281)))
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dJ(a,b,d, k)
ab T 32k12
+ 2kt) — 30ak?(—378 + 3k((7 — 2k)k + 28t))

dJ(a,b,d, k 1
](aak ) = 16k13 (_14‘175(12(66 —2k? + k3 — 11kt) — 4‘5b2k4(28 —2k2

+ k3 — 7kt) — 2d*k8(6 — 2k? + k3 — 3kt) + 12bck®(—15 + 2k?
+ 5kt) + 30ak?(—21b(90 — 4k? + k3 — 18kt) + dk?(—84 + 6k?
+ 5k3 + 21kt)))

For this we get k = 2.124, b = —1.834a,d = —0.927a, E = 3.489 and

6bk*(105 + 2k(k(=5 + 3k) — 15t)) — 12dk (=5 + k2

Rio = a(r* — 1.834r% — 0.927)e 21247,

0,5+

0,0

rA)

-0,5 -

Fig.2.11. The wave function R, for V(r) = —% + 7.

(2.44c)

(2.444)

We'll proceed on to examine a further wave function, R = (ar® + d)e ", which we'll

insert in equation (2.42) to represent the generic LaGrange functional as follows:

1
=i (45a2(126 + k(k(=7 + 16k) — 280)) + 12adk® (15 + k(k(~2

+ 5k) — 5t)) + 2d%k®(3 — 2k? + 26k3 — 2kt))
The stationary condition provides the following expressions.

J(a,d, k) =

61

(2.453)
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JGa,d k) 3
Sa = 320 (0a(126 % k(k(=7 + 16K) = 280) + 12k°(AS + k(k(=2 o0
+ 5k) — 5¢)))
dJ(a,d, k) B 12ak3(15 + k(k(—2 + 5k) — 5t)) + 4ck®(3 — 2k? + 26k3 — 2kt) (2.45¢)
F 32k10 |
](a; dl k) _ 2 2 3 3 2 3
S = g (T3150°(45 — 207 + 4K — 9kn) — 15adk(21 — 207+ 47

— 6kt) + d2k6(—6 + 2k% — 13k3 + 3kt))
For this we get k = 0.611,d = —61.345a, E = 8.616 and R, = a(r3 — 61.345)e 06117,

0,06
0,04 4

0,02 4

0,00 LA NN S I S S B I S S L S S B
2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

r(A)

-0,02 +

-0,04 +

Fig.2.12. The wave function Rg, for V(r) = —% +7.

We may describe the generic LaGrange functional as follows for various values of 3, for

instance f = 100 with the same wave function for the basic level energy:

J(a,b,d k) = 161k8 (k2(b2(1500 + k(k(=3 + 2k) — 6t)) + 2abk(600 + k((—2

+ k)k — 3t)) + 2a%k2(150 + k((=1 + k)k — t))) + 3d2(5250 (2.463)
+ k(k(=5 + 3k) — 15t)) + 6dk(b(1500 + k((=2 + k)k — 5t))
— ak(=500 + k2 + 2kt)))

The stationary condition provides the following expressions:
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9J(a, b, d, k) o ,
T = 1/(16k8) (k% (2bk(600 + k((=2 + k)k — 3t)) + 4a k2(150
da (2.46h)
+ k((=1+ Ik — t))) — 6dk? (=500 + k? + 2kt))

ojGabdl) (k?(2b(1500 + k(k(—3 + 2k) — 6t)) + 2ak(600 + k((—2
ob 16k8 (2.46¢)
+ k)k — 3t))) + 6dk(1500 + k((—2 + k)k — 5t)))
9(a,b,d,k) = (6d (5250 + k(k(=5 + 3k) — 15t)) + 6k(b(1500 + k((—2
ad 16k8 (2.46d)
+ k)k — 5t)) — ak(—=500 + k? + 2kt)))

dJ(a,b,d, k) B
ok 16k°
+ 2k3 — 15kt) + ak(1500 — 2k? — 5kt)) + 2k?(2abk(1500 — 3k? (2.46€)
+ k3 — 6kt) + 3b%(1500 — 2k? + k3 — 5kt) + a?k?(600 — 2k?
+ k3 — 3kt)))
For this we get k = 8.905, b = 5.823a,d = 43.301a, E = 46.441

(45d2(2800 — 2k? + k3 — 7kt) + 12dk(b(5250 — 5k?

Roo = a(1 + 5.823r + 43.30112) 789057,

rA)

Fig.2.13. The wave function Ry, for V(r) = —% +100r.

We'll proceed on to examine a further wave function, R = (ar* + br? + d)e~*", which

we'll insert in equation (2.42) to represent the generic LaGrange functional as follows:
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J(a,b,d, k) = (315a2(24750 + k(k(=9 + 5k) — 45¢t)) + 3b2k*(5250

16k12
+ k(k(=5 + 3k) — 15t)) + 2d?k8(150 + k((—1 + k)k — t)) (2.47a)
— 6bdk®(—500 + k2 + 2kt) — 15ak?(2dk?(—1050 + k2 + k3

+ 3kt) + b(—37800 + 3k((7 — 2k)k + 28t))))

The stationary condition provides the following expressions:

9J(a,b,d k) _ (630a(24750 + k(k(=9 + 5k) — 45¢
S = — 5 (630a( (k( ) — 451)) (2.47b)

— 15k2(2dk?(—1050 + k2 + k3 + 3kt) + b(—37800 + 3k((7
— 2k)k + 28t))))

o/(a,b,d k) 1 .
5 = 1okt (6bk (5250 + k(k(=5 + 3k) — 15¢t))

— 6dk®(=500 + k2 + 2kt) (2.47¢)
— 15ak? (~37800 + 3k((7 — 2k)k + 28t))>

dJ(a,b,d, k) 1 8 6 2
7d = Teriz (4dk®(150 + k((—1 + k)k — t)) — 6bk®(—=500 + k* + 2kt)  (2.47d)

— 30ak*(—1050 + k? + k3 + 3kt))
dJ(a,b,d, k) 1 , s i
— = Tois (14175a%(6600 — 2k? + k* — 11kt) — 45b%K*(2800
— 2k? + k3 — 7kt) — 2d?k8(600 — 2k? + k3 — 3kt) (2.47¢)
+ 12bdk6(—1500 + 2k? + 5kt) + 30ak?(—21h(9000 — 4k? + k3
— 18kt) + dk?(—8400 + 6k? + 5k3 + 21kt)))
For this we get k = 9.245, b = —0.117a, d = —0.0021a, E = 85.659 and

Rio = a(r* — —0.117r% — 0.0021)e 22457,

r(A)
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Fig.2.14. The wave function R, for V(r) = —% + 100 7.

We'll proceed on to examine a further wave function, R = (ar® + d)e™"*", which we'll

insert in equation (2.42) to represent the generic LaGrange functional as follows:
1

J(a,b,d, k) =

— 5 (45a2(12600 + k(k(—7 + 16k) — 28t)) + 12adk® (1500 + .48

k(k(—2 + 5k) — 5t)) + 4d?k®(150 + k(k(—1 + 13k) — t)))
The stationary condition provides the following expressions:

J@b B _ 1 (90a(12600 + k(k(~7 + 16k) — 28)) + 12dKk* (1500
S = 3370 (90l (ke( ) — 281)) ( (2.48b)

+ k(k(—2 + 5k) — 5t)))

J(a,b,d, k) _ (12ak3(1500 + k(k(—2 + 5k) — 5t)) + 8dk®(150 + k(k(—1
ad ~ 32k10 (2.48c)

+13k) — 1))

fabdl) 1 (—315a%(4500 — 2k? + 4k3 — 9kt) — 30ack3(1050 — k?
ok 8k11 (2.480)

+ 2k3 — 3kt) + d?k®(—600 + 2k? — 13k3 + 3kt))
For thiswe get k = 2.771,d = —0.665a, E = 192.146 and

Rso = a(r3® — 0.665)e~ 27717,

0,6
0,4
0,2

0,0

r(A)

-0,2

-0,4

-0,6 -

Fig.2.15. The wave function Rg, for V(r) = —% +100.
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With the same wave function for the basic level energy and different values of g, such as

B = 0.01, the generic Lagrange functional may be stated as follows:

J(a,b,d, k) = (2k2(5b%(3 + 20k (k(=3 + 2k) — 6t)) + 4abk(3

3200k8
+ 50k ((—2 + k)k — 3t)) + a?k?(3 + 200k((—1 + k)k — t))) (2.49)
+15d2(21 + 40k (k(=5 + 3k) — 15t)) 4+ 60dk(b(3 + 20k ((—2

+ k)k — 5t)) + ak(1 — 20k (k + 2t))))

The stationary condition provides the following expressions:

9/(a,b,d. k) _ 22 (4bk(3 + 50k ((—2 + k)k — 3t)) + 2ak?(3
o0 = 32008 ZKI(4K(3 + 50k((=2 + )k = 30)) + 2ak’( (2.49b)

+200k((—1 + k)k — £))) + 60dk?(1 — 20k (k + 2t)))

9/(ab,d,k) _ (2k?(10b(3 + 20k (k(—3 + 2k) — 61)) + 4ak(3
ab  3200k8 2k (10b( (k( )~ o0)+ dak( (2.49¢)

+ 50k ((—=2 + k)k — 3t))) + 60dk(3 + 20k((—2 + k)k — 5t)))
J@bdk) 1 (30d (21 + 40k (k(—5 + 3k) — 15¢t)) + 60k(b(3
ad 3200k3 (2.49d)
+ 20k ((=2 + k)k — 5t)) + ak(1 — 20k(k + 2t))))

dJ(a,b,dk) 1
ok 800
+ 80k® — 600kt) — 2ak(—3 + 40k? + 100kt)) + k*(—10abk(3 (2.49)

— 60k? + 20k® — 120kt) — 15b%(3 — 40k? + 20k3 — 100kt)
+ 2a?k?(—3 + 100k? — 50k3 + 150kt)))
For this we get k = 0.447, b — 0.0642a, d = 4.593 x 1078 and E = —0.221

75 (=90d?(7 — 50k? + 25k* ~ 175kt) — 15dk(b(21 ~ 200k

Roo = (1 — 0.0642r + 4.593 x 107 8r2)e 04477,
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0,8

0,6

0,4

0,2

0,0 T T T T 1
0 2 4 6 8 10

rA)

Fig.2.16. The wave function Ry, for V(r) = —% + 0.01 .

We'll proceed on to examine a further wave function, (ar* + br? + c)e™*", which we'll

insert in equation (2.42) to represent the generic LaGrange functional as follows:

1
J(a,b,d k) = iz (1575a%(99 + 40k (k(=9 + 5k) — 450)) + 15b%k* (21

3200

+ 40k (k(—5 + 3k) — 15t)) + 2d?k®(3 + 200k((—1 + k)k — 1)) (2.50a)
— 60bdk®(—1 + 20k(k + 2t)) — 30ak?(dk?(—21 + 200k (k + k?

+ 3t)) + 6b(—63 + 50k ((7 — 2k)k + 28t))))

For this we get k = 0.447, b — 0.0642a, ¢ = 4.593 x 108

The stationary condition provides the following expressions:

9/(ab.c.k) = (3150a(99 + 40k (k(—9 + 5k) — 45t)) — 30k?(ck?(-21
da 3200k12 (2.50b)
+ 200k (k + k? + 3t)) + 6b(—63 + 50k((7 — 2k)k + 28t))))
dJ(a,b,d, k) _

4 — — — —
i = wa0y (30bK*(21 + 40k (k(=5 + 3k) — 150)) ~ 60cd(~1 2500

+ 20k(k + 2t)) — 180ak?(—63 + 50k((7 — 2k)k + 28t)))
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dJ(a,b,d k)
ok 800k'3
— 40k? + 10k® — 180kt) — 90b2k*(7 — 50k? + 25k — 175kt) (2.50d)

+ 30bdk®(—3 + 40k? + 100kt) + 2d?k®(—3 + 100k? — 50k3
+ 150kt) + 60adk*(—21 + 150k? + 125k3 + 525kt))
For this we get k = 0.497, b 141.61a,d = —1882.37a,E = 0.0358

(—14175a%(33 — 100k? + 50k3 — 550kt) — 3150abk?(9

Rio = (1 —0.0642r + 4.593 X 1078r2)e 04477,

0,06
0,04
0,02

0,00

rA)

-0,02 4

-0,04 +

-0,06 -

Fig.2.17. The wave function R, for V(r) = —% + 0.01 7.

We'll continue with another wave function R = (ar® + b)e~*"which we substitute it in

the equation (2.42) for this way we can expressed the general functional of LaGrange as below:

J(a,b) = (1575a2(99 + 40k (k(—9 + 5k) — 45t)) + 15b2k*(21

3200k12
+ 40k (k(=5 + 3k) — 150)) + 2b%k(3 + 200k((-1 + KDk =)  (251a)
— 60bck®(—1 + 20k(k + 2t)) — 30ak?(ck?(—21 + 200k (k + k2
+ 3t)) + 6b(—63 + 50k((7 — 2k)k + 28t))))

The stationary condition provides the following expressions:
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9/ (a, b, k)
da _ 1600k10
+ 20k (k(=2 + 5k) — 5t)) + b2k®(3 + 200k (k(—1 + 13k) — t)))

9/(a, b, k)
ob _ 1600k10
+ 20k (k(—=2 + 5k) — 5t)))

9/(a, b, k)

ok 800k
— 40k? + 80k3 — 180kt) + 2b2k8(—3 + 100k? — 650k? + 150kt))

For this we get k = 0.148, b =,—4094.7, E = 0.0358 and

(45a2(63 + 50k (k(=7 + 16k) — 28t)) + 30abk?(3

(90a(63 + 50k(k(—7 + 16k) — 28t)) + 30bk3(3

(—15abk3(21 — 200k? + 400k3 — 600kt) — 1575a2(9

Rio = (1 —0.0642r + 4.593 X 10~ 8r2)e 04477,

0,008
0,006
0,004

0,002

0,000 LIS AL AL I S S B N S L B B B B B i
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
-0,002 (&)

-0,004

-0,006

-0,008 -

Fig.2.18. The wave function Rg, for V(r) = —% + 0.01 .

(2.51b)

(2.51c)

(2.51d)

The same methodology was used to obtain the findings, which are displayed in the table below

and contrasted with reference to energies.

Tab.2.5. The eigenvalues for the potential V(r) = — % + 7.

1 Eno Ref [35]

=}

0

Ul —» O
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1.398693189852505 1.397875641660
3.489277280271818 3.475086545396
8.616348360276358 8.687914590401
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Tab.2.6. The eigenvalues for the potential V(r) = — % + 100r.

46.441191906167891 46.402258652779
85.659789498307922 85.339271687574
192.14601869818213 192.850291861086

=

0

Ul —» O

Tab.2.7. The eigenvalues for the potential V(r) = — % + 0.01r.

—0.221030225522051 —0.221030563404
0.0348734315973113  0.034722241998
0.3323785244213793  0.344602792592

=}

0

Ul —», O

According to the drawn figures 2.10,2.11 and 2.12 we noticed that the cases:
e n =0: the curve has no node, so it corresponds to the ground state.
e n=1:The curve has a node, so it corresponds to the first excited state.

e n =5:the curve has more than one node, so it corresponds to the fifth excited state

the same observations for the other figures.

Table 2.5, Table 2.6 and Table 2.7 displays the eigenvalues of the eigenvalues for the potentials
V(r)= —% +1,V(r) =— % +100rand V(r) = —% + 0.01r respectively. It observed that :
- When the values of S rise, so does the energy.

- Arrise in B value corresponds with an increase in energy.

- The outcomes are in good agreement with the results in reference [35] with error of
0.003% to 0.7%.

Additionally, by setting the value of 5, we compare the outcomes with fresh values of a.

We will now begin by substituting the wave function R = (a + br + dr?)e " for
a = 0.6 and the basic level energy n = 0 in the equation (2.42). In this manner, we may express
LaGrange's overall functionality as follows:
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J(a,b,d, k) =

(2k2(b2(75 + k(k(=9 + 10k) — 30t)) + 2abk(30 + k(k(—6

160k8
+ 5k) — 15t)) + a?k?(15 + 2k (k(—3 + 5k) — 5t))) + 45d?(35 (2.52a)
+2k((—=1 + k)k — 5t)) + 12dk(b(75 + k(k(—6 + 5k) — 25t))
+ ak(25 — 3k? — 10kt)))
The stationary condition provides the following expressions.
9)(a,b.d k) = (2k?(2bk(30 + k(k(—6 + 5k) — 15t)) + 2ak?(15
da 160k8 (2.52h)
+ 2k (k(=3 + 5k) — 5t))) + 12dk?(25 — 3k? — 10kt))
o(abd k) _ (2k2(2b(75 + k(k(—9 + 10k) — 30t)) + 2ak(30 + k(k(—6
b 160k8 (2.52¢)
+ 5k) — 15t))) + 12dk(75 + k(k(—6 + 5k) — 25t)))
abdk) 1 (90d (35 + 2k((—1 + k)k — 5t)) + 12k(b(75 + k(k(—6
ad 160k (2.52d)
+ 5k) — 25t)) + ak(25 — 3k? — 10kt)))
aj(a,abléd, kK _ o (45d?(140 — 6k? + 5k3 — 35kt) + 2k?(2abk(75 — 9k?
+ 5k3 — 30kt) + 3b%(75 — 6k? + 5k — 25kt) + a?k?(30 — 6k? (2.52€)

+ 5k3 — 15kt)) + 6dk(5h(105 — 6k? + 4k3 — 30kt) — 2ak(—75

+ 6k2 + 25kt)))

We always get this using Mathematica k = 0.753, b = 0.181a,d =,—3.92 x 10~ q, E = 1.811

Tab.2.8. The eigenvalues for the potential V(r) = — =+ gr for g =1.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.255685737118077
2.169149258473687
2.196094631930914
1.990021925905266
1.897281086457094
1.802319830942286
1.705059950548391
1.605422270956004
1.503326850255253

2.253678
2.167316
2.078949
1.988504
1.895904
1.801074
1.703935
1.60441
1.502415
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1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.398693189852503
1.291440450127502
1.181487676919001
1.068754023134303
0.953158984773472
0.834622612633280
0.713065740626510
0.588410191334066
0.460578976490569

1.397877
1.290709
1.180836
1.068171
0.952644
0.834162
0.712662
0.588049
0.460266
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In this step, we compare the results with new values of g by fixing the value of 3.

Tab.2.9. The eigenvalues for the potential V(r) = —§+ Brfor a=1.

0 2.338107 410 458 750 2.353435026 671 857
0.2 2.167 316 208 771 731 2,180 529 351 111 987
0.4 1.988 503 899 749 943 1.992 373 140 519 031
0.6 1.801 073 805 646 145 1.8106755016440432
0.8 1.604 408 543 235973 1.612 503 175 709 080

1 1.397 875 641 659 578 1.398 693 189 852 505
1.2 1.180 833 939 744 863 1.181 504 444 955 205
1.4 1.180 833 939 744 863 0.957 291510592 218
1.6 0.712 657 680 462 421 0.716 473 847 728 527
1.8 0.460 260 113 875 977 0.463377 533 653 339

Table 2.8 displays the eigenvalues for the potential V(r) = —% + pr for B = 1. As the value of

B increases, we see a decrease in energy levels, and the results are very close with another works
mentioned in [31] and [32] with error of 0.0008%.

Table 2.9 displays the eigenvalues for the potential V(r) = —% + Br for a = 1. As the value of

B increases, we see a decrease in energy levels, and the results are very close with another works

mentioned in [31] and [32] with error of 0.0008%.

The presented table show that the semi-inverse variational method successfully obtains
eigenvalues for different potentials. The results are in good agreement with known references,
which indicates the accuracy and efficacy of this method in solving quantum mechanics problems
involving various potentials. Furthermore, by fixing the value of B and comparing the outcomes
with new values of a, the study explores how the eigenvalues change with different parameters.
This analysis provides valuable insights into the behaviour of the system with varying potential
parameters, revealing the sensitivity of the quantum states to changes in the potential function.
Overall, the tables reinforce the validity of the semi-inverse variational method and its capability
to analyse complex quantum potentials. The method's success in obtaining accurate eigenvalues
for different potentials makes it a promising tool in the study of quantum mechanics, offering

valuable information about the behaviour of quantum systems under various conditions.
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2.2.3. Anharmonic potential

For A = m = 1, we express the Lagrange equation as below:

R = [ %[(fl—f) +<l(l+1)—r—/1r2“—E>Rzlr2dT (253)

272

and as a result, we may use, for instance, A = 1—10 and u = 2.In these stages, we have established

V(r) = r + Ar2* as anharmonic potential, where () = ar?e~*"" is the radial trial function. In

the equation (2.53), R(r) is substituted, and we may formulate the generic LaGrange function as

follows:
119, 7.,
J(a,b,k) ==2"2 a2k 27°(15 + 46b + 36b% + 8b3 + 40(3 + 4b(2 + b))k
5 (2.544)
+ 160(3 + 4b)k3 — 160k2(t + 2bt))
The stationary condition provides the following expressions:
df(a,b,k) 1__17_, 7,
———— =-2"2"ak™ 2 "(15 + 46b + 36b* + 8b* + 40(3 + 4b(2 + b))k
da 5 (2.54b)
+ 160(3 + 4b)k3® — 160k?(t + 2bt))
dJ(a,b, k 1 __19_ 7
% =-:272 Pa2k 27 (—46 — 320k — 640k3 + 320k2t + 15Log[2]
+ 8b3Log[2] + 120kLog[2] + 480k3Log[2] — 160k?tLog|[2]
+ b(=72 + 320k(—1 + Log[2]) + 46Log[2] + 640k3Log|[2] (2.540)

— 320k%tLog[2]) + 4b2(—6 + 40kLog[2] + Log[512]) + (8b3
+ 4b2(9 + 40k) + b(46 + 320k + 640k> — 320k?t) + 5(3 + 24k
+96k3 — 32k2t))Log[k])

19 9
—"’“;‘;f”‘) = —§2_7‘ba(1 +2b)k"2""(8b3 + 20b%(3 + 8k) + 2b(71 + 320k +  (2.54d)
320k — 160k2t) + 15(7 + 40k + 32k — 32k?t))

For this we get k ~ 0.553,b ~ —1.009 , E ~ 1.066 and R,, = ar~1:009¢=05537%
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T T T T T 1
0,0 0,5 1,0 1,5 2,0 2,5 3,0

rA)

Fig.2.19. The wave function R, for A = 0.1.

We'll proceed on to examine a further wave function, ae " which we'll insert in

equation (2.53) to represent the generic LaGrange functional as follows:

a2£(3 + 8k(3 + 12k2 — 4kt))

_ (2.55a)

](ai k) - 512k7/2

The stationary condition provides the following expressions:
T
da 256k7/2
2 T 3 _ 2
o k) 3a \g(7 + 40k + 32k3 — 32k?t) (2.550)
ok 1024k9/2

For this we get k = 0.596,F ~ 3.31 and R, = e 059677
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0

T T T T T T T T T 1
0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 40 45 5.0

r(A)

Fig.2.20. The wave function R, for 1 = 0.1.

We'll proceed on to examine a further wave function, are** which we'll insert in

equation (2.53) to represent the generic LaGrange functional as follows:

3a2\/§ (7 + 8k(5 + 20k? — 4kt))

_ (2.56a)

J(a k) = 2048K9/2

The stationary condition provides the following expressions.
n 2 _

3j(a k) SaJ; (7 + 8k(5 + 20k= — 4kt)) (2.56b)

da 1024k9/2

2 I 3 _ 2

o k) 3a \/;(63 + 280k + 480k3 — 160k?t) (2.560)

ok 4096k11/2
For this we get k ~ 0.625,E ~ 5.685 and R;, = are %6257,

75



Chapter 2 The Resolution of Schrodinger Equation with The Semi-Inverse Variational Method

1,0 4
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

0,1 4

0!0 T T T T T T T T T T T 1
00 05 10 15 20 25 30 35 40 45 50 55 6,0

r(A)

Fig.2.21. The wave function R,, for A = 0.1.

We'll proceed on to examine a further wave function, (ar? + b)e"‘rz, which we'll insert
in equation (2.53) to represent the generic LaGrange functional as follows:

1

J(a,b, k) = 8192k11/2

< \E (24abk(7 + 8k(5 + 4k (k — t))) + 3a2(63 + 8k(35
(2.57a)
+ 44K2 — 20kt)) + 16b2k?(3 + 8k(3 + 12k — 4kt)))>

The stationary condition provides the following expressions:

o k) \/g (24bk(7 + 8Kk (5 + 4k(k —t))) + 6a(63 + 8k(35 + 44k? — 20kt))) (2.57b)
da 8192k11/2

(@ k) \/g (24ak(7 + BK(S + 4k (k — 1)) +32bk>(3 + 8k(3 + 12k* — 4kD))) (5 57

ab 8192k11/2
dj(a, k) 1
ok  16384k13/2

+ 8abk (63 + 280k + 96k3 — 160k?t) + 16b%k?(7 + 40k + 32k®  (2.57d)

(3\/%((12(693 + 2520k + 1760k3 — 1120k2t)

- 32k2t)))
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For this we get k ~ 0.65, b = —1.21, E ~ 8.36 and Rs, = a(r? — 1.21)e 065"
0,5

0,3 1
0,2 4
0,14

0,0

T T T T T T T T T T T T T 1
oo o5 10 1,5 2,0 25 3,0 3,5 40 45 50 55 6,0 65 7,0

0.1 r(A)

-0,2 -

-0,3 -

Fig.2.22. The wave function R, for A = 0.1.

. . . 12 . i - .
We'll proceed on to examine a further wave function, ar3e=*"", which we'll insert in

equation (2.53) to represent the generic LaGrange functional as follows:

21a? |5 (99 + 40k (9 + 36k? — 4kt))

_ (2.58a)
Jla.k) = 32768k 13/
The stationary condition provides the following expressions:
oj(ak) 2la \E (99 + 40k (9 + 36k? — 4kt)) (2.58b)
da 16384k 13/2
3)(a, k) 189a2\/§(143 + 440k + 1120k3 — 160k?t) (2.58¢)

ok 655361572
For this we get k ~ 0.643,E ~ 10.766 and R,, = ar3e 0643
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r(A)

T T T T T T T T T T T 1
00 05 10 15 20 25 30 35 40 45 50 55 6,0

Fig.2.23. The wave function R,, for A = 0.1.

Tab.2.10. The eigenvalues of the quartic anharmonic oscillator p = 2 for var quantum number n

and A anharmonicity.

A n=0 Ref [38] n=1 Ref [38]
0.00001 1 1.00000749987 3.000037499062546 3.000037498969
0.0001 1.00007498937795214 1.00007486926 3.000374906296839 3.000374896936

0.001 1.00074894044248497 1.00074869267 3.003740671569707 3.003739748168
0.01  1.00739660055331098 1.00737367208 3.036606515172337 3.036525304513
0.1 1.06656814715510628 1.06528550954 3.310312805305138 3.306872013152

A n=2 Ref [38] n=3 Ref [38]
0.00001 5.000087496937712 5.000097496157 7.000187490813372 7.000187490157290
0.0001 5.000874693964177 5.000974615938 7.001882553100586 7.00187401666766

0.001 5.008719587426195 5.009711872788 7.018658988177776 7.01865259205752
0.01  5.084634061035908 5.093939132742 7.179090409551282 7.17857318070050
0.1 5.684998302958418 5.747959268834 8.368186390838924 8.35267782578575

A n=4 Ref [38]

0.00001 9.000247486388995 9.00030747969643

0.0001 9.002473640245217 9.00307297204461

0.001 9.024615351112462 9.03054956607471
0.01 9.235199339552453 9.28947981631189
0.1 10.766335921616188 11.0985956226330
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According to the drawn figures 2.20,2.21 ,2.22 and 2.23 we noticed that the cases:
e n=1:the curve has no node, so it corresponds to the ground state.
e n =2:The curve has a node, so it corresponds to the first excited state.
e n =3: the curve has two nodes, so it corresponds to the second excited state.
e n =4:the curve has more than two node, so it corresponds to the third excited state.

Table 2.10 The eigenvalues of the quartic anharmonic oscillator p=2 for var quantum number n
and A anharmonicity. It pointed out:

- When the values of A rise, so does the energy.

- Arrise in quantum number n corresponds with an increase in energy.

- The outcomes are in good agreement with the results in reference [38] with maximum
error of 0.03 %.

Additionally, we may utilize examples like, 4 = 1—10 and u = 3.In these stages, we have

established V (r) = r + Ar2* as anharmonic potential, where R(r) = ar?e~*"" is the radial trial
function. In the equation (2.53), R(r) is substituted, and we may formulate the generic Lagrange
function as follows:

1 23 9
J(a,b, k) = g2‘7"’azl<‘i"’(105 + 352b + 344b% + 128b3 + 16b* + 160(3 (2.5%)
.oJa

+ 4b(2 + b))k? + 640(3 + 4b)k* — 640k3(t + 2bt))
The stationary condition provides the following expressions.

9
==2"2""ak™27"(105 + 352b + 344b% + 128b° + 16b* + 160(3
da 5 (2.59b)

+ 4b(2 + b))k? + 640(3 + 4b)k* — 640k3(t + 2bt))

9/ (a, b, k 1 23, 9
](a—b ) _ —£2 2 "a’k"2 (=352 — 1280k* — 2560k* + 1280k°t

J(ab k) 1__21

+ 105Log[2] + 16b*Log[2] + 480k?Log[2] + 1920k*Log[2]

— 640k3tLog[2] + 8b2(—48 + 43Log[2] + 80k?Log[2]) + 16b(—43
+ 80k%(—1 + Log[2]) + 22Log[2] + 160k*Log[2] — 80k3tLog[2])
+ 64b3(—1 + Log[4]) + (128b3 + 16b* + 8b2(43 + 80k?) + 5(21
+ 96k? + 384k* — 128k3t) + 32b(11 + 40k? + 80k*

— 40k3t))Log[k])

(2.59¢)
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9J(a, b, k 125 It
J(a,b, k) = —£277 "a¥(1+2h)kZ "(192b% + 16b* + 8b*(103 + 80K?)

ok
+15(63 + 160k? + 128k* — 128k3t) + 16b(93 + 160k? + 160k*  (2290)
— 80k3t))
For this we get k ~ 0.62,b ~ —1.06, E ~ 1.1236 and Ry, = ar~106¢=062r"
0,000 0,002 0,004 0,006 r((;’\())os 0,010 0,012 0,014
Fig.2.24. The wave function R, for A = 0.1.
We'll proceed on to examine a further wave function, ae~¥* which we'll insert in
equation (2.53) to represent the generic LaGrange functional as follows:
2 | 2 2 _
ek a \E(u +32k%(3 + 12k? — 4kt)) (2.603)
S 2048k9/2
The stationary condition provides the following expressions.
T 2 2 _
da 1024k9/2
2 T 2 4 _ 3
o) k) 3a J;(63 + 160k? + 128k* — 128k3t) (2.600)

ok 4096k11/2
For this we get k ~ 0.741, E ~ 3.638 and Ry, = ae~0741"",
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2,4 -
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2,0
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0,4 -
0,2 -
0,0

rA)

Fig.2.25. The wave function R, for 1 = 0.1.

We'll proceed on to examine a further wave function, are** which we'll insert in

equation (2.53) to represent the generic LaGrange functional as follows:

3a2£(63 + 32k2(5 + 20k? — 4kt))

B (2.61a)
Ja k) = 8192k11/2
The stationary condition provides the following expressions.
T
3J(a, k) 3a\g (63 + 32k?(5 + 20k? — 4kt)) (2.61b)
da 4096k 11/2
9/ (a, k) 3a2\/§ (693 + 1120k? + 1920k* — 640k3t) (2.61¢)

ok B 16384k13/2

For this we get k ~ 0.826, E ~ 6.517 and R,, = are0826"°
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1,4

1,2

1,0

0,6

0,4 4

0,2 4

0,0

T T T T 1
0] 1 2 3 4 5

rA)

Fig.2.26. The wave function R,, for A = 0.1.

We'll proceed on to examine a further wave function, (ar? + b)e"”z, which we'll insert
in equation (2.53) to represent the generic LaGrange functional as follows:

1 T
- - f_ 2 _ 2
J(a,b, k) = 32768K13/2 < > (24abk(63 + 32k“(5+ 4k(k —t))) + 3a~(693

+ 32k?(35 + 44k? — 20kt)) + 16b%k2(21 + 32k?(3 + 12k? (2.62a)

— 4kt)))>

The stationary condition provides the following expressions:

9J(a,b k) _ \f 24bk(63 + 32k2(5 + 4k(k — ))) + 6a(693
P 32768k13/2 ( ( ( ( ))) + 6a(
(2.62b)
+ 32k?(35 + 44k?* — 20kt)))>
0j(a.b,k) _ I (24ak (63 + 32k>(5 + 4k(k — £))) + 32bk?(21
ob 32768k13/2
(2.62c)
+ 32k?(3 + 12k? — 4kt)))>
dJ(a, b, k) 1 \/ﬁ ) 2 4 3
S = <3 7 (a%(9009 + 10080k? + 7040k* — 4480k°¢)

+ 8abk(693 + 1120k? + 384k* — 640k3t) + 16b%k2(63 + 160k2  (2.62d)

+128k* — 128k3t)))

For this we get k ~ 0.91,b ~ 0.928 ,E ~ 10.41 and Rs, = (ar? + b)e 091",
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0,8 4

0,6 H

0,4

0,2 4

0,0

-0,2

-0,4 -

Fig.2.27. The wave function R, for A = 0.1.

We'll proceed on to examine a further wave function, ar3e~*r* which we'll insert in

equation (2.53) to represent the generic LaGrange functional as follows:

21a2\/§ (1287 + 160k2(9 + 36k2 — 4kt))

k) =
J(a. k) 131072k15/2
The stationary condition provides the following expressions:

E 2 2 _
0@ k) 21a\/;(1287 + 160k%(9 + 36k? — 4kt))
da 65536k 15/2
2 E 2 4 3
oJ(ak) 94502 |7 (429 + 352k? + 896k* — 128k>t)

ok B 262144k17/2

For this we get k ~ 0.976, E ~ 13.252 and R,, = ar3e09767,
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1,0

0,8 H

0,6

0,4 H

r(A)

Fig.2.28. The wave function R,, for A = 0.1.

Tab.2.11. The eigenvalues of the quartic anharmonic oscillator u = 3 for var quantum number n

and A the anharmonicity.

0.00001
0.0001
0.001
0.01
0.1
A
0.00001
0.0001
0.001
0.01
0.1
A
0.00001
0.0001
0.001
0.01
0.1

1.000018748607233
1.000187360904953
1.0014438243267185
1.0181884582082556
1.1236163008323140
n=2
5.000393610563672
5.0039236444618895
5.038070170954247
5.307421622580530
6.516671017926577

1.00001874727074
1.00018722815368
1.00184881557231
1.01674136375473
1.10908707846558
Ref [38]
5.00046851972698
5.00466471129998
5.04479992578458
5.34742035100854
6.64439170865661

3.0001312241703073
3.001309926137334
3.0128762758090533
3.1122349397090883
3.6383773830539057

3.00013121319510
3.00013121319510
3.01278096069010
3.10797991274458
3.59603692122046

n=23 Ref [38]
7.0011935276829105 6.64439170865661
7.011738450196156  7.01172052372043
7.111425622658624 7.11009285586092
7.809742553943158  7.77769746656750
10.410088890873299 10.2378737214239

n=4%
9.001607458039079
9.015960134684915
9.149659768475203
10.042636379683646
13.252289307371183
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Ref [38]
9.00241588390908
9.02390720140850
9.21858174873225
10.4083375080935
14.3070400461209
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According to the drawn figures 2.20,2.21 ,2.22 and 2.23 we noticed that the cases:
e n=1:the curve has no node, so it corresponds to the ground state.
e n =2:The curve has a node, so it corresponds to the first excited state.
e n =3: the curve has two nodes, so it corresponds to the second excited state.
e n =4:the curve has more than two node, so it corresponds to the third excited state.

Table 2.10 The eigenvalues of the quartic anharmonic oscillator p=3 for var quantum number n
and A anharmonicity. It pointed out:

- The energy increases as the values of A increase.

- Anincrease in energy is correlated with a rise in quantum number n.

- With a maximum inaccuracy of 0.07 percent, the results are in good agreement with the

findings in reference [38].

The numerical simulations demonstrate the feasibility and accuracy of our semi-inverse
variational approach in solving the Anharmonic potential problem. Our results align well with
known references, showcasing the effectiveness of this method in tackling quantum mechanics
challenges.
Conclusion:
In this work, we applied the semi-inverse variational method to study the nonlinear Schrodinger
equations and calculate the bound energies for each potential. The simplicity and effectiveness of
this method make it a valuable tool in practice. The technique developed here provides
convenient and accurate approximations for solving Schrodinger problems by determining
eigenvalues and eigenfunctions. Notably, the precise eigenvalues and eigenfunctions obtained in
this study align with those reported in other references, validating the reliability of our approach.
The outstanding results achieved through this study suggest that the semi-inverse variational
method can find applications beyond our current scope. The potential of this method can be
explored in other quantum physics domains, including the Klein-Gordon equation. Further
research in this direction will be pursued in upcoming works. The semi-inverse variational
method holds promise as a robust and versatile approach for tackling complex quantum
mechanics problems. Its success in calculating bound energies for various potentials underscores
its significance in quantum physics research. By offering accurate solutions to Schrddinger

equations, this method opens new avenues for investigating the behavior of quantum systems and
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their interactions in diverse physical scenarios. In conclusion, the findings of this study present a
significant contribution to the field of quantum mechanics. The demonstrated efficiency and
compatibility with established results affirm the potential of the semi-inverse variational method

as an asset for future research in quantum physics and related disciplines.
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Chapter 3

RESOLUTION OF KLEIN GORDON EQUATION WITH
THE SEMI INVERSE VARIATIONAL METHOD

3.1. The Klein Gordon equation:
3.1.1. Introduction

It was separately proposed by Swedish physicist O. Klein, Soviet scientist V. A. Fok, and
German physicist W. Gordon [1].
The Klein-Gordon equation is expressed for a free particle.
d*y d> d*y d*y
R S
acz = e <dx2 Tz Tz

h > —m?cty (3.1)

This equation, which goes like this: p = p%c? + m?c*where m is the particle's mass and ¢
is the speed of light, describes the relativistic connection between a particle's energy £ and

momentum p.

The function ¥ (x, y, z, t), which is just a function of the coordinates (x,y, z) and the time
(1), is the answer to the equation. Since the  -meson and the K-meson fall into this category, the
particles represented by this function have no additional internal degrees of independence or are
spinless. However, analysis of the equation revealed that its solution iy was fundamentally
different from the ordinary wave function in terms of its physical meaning: ¥(x,y,z,t) is not
determined exclusively by the value of y at the initial moment (such an unambiguous

relationship is postulated in nonrelativistic quantum mechanics).

Additionally, the formula expressing the likelihood of a certain condition might take on
both positive and negative values, which have no physical significance. As a result, the Klein-

Gordon equation was first disregarded. However, W. Pauli and W. Weisskopf found an
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appropriate interpretation for the equation in the context of quantum field theory in 1934 [2].
They quantized the equation by considering it as a field equation similar to Maxwell's equations

for an electromagnetic field, making an operator [3-6].

3.2. The semi-inverse variational method for Klein Gordon equation:

As a result, in the second Chapter, we attempt to obtain the Lagrange function for the Klein-

Gordon equation using the same condition.

Writing a functional test

+o0
J(r) = j L(r; Ry Ry, )dr (3.2)
0

an,l

2
= ) + F(R) and we use the stationary form:

Where L(7; R; R,) = (r

d ( _ dR,\° O6F d [  dR,)\> 2 2
(220 Sl Y Seatele 1) 2 2 _(r _ 2
6R : I (r Ir ) SR = dr (r Ir ) + ho)? ((M(r)c +S@)N2—(E-V({) )r Ry,
5 2 . .
0 SRL = (hi)z ((M(r) +S@)N2—(E-V({) )ran_l then we can find F with:

1

F= G

(ME)e? +5@))? = (E= V(1)) 2Ry ® + Fo
F, is a constant equal 0

now we get the Lagrangian as mentioned in:

dR, 1\ 1
L(7; Ryi; Ruy,) = (r dr'l) + o (M@)e? +50))? = (E-V())")r2Ry?

, dRy\ 1
L(r Rni R'ny,) = (r dr ) * (hAc)?

After simplifying with putting 2 = ¢ = 1 we get:

(M) +5097 = (E-v))r2R, 2 (33

d 2
L(r; Ros; Ruy) = I(d—}:) + ((M(r) +S@)?:—(E - V(r))z) Rzl r2 (3.4)

We conclude.
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J(r) = J:OO [(dg;f’l)z + ((M(r)c2 +S)? - (E- V(r))z) Rzl ridr (3.5)

3.2.1. Colombian potential:

The shape of the Kratzer potential is as follows [7]:

Aq
%2

S(r) = —% and V(r) = i—j—% with the Colombian potential is a special case from the

Kratzer one with putting A; = 0 and 4, = 0.

For m(r) as constant value m = 1 , the expression of Lagrange becomes:

400 2
J@r) = fo [(dg;"l) +(@+5@))? - (E- V(r))z) RZ] r2dr (3.6)

For special cases we put

A, =4,=0

And as a result, we may use B; = 0 and B, = 0.1 as examples. For instance, the radial trial
function is R(r) = ae™*", therefore we can replace R(r) in equation (3.6). For this reason, we
may express Lagrange's overall functionality as follows:

a?(0.25 + 0.245k? — 0.05kt — 0.25t?)

The stationary condition offered by the following phrases is used in this instance:
d/(a,k)  2a(0.25 + 0.245k? — 0.05kt — 0.25t2)
— (3.8a)
da k3
dJ(a, k) a*(—0.75 — 0.245k? + 0.1kt + 0.75t?)
FT 2 (3.8b)

We use the Mathematica packaging to resolve the nonlinear system of equations dJ for all the
applications in this paper in order to find the k, E, and other variables. A constant can be found

by using the normalization condition, and we note that the energy values, which are already used
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in Mathematica, k ~ 0.1, E ~ 0.994937 and R = ae~ %" which represent the ground state

energy n = 0.

0,06
0,05 ~
0,04
0,03 ~
0,02 ~

0,01 ~

0,00 T T T T T 1
0 10 20 30 40 50 60

r(A)

Fig.3.1. The Radial wave function R for B, = 0.1 for the ground state n = 0

We'll proceed on to examine a further wave function with constants set to the same values
of B,, R = (ar + b)e™*", which we'll insert in equation (2.6) to represent the generic Lagrange

functional as follows:

1
J(a, b, k) =—(a?(0.75 + 0.2475k? — 0.075kt — 0.75t2) + abk(0.75 + 0.245k? — (
k5

(3.9)
— 0.75t%) + b%k?(0.25 + 0.245k? — 0.05kt — 0.25t2))
In this case we use the stationary condition provides by the following expressions:
dJ(a, b, k) 1
———— =-=(2a(0.75 + 0.2475k? — 0.075kt — 0.75t*) + bk(0.75 + 0.245k
da k (3.10a)
— 0.1kt — 0.75t2))
dJ(a,b,k) 1
———= = —(ak(0.75 + 0.245k? — 0.1kt — 0.75t%) + 2bk?(0.25
db k5
(3.10b)

+ 0.245k? — 0.05kt — 0.25t2))
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d/(a, b,k 2
]—( ok ) = %6 (b?k?(—0.375 — 0.1225k? + 0.05kt + 0.375t%) + ack(—1.5

— 0.245k? + 0.15kt + 1.5t2) + a?(—1.875 — 0.37125k? (3.10c)
+ 0.15kt + 1.875t2))

Always with Mathematica packaging to resolute the nonlinear system of equations dJ for all
the applications to find the k and t and other constants, a constant can be determined via the
normalization condition and for this aims we get,k = 0.05,b = —19.76 E = 0.998739 and R =

a(r — 19.76)e~%95" which represent the first excited state energy n = 1.
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0,002
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-0,001 - r(A)

-0,002 +
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Fig.3.2. The Radial wave function R for B, = 0.1 for the first excited state n = 1

We'll proceed on to examine a further wave function with constants set to the same value
of B,, R = (ar? + br + d)e™*", which we'll insert in equation (2.6) to represent the generic

LaGrange functional as follows:
1
2k7

+ 0.7425k? — 0.3kt — 3.75t2) + dk(1.5 — 0.005k? — 0.15kt
— 1.5t%)) + k?(bdk(0.75 + 0.245k? — 0.1kt — 0.75t2) + b?(0.75
+ 0.2475k? — 0.075kt — 0.75t2) + d?k?(0.25 + 0.245k? — 0.05kt

— 0.25t2)))

J(a,b,d, k) =— (a?(5.625 + 1.1175k? — 0.375kt — 5.625t2) + ak(b(3.75

(3.11)
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In this case we use the stationary condition provides by the following expressions:

dJ(a,b,d,k) 1 ) 2
o = 5 (2a(5.625 + 1.1175k? ~ 0375kt ~ 5.625¢%) + k(b(3.75

da
+0.7425k2 — 0.3kt — 3.75¢%) + dk(1.5 — 0.005k2 — 0.15kt (3.129)
— 1.5t%)))
0J(a,b,d k) 1
— = = 5 (ak(375 + 0.7425Kk — 0.3kt — 3.75¢2) + k?(dk(0.75
+0.245Kk2 — 0.1kt — 0.75¢%) + 2b(0.75 + 0.2475k% — 0.075kt  >12P)
— 0.75t2)))
oJ(@bd k) 1
o = — (ak?(L5 — 0.005k% — 0.15kt — 1.5¢2) + k2(bk(0.75 + 0.245
ad PACLE )+ k(b (3.12b)
— 0.1kt — 0.75t2) + 2dk?(0.25 + 0.245k? — 0.05kt — 0.25¢2)))
0J(a,b,d k) 2
% = =5 (a%(~19.6875 — 2.79375k? + 1125kt + 19.6875¢%)
+ k?(d?k?(—0.375 — 0.1225k? + 0.05kt + 0.375t2)
+ bdk(—1.5 — 0.245k? + 0.15kt + 1.5t%) + b%(—1.875 (3.12c)

— 0.37125k? + 0.15kt + 1.875t2)) + ak(dk(—3.75 + 0.0075k?
+ 0.3kt + 3.76t%) + b(—11.25 — 1.485k? + 0.75kt + 11.25t2)))

For all applications to obtain the constants k, t, and others, the nonlinear system of equations d]
must always be solved using the Mathematica package. The constants can be found by using the
normalization condition, and for this purpose, we obtain k = 0.03,b = —89.2239a, d =
1324.68a E =~ 0.999441 and R = a(r — 89.2269r + 1324.68)e~%%3" which represent the

first second state energy n = 2.
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Fig.3.3. The Radial wave function R for B, = 0.1 for the first excited state n = 2

The values of B, are varied to increase the compatibility of the outcomes produced by this

procedure, and the results are summarized in the table below.

Table 3.1.The eigenvalues of Coulomb potential for different values of B, and B; = 0

B, n our results Ref[8]

0.1 0.994937 0.99503

0.2 0 0.978945 0.98058
0.3 0.949662 0.9578

0.1 1 0.998739 0.998752
0.2 0.994833 0.995037
0.3 0.987872 0.988936
0.1 0.999441 0.999445
0.2 Z 0.997725 0.997785
0.3 0.9947 0.995037

According to the drawn figures 3.1, 3.2 and 3.3 we observed :
n =0: the curve has no node, so it corresponds to the ground state.
n =1:The curve has a node, so it corresponds to the first excited state.
n =2: the curve has two nodes, so it corresponds to the second excited state.
Table 3.1 displays the eigenvalues of Coulomb potential for different values of B, and B; = 0.

we noticed that :
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- There is a correlation between rising quantum numbers (n) and increasing energy.

- When the value of B, grows, the energy drops.

- The results show good agreement with the findings in reference [8], with a maximum
accuracy of 0.0003%.

Ford, =4,=0_:

and as a result, we may use B; = 0.1 and B, = 0 as examples, where R(r) is the radial trial
function and ae~*") is the radial trial function. For this reason, we may express LaGrange's
overall functionality as follows:
1
J(a, k) = = (a?(0.25 — 0.05k + 0.255k? — 0.25t2)) (3.13)

In this case we use the stationary condition provides by the following expressions:

J(ak) 2
](aaa ) _ 13 ((0.25 — 0.05k + 0.255k* — 0.25¢%)) (3.142)
(@ k) _ 2 20 0375 1 0.05k — 01275k + 0.375¢2

A constant can be found using the normalization condition, and for this purpose, we obtain
k~0.1,E ~0.995086 and R = ae~%%" which represent the first ground state energy n = 0.

This is always done with Mathematica packaging to resolve the nonlinear system of equations dJ.

0,06
0,05
0,04
0,03
0,02
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Fig.3.4. The Radial wave function R for B; = 0.1 for the ground state n = 0
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We'll proceed on to examine a further wave function with constants set to the same value
of By, R = (ar + b)e™*", which we'll insert in equation (3.6) to represent the generic LaGrange

functional as follows:

1
J(a,b,k) =75 (@*(0.75 + (~0.075 +0.2525k)k — 0.75¢%) + abk(0.75 + (=01 (3158)
+ 0.255k)k — 0.75t2) + b2k2(0.25 + (—0.05 + 0.255k)k — 0.25¢2))

In this case we use the stationary condition provides by the following expressions:

Ylabl) _ 1 )0 075 + (=0.075 + 0.2525k)k — 0.75¢2) + bl(0.75 +(—0.
da k> (3.15b)
+0.255k)k — 0.75t2))
8J(a,bl) 1

~— = 75 (ak(0.75 + (=0.1+ 0.255k)k — 0.75¢2) + 2bk?*(0.25
(3.15¢)

+ (—=0.05 + 0.255k)k — 0.25t2))

dJ/(a, b,k 2
—]( EY ) = %6 (b?k?(—0.375 + 0.05k — 0.1275k? + 0.375t?) + abk(—1.5

+ 0.15k — 0.255k? + 1.5t2) + a?(—1.875 + 0.15k — 0.37875k2  (3.15¢)

+ 1.875t2))

A constant can be found using the normalization condition, and for this purpose, we obtain
k ~ 0.05,b ~ —20.267 E ~ 0.998762 and R = a(r — 20.276)e~%95" which represent the first

ground state energy n = 1. This is always done with Mathematica packaging to resolve the

nonlinear system of equations dJ.
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01000 T T T T T T T 1
0 40 60 80 100 120 140 160 180

r(A)

Fig.3.5. The Radial wave function R for B; = 0.1 for the first excited state n = 1

We'll proceed on to examine a further wave function with constants set to the same value
of B,, R = (ar? + br + d)e~*", which we'll insert in equation (3.6) to represent the generic

LaGrange functional as follows:
1
J(a,b,d, k) = ﬁ(a2(5'625 + k(—0.375 + 1.1325k) — 5.625t2) + ak(b(3.75

+ (=0.3 + 0.7575k)k — 3.75¢2) + dk(1.5 + (—0.15 + 0.005k)k

— 1.562)) + k2(b2(0.75 + (—=0.075 + 0.2525k)k — 0.75¢2) (3.16)
+ bdk(0.75 + (=0.1 + 0.255k)k — 0.75t%) 4+ d?k?(0.25 + (—0.05
+ 0.255k)k — 0.25t%)))
In this case we use the stationary condition provides by the following expressions:
M = %(2a(5.625 + k(—0.375 + 1.1325k) — 5.625t2%) + k(b(3.75
* (3.17a)

+ (—0.3 + 0.7575k)k — 3.75¢2) + dk(1.5 + (—0.15 + 0.005k)k
— 1.5¢2)))
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a/(a,b,d, k) 1 2y 4 12
—— = 15 (ak(3.75 + (=0.3 + 0.7575k)k = 3.75¢%) + k*(2b(0.75

+ (—0.075 + 0.2525k)k — 0.75t2) + dk(0.75 + (—0.1 (3.17b)

+ 0.255k)k — 0.75t2)))

gbdi) 1 (ak?(1.5 + (—0.15 + 0.005k)k — 1.5t2) + k2(bk(0.75 + (=0
—_— =—(a . — V. . - . ) -
3d 7 (3.17c)

+ 0.255k)k — 0.75t2) + 2dk?(0.25 + (—0.05 + 0.255k)k — 0.25¢2))’

J(abdk) 1 2 2
o = 75 (a?(~19.6875 + 1.125k — 2.83125k* + 19.6875t?)

+ k2(d%k?(—0.375 + 0.05k — 0.1275k? + 0.375t2) + bdk(—1.5

+0.15k — 0.255k? + 1.5¢2) + b2(—1.875 + 0.15k — 0.37875k>  (3.17d)
+ 1.875t%)) + ak(dk(—3.75 + 0.3k — 0.0075k? + 3.75t2)

+ b(—11.25 4 0.75k — 1.515k? + 11.25t2)))

Always with Mathematica packaging to resolute the nonlinear system of equations @/ for all
the applications to find the k and t and other constants, a constant can be determined via the
normalization condition and for this aims we get,k =~ 0.03,b = —90.827a,

d ~ 1377.2a E ~ 0.999448 and R = a(r —90.827r + 1377.2)e~%%3" which represent the
first second state energy n = 2.
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Fig.3.6. The Radial wave function R for B; = 0.1 for the first excited state n = 2
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In order to further increase the compatibility of the outcomes produced by this approach, we
varied the values of B, as shown in the table below.

Table 3.2. The eigenvalues of Coulomb potential for different values of B;and B,=0

0.1 0.995086 0.994987
0.2 0 0.981307 0.979796
0.3 0.961108 0.953939
0.1 1 0.998762 0.998749
0.2 0.995181 0.994987
0.3 0.989631 0.988686
0.1 0.999448 0.999444
0.2 2 0.997834 0.997775
0.3 0.995278 0.994987

According to the drawn figures 3.4, 3.5 and 3.6 we observed :
n =0: the curve has no node, so it corresponds to the ground state.
n =1:The curve has a node, so it corresponds to the first excited state.
n =2: the curve has two nodes, so it corresponds to the second excited state.
Table 3.2 represent the eigenvalues of Coulomb potential for different values of B, and B, = 0.
we noticed that :
- There is a correlation between rising quantum numbers (n) and increasing energy.
- When the value of B, grows, the energy drops.
- The results show good agreement with the findings in reference [8], with a maximum
accuracy of 0.0002%.

forA, =A4,=0and B, =B,:

As a result, we may choose B; = B, = 0.1, where R(r) = ae™*" is the radial trial function.
R(r) is substituted in equation (3.6). For this reason, we may express LaGrange's overall

functionality as follows:

J(a, k) = % (0.25a%(1 + k? + k(—0.2 — 0.2t) — t?)) (3.18)

In this case we use the stationary condition provides by the following expressions:
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d a, k 1 2 _ — t2 3.19a

(a2(—0.375 — 0.125k? + k(0.05 + 0.05t) + 0.375t2))

ok  k* (3.19h)

The first ground state energy, n =0, is represented by = 0.2 , E = 0.9980198, and
R = ae %?" which are obtained when solving the nonlinear system of equations 9/ in

Mathematica for all applications.
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Fig.3.7. The Radial wave function R for B; = B, = 0.1 for the first excited state n = 0

We'll continue with the same value of constants B, but with another wave function
R = (ar + b)e™*" which we substitute it in the equation (3.6) and with Mathematica packaging
we get,k ~ 0.1,b ~ —10.025a, E =~ 0.995012 and R = a(r — 10.025)e~%1" which represent

the first second state energy n = 1.
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Fig.3.8. The Radial wave function R for B; = B, = 0.1 for the first excited state n = 1

With the identical value of the constants B, and a different wave function
R = (ar? + br + d)e™*" that we substitute into equation (3.6), we can describe the generic

LaGrange function as follows:
1
J(a,b,d, k) = o (a?(5.625 + 1.125k? + k(—0.375 — 0.375t) — 5.625t%)

+ ak(b(3.75 — 0.3k + 0.75k? — 0.3kt — 3.75t2) + dk(1.5 — 0.15k

 0.15kt — 1.5¢2)) + k2(bdk(0.75 — 0.1k + 0.25k? — 0.1kt (3.20)
—0.75t2) + b2(0.75 — 0.075k + 0.25k? — 0.075kt — 0.75t2)
+ d?k?(0.25 — 0.05k + 0.25k? — 0.05kt — 0.25t?)))
The stationary condition offered by the following phrases is used in this instance:
M = %(2a(5.625 + 1.125k? + k(—0.375 — 0.375t) — 5.625t?)
‘ (3.213)

+ k(b(3.75 — 0.3k + 0.75k% — 0.3kt — 3.75t2) + dk(1.5 — 0.15k
— 0.15kt — 1.5t%)))
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a/(a,b,d, k) 1 ) 2 4 12
——7—— =15 (ak(3.75 — 0.3k + 0.75k? — 0.3kt — 3.75¢?) + k*(dk(0.75

— 0.1k + 0.25k? — 0.1kt — 0.75t2) + 2b(0.75 — 0.075k (3.21b)

+ 0.25k% — 0.075kt — 0.75t2)))

J@bdi) 1 (ak?(1.5 — 0.15k — 0.15kt — 1.5t) + k*(bk(0.75 — 0.1k + 0.2
5d 7 (3.21¢)

— 0.1kt — 0.75¢t2) + 2dk?(0.25 — 0.05k + 0.25k? — 0.05kt — 0.25t2)

J(abdk) 2 , ,
= 75(a?(~19.6875 — 2.8125k* + 19.6875¢ + k(1.125

+ 1.125¢)) + k2(d2k?(—0.375 + 0.05k — 0.125k2 + 0.05kt

+ 0.375t2) + bdk(—1.5 + 0.15k — 0.25k? + 0.15kt + 1.5t%) (3.21)

+ b2(—1.875 + 0.15k — 0.375k? + 0.15kt + 1.875t2))
+ ak(dk(—3.75 + 0.3k + 0.3kt + 3.75t2) + b(—11.25 + 0.75k
— 1.5k2 + 0.75kt + 11.25t%)))

Always with Mathematica packaging to resolute the nonlinear system of equations dJ for all
the applications to find the k and t and other constants, a constant can be determined via the
normalization condition and for this aims we get,k = 0.067,b = —45.05a,

d ~ 338.25a E =~ 0.99778 and R = a(r — 45.057 + 338.25)e~%3" which represent the first

second state energy n = 2.
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Fig.3.9. The Radial wave function R for B; = B, = 0.1 for the first excited state n = 2

In order to further increase the compatibility of the outcomes produced by this approach, we
varied the values of B, as shown in the table below.

Table 3.3: The eigenvalues of Colombian potential for different values of By (B; = B3)

B, n our results Ref (8]

0.1 0.980198 0.980099
0.2 0 0.923077 0.921538
0.3 0.834862 0.827431
0.1 1 0.995012 0.995006
0.2 0.990198 0.990099
0.3 0.95599 0.955495
0.1 0.99778 0.99778
0.2 2 0.99115 0.99115
0.3 0.980198 0.980198

According to the drawn figures 3.7, 3.8 and 3.9 we observed :
n =0: the curve has no node, so it corresponds to the ground state.
n =1:The curve has a node, so it corresponds to the first excited state.

n =2: the curve has two nodes, so it corresponds to the second excited state.
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Table 3.3 represent the eigenvalues of Coulomb potential for different values of (B, = B;). we
noticed that.
- There is a correlation between rising quantum numbers (n) and increasing energy.
- When the value of B, and B, rise, the energy drops.
- The results show good agreement with the findings in reference [8], with a maximum
accuracy of 0.0001%.

and as a result, we may utilize values like B; = 0.2 and B, = 0.1, as well as the radial trial
function R(r) = ae™*", by replacing R(r) in equation (3.6). For this reason, we may express

LaGrange's overall functionality as follows:
2
J(a, k) = g (0.5a(0.25 — 0.1k + 0.265k? — 0.05kt — 0.25t2)) (3.22)

The stationary condition provided by the following phrases is what we utilize in this situation:

dJ(a, k 2
];a ) = (a(0.25 — 0.1k + 0.265k? — 0.05kt — 0.25t2)) (3.23a)
d(a, k) 2 ) 2 2
K kA a“(—0.375 — 0.1325k* + k(0.1 + 0.05t) + 0.375t*)) (3.23h)

We obtain k ~ 0.28 , E =~ 0.957843 and R = ae~%28", which represent the first ground
state energy n = 0, when solving the nonlinear system of equations in Mathematica for all

applications.
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Fig.3.10. The Radial wave function R for B; = 0.2 and B, = 0.1 for the ground state n = 0

We'll proceed by keeping the variables B;and B, at their original values while substituting
a different wave function, R = (ar + b)e™*", into equation (3.6). In this approach, we may

define the generic LaGrange function as follows:

1
J(a,b,k) =7 (abk(0.75 +0.265k2 + k(~0.2 = 0.1¢) ~ 0.75¢2) + a*(0.75

+0.2575k2 + k(—0.15 — 0.075¢) — 0.75¢2) + b2k2(0.25 + 0.265k%  (3-24)
+ k(—0.1 — 0.05t) — 0.25t%))
Here, we employ the stationary condition made possible by the following expressions:
a](a, b, k) 1 2 2
——— = —(bk(0.75 + 0.265k* + k(—0.2 — 0.1t) — 0.75t*) + 2a(0.75
oa k5 (3.243)
+ 0.2575k? + k(—0.15 — 0.075¢t) — 0.75t2))
dJ(a,b,k) 1
———= = —(ak(0.75 + 0.265k? + k(—0.2 — 0.1t) — 0.75t?) + 2bk?(0.25
db k5
(3.24b)
+ 0.265k? + k(—0.1 — 0.05t) — 0.25t?%))
dJ(a, b,k 2
% = 5 (b?k?(~0.375 — 0.1325k? + k(=0.1 - 0.05¢) + 0.375¢%)
(3.24c)

+ abk(—1.5 — 0.265k? + k(—0.3 — 0.15t) + 1.5t2)

+ a?(—1.875 — 0.38625k? + k(—0.3 — 0.15¢) + 1.875¢2))
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Always with Mathematica packaging to resolute the nonlinear system of equations @/ for all
the applications to find the k and t and other constants, a constant can be determined via the
normalization condition and for this aims we get,k = 0.05,b ~ —20.778 E ~ 0.998783 and

R = a(r — 20.778)e~%%" which represent the first excited state energy n = 1.

0,000 T T T T T T T T
40 60 80 100 120 140 160

rA)

Fig.3.11. The Radial wave function R for B; = 0.2 and B, = 0.1 for the first excited state n = 1

We'll proceed with the same value of the constants B, and another wave function
R = (ar? + br + d)e~*", which we replace in equation (3.6), so that we can define the overall

LaGrange function as follows:
1
J(a,b,d, k) = o (a?(5.625 + 1.1475k? + k(—0.75 — 0.375t) — 5.625t2)

+ ak(b(3.75 — 0.6k + 0.7725k? — 0.3kt — 3.75t2) + dk(1.5 — 0.3k

4+ 0.015k2 — 0.15kt — 1.5¢2)) + k2(bdk(0.75 — 0.2k + 0.265k? (3.25)
— 0.1kt — 0.75t%) + b2(0.75 — 0.15k + 0.2575k? — 0.075kt
—0.75t2?) + d?k?(0.25 — 0.1k + 0.265k? — 0.05kt — 0.25t2)))
In this case we use the stationary condition provides by the following expressions:
W = %(2a(5.625 + 1.1475k? + k(—0.75 — 0.375t) — 5.625t2)
(3.26a)

+ k(b(3.75 — 0.6k + 0.7725k? — 0.3kt — 3.75t2) + dk(1.5 — 0.3k
+0.015k2 — 0.15kt — 1.5¢2)))
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dJ(a,b,d, k) 1
— 5 % (ak(3.75 — 0.6k + 0.7725k? — 0.3kt — 3.75t%)

4 K2(dk(0.75 — 0.2k + 0.265k2 — 0.1kt — 0.75¢2) + 2b(0.75  (260)

— 0.15k + 0.2575k? — 0.075kt — 0.75t2)))
dj(a,b,d,k) 1
ad k7
— 0.2k + 0.265k? — 0.1kt — 0.75t?) + 2dk?(0.25 — 0.1k + 0.265k?
— 0.05kt — 0.25t2)))

dJ(a,b,d, k) 2
o = 15 (a(~19.6875 — 2.86875k? + 19.6875¢* + k(2.25

(ak?(1.5 — 0.3k + 0.015k2 — 0.15kt — 1.5¢2) + k2(bk(0.75
(3.26¢)

+ 1.125¢t)) + k2(d2k?(—0.375 + 0.1k — 0.1325k? + 0.05kt
+ 0.375t2) + bdk(—1.5 + 0.3k — 0.265k? + 0.15kt + 1.5¢2)
(3.27d)
+ b%(—1.875 + 0.3k — 0.38625k? + 0.15kt + 1.875t%))
+ ak(dk(—3.75 + 0.6k — 0.0225k? + 0.3kt + 3.75t?%)
+ b(—11.25 + 1.5k — 1.545k? + 0.75kt + 11.25t%)))

The normalization condition can be used to determine a constant, and for this purpose, we obtain
k = 0.044,b = —30.88,d = 159.72,E = 0.995103,and R = a(r — 30.88r + 159.72)e 00447

which represent the first second state energy with n=2,
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Fig.3.12. The Radial wave function R for B; = 0.2 and B, = 0.1 for the first excited state n = 2

The results of this procedure are then resumed in the table below after we varied the values of
B; and B, to further increase their compatibility.

Table 3.4: The eigenvalues of Colombian potential for different values of B;.( By # B>)

B4 B, n our results Ref (8]

0.2 0.1 0.957843 0.955332
0.3 0.1 0 0.931013 0.919967
0.1 0.2 0.890096 0.879499
0.2 0.1 1 0.998783 0.988771
0.3 0.1 0.98149 0.979999
0.1 0.2 0.988514 0.988854
0.2 0.1 0.995103 0.995004
0.3 0.1 2 0.991569 0.991189
0.1 0.2 0.986618 0.986245

According to the drawn figures 3.10, 3.11 and 3.12 we observed :

n =0: the curve has no node, so it corresponds to the ground state.

n =1:The curve has a node, so it corresponds to the first excited state.

n =2: the curve has two nodes, so it corresponds to the second excited state.
Table 3.4 displays the eigenvalues of Colombian potential for different values of B;.( B; # B,).
We became aware of that.
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- There exists an analogy between growing energy and growing quantum numbers (n).
- The energy decreases as B, and B, values increase. The results show good agreement
with the findings in reference [8], with a maximum accuracy of 0.0001%.
3.2.2. The Kratzer potential:
We start with special cases in Kratzer potential and variate the constants of A, ,A,, B; ,B,
The first case is V(r) = Owith A, = B, =0

So therefore, we can make use for example, A; = B; = 0.1, such as the radial trial function is

A
R(r) = are =7 we substitute R(r) in the equation (3.6) for this way we can expressed the

general functional of LaGrange as below:

1
J(@,k) = 7575 (a7(0.00632456 + (~0.004 - 0.04k)Vk + (0.0765271 — 0.0126491 620

+0.036k3/2 4 0.01897366k2 — 0.0063245612))

In this case we use the stationary condition provides by the following expressions:

d/(a, k)
= (2a(0.00632456 + (—0.004 — 0.04k)Vk + (0.0765271
da k>/2 (3.29a)
— 0.0126491k)k + 0.036k3/% + 0.01897366k> — 0.00632456n%))
d/(a, k) 1
=T (a?(—0.0158114 + 0.008Vk — 0.11479065k + 0.004k3/?
(3.29b)

—0.00316228k? + 0.0158114n?))

The results k = 0.0007 , E ~ 0.995854 and R = ae~%00077=0-1/7 ‘which represent the first
ground state energy n=0, are obtained when the nonlinear system of equations dJ is solved using

Mathematica's packaging for all applications to find the k and t and other constants.
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Fig.3.13. The Radial wave function R for A, = B; = 0.1 and A, = B, = 0 for the ground state

n=0

The second case is S(r) = 0with A, =B, =0

Therefore, consequently, we may utilize values such as A, = 0.1 and B, = 0.1, where R(r) =
are™*" is the radial trial function. R(r) is substituted in equation (3.6). For this reason, we may

express LaGrange's overall functionality as follows:

1
J(@,k) =5 (a*(0.75 +0.005k* — 0.005k* + k*(0.2475 +0.05¢) = 0.075kt (3.30)

—0.75t2))
In this case we use the stationary condition provides by the following expressions:
dJ(a, k) 2 5 . 5
5 =75 (a(0.75 + 0.005k° — 0.005k* + k?(0.2475 + 0.05t) — 0.075kt (3 31a)
—0.75t2))
dJ(a, k) 2

(a?(—1.875 — 0.005k3 + 0.0025k* + k?(—0.37125 — 0.075¢t) (3.31b)

+ 0.15kt + 1.875t2))
Always with Mathematica [34] packaging to resolute the nonlinear system of equations 9] for

ok k©

all the applications to find the k and t and other constants, a constant can be determined via
the normalization condition and for this aims we get,k =~ 0.13 , E = 0.996868 and

R = are~%28" which represent the first ground state energy n = 0.

113



Chapter 3 Resolution of Klein Gordon Equation with The Semi Inverse Variational Method

0,02

0,01

0,00 T T T T T T T 1
0 10 20 30 40 50 60 70 80

r(A)

Fig.3.14. The Radial wave function R for A, = B, = 0.1 for the ground state n = 0

We'll continue with the same value of constants A,and B, but with another wave function
R = (ar + b)re~*" which we substitute it in the equation (3.6) for this way we can expressed the

general functional of LaGrange as below:

1
J(@,b,k) =75 (@*(5.625 + 0.0075k* — 0.0025k* + k2(1.1175 + 0.15¢) — 0.375kt

~5.625t%) + abk(3.75 + 0.01k® — 0.005k* + k?(0.7425 + 0.15t)  (3.32)
— 0.3kt — 3.75t%) + b?k?(0.75 + 0.005k® — 0.005k* + k2(0.2475
+ 0.05t) — 0.075kt — 0.75t2))

In this case we use the stationary condition provides by the following expressions:

df(a,b,k) 1 , .
———— =77 (2a(5.625 + 0.0075k* — 0.0025k* + k?(1.1175 + 0.15¢)
0375kt — 5.625¢2) + bk(3.75 + 0.01k® — 0.005k* + k2(0.7425  (33%2)
+ 0.15t) — 0.3kt — 3.75t?))
dJ(a,b, k) 1
5 = 57 (ak(3.75 + 0.01k3 — 0.005k* + k2(0.7425 + 0.15t) — 0.3kt
— 3.75t2) + 2bk?(0.75 + 0.005k3 — 0.005k* + k?(0.2475 (3.32b)

+ 0.05¢t) — 0.075kt — 0.75t2))
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aJ(a, b k) 2
% = 75 (b?k?(~1.875 — 0.005k° + 0.0025k* + k*(~037125

— 0.075t) + 0.15kt + 1.875t?) + abk(—11.252 — 0.015k?

+ 0.005k* + k2(—1.485 — 0.3t) + 0.75kt + 11.25t2) (3.32¢)
+ a?(—19.6875 — 0.015k> + 0.00375k* + k?(—2.79375

— 0.375t) + 1.125kt + 19.6875t2))

We obtain k =~ 0.07,b ~ —27.1 E ~0.998931 and R = a(r —27.1)re"%%7"  which
represent the first excited state energy n = 1, when solving the nonlinear system of equations d/

in Mathematica for all applications.
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Fig.3.15. The Radial wave function R for A, = B, = 0.1 for the first excited state n = 1

Then, we variate the values of B; and B, to improve more the compatibility of the results

which obtained by this method and resume it in the table below.
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Table 3.5: The eigenvalues of Kratzer potential for different values of A, and B, with S(r) = 0.

0.1 0.1 0.996868 0.996528
0.2 0.2 0 0.989223 0.989796
0.2 0.1 0.997317 0.997449
0.1 0.2 0.9861111 0.987382
0.1 0.1 1 0.998931 0.998967
0.2 0.2 0.996558 0.996528
0.2 0.1 0.999143 0.999132
0.1 0.2 0.995682 0.995868

According to the drawn figures 3.13, 3.14 and 3.15 we observed :
n =0: the curve has no node, so it corresponds to the ground state.
n =0:The curve has no node, so it corresponds to the ground state.
n =1: the curve has a node, so it corresponds to the first excited state.
Table 3.5 shows the eigenvalues of Kratzer potential for different values of A, and B, with
S(r) = 0 .We became aware of that.
- There exists an analogy between growing energy and growing quantum numbers (n).
- The energy increases as A, increase.
- As B, grows, the energy decreases.
- The results show good agreement with the findings in reference [8], with a maximum
accuracy of 0.0003%.

The third case is V(r) = S(r) with A, = B, and A, = B,:

Consequently, we may employ equations like, A; = A, = 0.1 and B; = B, = 0.1, such as the
radial trial function, which is R(r) = are™*" . R(r) is substituted in equation (3.6). For this

reason, we may express LaGrange's overall functionality as follows:
1
J(a, k) = w5 (a?(0.75 + k(—0.075 — 0.075t) + k2(0.3 + 0.05t) — 0.75t2)) (3.33)

In this case we use the stationary condition provides by the following expressions:
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d/(a, k 1
](aaa ) _ s (2a(0.75 + k(—0.075 — 0.075t) + k2(0.3 + 0.05t) — 0.75t2)) (3.34a)
df(a,k) 1
T (2a%(—1.875 + k?(—0.45 — 0.075¢t) + k(0.15 + 0.15¢) (3.34b)
+ 1.875t2))

Always with Mathematica packaging to resolute the nonlinear system of equations d] for all
the applications to find the k and t and other constants, a constant can be determined via the
normalization condition and for this aims we get,k ~ 0.21 , E =~ 0.989327 and R = are 221"

which represent the ground state energy n = 0.

0,004
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0,000

0] 10 20 30 40

r(A)
Fig.3.16. The Radial wave function R for V(r) = S(r) for the ground state n = 0

The variables A; = A, = 0.1 and B; = B, = 0.1will remain the same, but we'll replace
them in equation (3.6) with a different wave function, R = (ar + b)re~*". For this reason, we

may express LaGrange's overall functionality as follows:

1
J(@,b,k) =77 (@*(5.625 + k(~0.375 — 0.375¢) + k2(1.275 + 0.15¢) ~ 5.625¢2)

+ abk(3.75 + k(—0.3 — 0.3t) + k2(0.9 + 0.15t) — 3.75t2) (3.35)

+ b%k?(0.75 + k(—0.075 — 0.075t) + k?(0.3 + 0.05t) — 0.75t2))

In this case we use the stationary condition provides by the following expressions:
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d/(a, b, k) 1 ,
———— =17 (2a(5.625 + k(=0.375 — 0.375t) + k?(1.275 + 0.15¢)
— 5.625¢%) + bk(3.75 + k(0.3 — 0.3¢) + k2(0.9 + 0.15¢) (3.363)
— 3.75t%))
dJ(a,b,k) 1 , i
- ﬁ(ak(3.75 + k(—0.3 = 0.3t) + k*(0.9 + 0.15t) — 3.75t*)
+ 2bk?(0.75 + k(—0.075 — 0.075t) + k2(0.3 + 0.05¢) (3.36b)
—0.75t2))
dJ(a,b,k) 2
—](C;k ) _ e (b2k?(—1.875 + k?(—0.45 — 0.075t) + k(0.15 + 0.15¢)
+ 1.875t%) + abk(—11.25 + k?(—=1.8 — 0.3t) + k(0.75 + 0.75t) 3.360
.00C

+ 11.25¢%) + a?(—19.6875 + k2(—3.1875 — 0.375t)
+ 19.6875t2 + k(1.125 + 1.125t)))

k and E are constants can be found by using the normalization condition, and for this purpose, we
get, k ~ 0.1,b ~ —17.87 E ~ 0.996581 and R = a(r — 17.87)re %", which represent the
first excited state energy n = 1. Always using Mathematica packaging, we can solve the

nonlinear system of equations dJ to find the k and t and other constants.
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Fig.3.17. The Radial wave function R for A, = A; = B; = B, = 0.1 for the first excited state

n=1

The results of this procedure are then resumed in the table below after we varied the values of

B; and B, to further increase their compatibility.

Table 3.6:The eigenvalues of Kratzer potential for S(r) = V(r).

our results
01 01 0989327 0988278
0.2 0.2 0 0.966975 0.965587
0.2 0.1 0.991686 0.991397
0.1 0.2 0.957793 0.953113
0.1 0.1 1 0.996581 0.99624
0.2 0.2 0.9879726 0.987449
0.2 0.1 0.9969827 0.996862
0.1 0.2 0.9863851 0.984959

According to the drawn figures 3.16 and 3.17 we observed :
n =0: the curve has no node, so it corresponds to the ground state.
n =1: the curve has a node, so it corresponds to the first excited state.
Table 3.5 displays the eigenvalues of Kratzer potential for S(r) = V(r).We became aware of
that.
- There exists an analogy between growing energy and growing quantum numbers (n).
- The energy increases as A, increase.
- As B, grows, the energy decreases.
- The results show good agreement with the findings in reference [8], with a maximum

accuracy of 0.0003%.

The tables that are shown demonstrate that the semi-inverse variational technique yields

eigenvalues for various potentials. The accuracy and effectiveness of this method in resolving
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quantum mechanics issues involving diverse potentials are demonstrated by the results, which
agree well with established references. Furthermore, the study investigates how the eigenvalues
change as a function of various factors by setting the value and contrasting the results with fresh
values. This research demonstrates the sensitivity of the quantum states to variations in the
potential function and offers insightful information about how the system behaves when its
potential parameters are varied. The tables support the semi-inverse variational method's validity
and its ability to examine intricate quantum potentials overall. As a result of the method's ability
to find precise eigenvalues for diverse potentials, it is a promising instrument for the study of
quantum mechanics and provides useful details on how quantum systems behave under various
circumstances.

3.2.3. Harmonic Oscillator:

For m(r) as constant value m , S(r) = 0,1 =0and h = m = 1, the expression of

Lagrange becomes:

+o0
1[/dRpy\°
J(T5 R Ruy,) = f - ( ”’l) + (M2 —(E- V(r))z)Rnlz r2dr (3.37)
' " 2|\ dr '
0
consequently, we may use, for instance, w = % andV(r) = %szrz [9-10] radial trial function

is R(r) = ae™*"" in these stages as Harmonic Oscillator potential. In the equation (3.37), R(r) is
substituted, and we may formulate the generic LaGrange function as follows:
forM =1

a?(—3 + 320k(3n + 400k(1 + 3k — nz)))\/g (3.38)

J(ak) = 1024000k 772
In this case we use the stationary condition provides by the following expressions:
2 T
da 512000k7/2
T

o) k) 3a%(—7 + 128000k? + 1600kn — 128000k?(—1 + nz))\/; (3.39b)

ok 2048000k°/2
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We use Mathematica packaging to resolute the nonlinear system of equations dJ for all the
applications in this paper to find the k and t and other variables, a constant can be determined

via the normalization condition and we note hatt represent the energy value, have been already

used in Mathematica and for this aims we get,k ~ 0.05, E ~ 1.14562 and Ry, = ae 95",

0,3 5

0,2

0,1

0,0

(0] é Alt (IS EIS lIO 1I2 1I4 1I6 1I8 2I0
r(A)
Fig.3.18. The wave function R, for Harmonic oscillator potential ( w = 0.1).

. . 2 . i - . .
We'll proceed on to another wave function, R = are™*"", which we'll insert in equation

(3.37), allowing us to describe the generic LaGrange functional as follows:

a?(—21+ 1600k (3n + 80k(3 + 7k — 3n2)))\/§ (3.40)
4096000k /2

J(a, k) =

The stationary condition provides the following expressions:

Vs
oj(ak) a(—21+ 1600k (3n + 80k(3 + 7k — 3n2)))\/; (3.41a)
da 2048000k5/2

s
ok 3a%(—63 + 896000k + 11200kn — 640000k2(—1 + nz))\/; (3.41b)

ok 8192000k°/2

Always with our packaging we get,k ~ 0.00073, E ~ 0.075 and R,, = are %075"",
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Fig.3.19. The wave function R,,for Harmonic oscillator potential ( w = 0.1).

In order to describe the generic LaGrange functional as follows, let's move on to another

wave function, R = (ar? + b)e"”z, which we replace in equation (3.37).

J(a,b k) = (3a2(—63 + 1600k (7n + 80k (5 + 11k — 5n2)))

16384000k 11/2 (
+ 24abk(—7 + 1600k(n + 80k(1 + k —n?))) + 16b%k?(—3 (3.42)

+ 320k (3n + 400k (1 + 3k — n2)))) \@

and for the stationary condition provides the following expressions:

9j(a,b,k) _ ! <(6a(—63 + 1600k (7n + 80k (5 + 11k — 5n2)))
da 16384000k 11/2 (3.43a)
+ 24bk(—7 + 1600k(n + 80k(1 + k — nz))))\/@
9j(a,b,k) _ <(24ak(—7 +1600k(n + 80k(1 + k — n?)))
b 16384000k 11/2 (3.44b)

+ 32bk?(—3 + 320k (3n + 400k(1 + 3k — nz))))\/g)
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9J(a,b k) _ ! 3(a2(—693 + 7040000k + 100800k
ok~ 32768000k372 | S(@( "
— 4480000k?(—1 + n?)) + 8abk(—63 + 384000k® + 11200kn (3.440)

— 640000k2(—1 + n?)) + 16b%k2(—7 + 128000k + 1600kn
T
— 128000k2(—1 + nz)))\g>

For this we get b = —185.345k ~ 0.0078,E ~ 1.24294 and R,, = a(r? — 185.345)e~0-00787%
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Fig. 3.20. The wave function R,,for Harmonic oscillator potential ( w = 0.1).

We'll proceed by using a different wave function, R = (ar3 + br)e""z, and substituting
it into equation (3.37). In this fashion, we may describe the generic LaGrange function as

follows:

J(a,bk) = (3a2(—693 + 1600k (63n + 400k(7 + 15k — 7n?)))

65536000k 13/2 <
+ 24abk(—63 + 1600k(7n + 80k(5 + 7k — 5n2))) + 16b2k2(—21  (3.45)

+ 1600k (3n + 80k(3 + 7k — 3n2))))\/§>
It offers the following formulations for the stationary condition:

/(a,b, k) 1
da 65536000k 13/2

<(6a(—693 + 1600k (63n + 400k (7 + 15k — 7n?)))
(3.46a)

+ 24bk(—63 + 1600k (7n + 80k(5 + 7k — 5n2))))\/§>
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0j(a,bk) _ 24ak(~63 + 1600k (7n + 80k(5 + 7k — 5n?
db ~ 65536000k13/2 (2ak( 7n ( ") (3.46h)
+ 32bk2(—21 + 1600k (3n + 80k(3 + 7k — 3n2))))\/§>
dJ(a, b’_k) = — 3(21a2 (—429 + 3200000k3 + 52800kn
ok 131072000k15/2
— 1920000k2(—1 + nz)) + 16b2k2(—63 + 896000k3 + 11200kn (3.46¢)

— 640000k?(—1 + n?)) + 56abk(—99 + 640000k? + 14400kn
T
— 640000k2(—1 + n?))) \E)

For this we get b = —17.482k ~ 0.067,E ~ 1.3478 andRs, = a(x3 — 17.482r)e~00677",

010 T T T T T T T
o 2 6 8 10 12 14

r(A)

-0,1
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Fig. 3.21. The wave function R3,for Yukawa potential ( w = 0.1).

the remaining results of different values w are resumed in Table 3.7

Table 3.7: Energy eigenvalues of Klein Gordon oscillator for different values of w

Our results Ref [11] Our results Ref [11] | |Our results Ref [11]
0 1.1456228 1.09545 1.0014995 1.001 1.00014999 1.0001
1 1.1660254 1.18322 1.0017070 1.002 1.00017078 1.0002
2 1.2429356 1.26491 1.0034991 1.003 1.00034998 1.0003
3 1.3577966 1.34164 1.0037895 1.00399 ||1.00037931 1.0004
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According to the plotted figures 3.18, 3.19 , 3.20 and 3.21 we observed :
n =0: the curve has no node, so it corresponds to the ground state.
n =1: the curve has a node, so it corresponds to the first excited state.
n =2: the curve has a node, so it corresponds to the second excited state.
n =3: the curve has more than two nodes, so it corresponds to the third excited state.
Table 3.7 shows the energy eigenvalues of Klein Gordon oscillator for different values of w .We
became aware of that.
- There exists an analogy between growing energy and growing quantum numbers (n).
- There exists an analogy between growing energy and growing quantum numbers (n)
- The results show good agreement with the findings in reference [11], with a maximum
accuracy of 0.0003%.
3.2.4. Perturbed Coulomb potential.

For m(r) as constant value M=1 and A = ¢ = 1, the expression of Lagrange becomes:

+o0 2
J(r; Ruis Ruy,) = f [(dgfl) + (M =5@))? = (E-v()") RMZI 72 (3.47)
0

As an outcome, we can employ the perturbed coulomb potential with the form —é + Br [12], for

instance, A = é,B = % with perturbed values V(r) = —é + Br and S(r) = 0. In these

phases, the radial trial function, which has the Coulomb potential R(r) = ae™*", is used. To
solve for r in the equation (3.47), we use R(r). For this reason, we may express LaGrange's

overall functionality as follows:

1
J(a,k) =75 (a*(=0.000075 + 0.23k* +0.0075kn — 0.1k*n + k*(0.001 +0.25 (3 4)

—0.25n%)))
These expressions may be obtained from the stationary condition:
d/(a, k) 1 . 5 5
7a = F(Za(—0.000075 + 0.23k* + 0.0075kn — 0.1k*n + k<(0.001 + 0.25 (3.49a)
—0.25n2)))
d(a, k) 1

7 (2a*(0.0001875 — 0.115k* — 0.015kn + 0.1k*n + k*(~0.0015 (3 49p)

— 0.375 + 0.375n2)))
Always with our packaging we get,k ~ 0.352, E ~ 1.02878and Ry, = ae 0352,

ok
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Fig. 3.22. The wave function R, for perturbed coulomb potential ( A = 0.2, B = 0.01)for

V(r) = é +Brand S(r) =0

The ground state energies are displayed in table 3.8 with various values for A and B.
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Table 3.8: The ground states energies of the perturbed coulomb potential for different values

of Aand B forV(r) = é +BrandS(r)=0

0.2 0 0.97894501037 0.97890631293 0.97890631293
0.01 1.0287847048 1.027622(19) 1.027641
0.05 1.15487890496 1.152(48) 1.1504
0.1 1.2703186733 1.277(48) 1.2634
0.2 1.4509308223 1.50(37) 1.4416
0.3 1.59836405475 1.73(45) 1.5882
0.3 0 0.9492622940 0.9486832981 0.9486832981
0.01 0.98502171845  0.9843795380(78)  0.9843836237
0.05 1.08819164980 1.08612(08) 1.08611
0.1 1.18677890797 1.18398(08) 1.18356
0.2 1.34398199832 1.345(34) 1.3397
0.3 1.47375379433 1.487(52) 1.4693
0.4 0 0.89973541084 0.894427191 0.894427191
0.01 0.92438145539 0.9190495619 0.9190592557
0.05 1.00378863065 0.99735023(19) 0.99732540
0.1 1.083685815589 1.0579666(05) 1.07585618
0.2 1.21437546978 1.20488(59) 1.20453
0.3 1.32394120023 1.3138(20) 1.31261

According to the plotted figure 3.22,we observed n =0: the curve has no node, so it corresponds
to the ground state.

Table 3.8 shows the ground states energies of the perturbed coulomb potential for different
values of A and B for V(r)=A/r+Br and S(r)=0.We became aware of that.

- The energy decreases when the value A increases.

- Arising of the value B is analogous to an increasing amount of energy.

- The results show good agreement with the findings in reference [8], with a maximum accuracy
of 0.008%.

We may describe the generic LaGrange functional as follows by substituting the same wave

function in equation (3.47) for another example where V(r) = éand S(r) =Br .
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a?(0.000075 + 0.23k* + 0.0075k — 0.1k3n + k?(0.25 — 0.25n%)) (3.50)
J(a, k) = s '

The stationary condition provides the following expressions:

dJ(a, k) _ 2a(0.000075 + 0.0075k + 0.23k* — 0.1k3n + k2(0.25 — 0.25n2)) (3.51a)
da %5
dJ(a, k 1
](ak ) = 3 (2a%(—0.0001875 — 0.015k — 0.115k* + 0.1k3n + k?(—0.375 (3.51b)
+ 0.375n2)))
Always with our packaging we get,k ~ 0.358, E ~ 1.028026and Ry, = ae 03527,

0,5

0,4

0,3

0,2 o

0,1

0,0 T T T T T T T T

Fig.3.23. The wave function R, for perturbed coulomb potential ( A = 0.2, B = 0.01) for
V(r) = :Land S(r) = Br

The ground state energy with various values of A and B are displayed in table 3.10.
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Table 3.9: The ground states energies of the perturbed coulomb potential for different values

of Aand B forV(r) = g and S(r) = Br

0.2 0 0.97894501037 0.97890631293 0.97890631293
0.01 1.02802586999 1.027622(19) 1.027641
0.05 1.15007110053 1.152(48) 1.1504
0.1 1.26006954745 1.277(48) 1.2634
0.2 1.43009113672 1.50(37) 1.4416
0.3 1.56774838360 1.73(45) 1.5882

0.3 0 0.949262293099 0.9486832981 0.9486832981
0.01 098411217478  0.9843795380(78) 0.9843836237
0.05 1.08288433761 1.08612(08) 1.08611
0.1 1.17570115356 1.18398(08) 1.18356
0.2 1.321725375996 1.345(34) 1.3397
0.3 1.44111738667 1.487(52) 1.4693

0.4 0 0.89973541084 0.894427191 0.894427191
0.01 0.923275641003 0.9190495619 0.9190592557
0.05 0.99782183148 0.99735023(19) 0.99732540
0.1 1.07151710634 1.0759666(05)  1.075856181.20453
0.2 1.19026554022 1.20488(59) 1.20453
0.3 1.27690759828 1.3138(20) 1.31261

According to the plotted figure 3.23, we observed n =0: the curve has no node, so it corresponds
to the ground state.

Table 3.9 displays the ground states energies of the perturbed coulomb potential for different
values of A and B for VV(r)=A/r and S(r)=Br.

- The energy decreases when the value A increases.

- Arising of the value B is analogous to an increasing amount of energy.

- The results show good agreement with the findings in references [12] and [13] , with a
maximum accuracy of 0.03%.

The tables that are shown demonstrate that the semi-inverse variational technique yields
eigenvalues for various potentials. The accuracy and effectiveness of this method in resolving

quantum mechanics issues involving diverse potentials is demonstrated by the results, they agree
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well with established references. Furthermore, the study investigates how the eigenvalues change
as a function of various factors by setting the value of and contrasting the results with fresh
values of. This research demonstrates the sensitivity of the quantum states to variations in the
potential function and offers insightful information about how the system behaves when its
potential parameters are varied. The tables support the semi-inverse variational method's validity
and its ability to examine intricate quantum potentials overall. As a result of the method's ability
in finding precise eigenvalues for diverse potentials, it is a promising instrument for the study of
guantum mechanics and provides useful details on how quantum systems behave under various

circumstances.
Conclusion

In this work, using the mentioned above technic, the Klein Gordon problem'’s energies solution
was explored for case of the previous two potentials the harmonic and perturbed coulomb
potentials [14]. We used the semi-inverse variation technique to obtain the results. The findings
from implementing each state's wave functions' general form are given. The energy eigenvalue
equations, along with related harmonic oscillator and perturbed coulomb potential
eigenfunctions, have thus been obtained. It concludes the relativistic Klein Gordon have similar
mathematical properties. If the relativity Klein Gordon problem, can be handled with a particular
vector potential. The semi-inverse variational approach is used to determine the relativity Klein
Gordon energies spectra and the accompanying wave equations for the Harmonic and Perturbed
Coulomb potential. Using a variety of methodologies, it has been demonstrated that this method
is effective and straightforward for realizing various arrangements of the Klein Gordon equation
and other equations [15]. In this study, we propose a novel and enhanced approach to solve the
Klein-Gordan equation by combining the previous potentials and the perturbed. For our
calculation, we employ the semi-inverse variational technique. We determined the energy
eigenvalues along with the radial wave function for both considered potentials. We noticed that
the technic developed herein is extremely convenient to obtain satisfactory results approximation
as for solving the Klein-Gordan equation furthermore, this approach can be used to enhance solid
state computations in various areas of quantum physics or in conjunction with density functional
theory [16-23].
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Chapter 4

THE RESOLUTION OF DIRAC EQUATION
WITH THE SEMI INVERSE VARIATIONAL
METHOD

4.1. The Dirac equation:

Dirac originally came up with the relativistic and quantum mechanical equation known as the
Dirac equation to describe spin 1/2 free electrons. The creation of this astounding equation
opened the door for the revolutionary discovery of anti-matter since Dirac described the

equation's negative energy solutions as oppositely charged anti-electrons [1].
The Dirac equation with scalar and vector potential (S(r) and V(r))ish=c=1

[a.p + B(M +SM) Y () = (E = VE)p(r) (4.1)

where E is the relativistic energy of the system and p = —iv is the three-dimensional momentum

operator. & and S are the usual 4 x 4 Dirac matrices given as

a= ((1) (]5) ! b= ((I) —OI) ! i=123, (4.2)

where [ is the 2 X 2 unitary matrix and the three 2 x 2 Pauli matrices o; are given as

A P 0o

The spin-orbit K = (o - L + 1) commutes with the Dirac Hamiltonian, and L is the spherical

nucleons' orbital angular momentum.For the aligned spinj = 1| + (1/2) and the unaligned spin
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j =1 — (1/2), the eigenvalues of the spin-orbit coupling operator are k = (j +(1/2)) > 0

andk = —( + (1/2)) < 0, respectively.In the Pauli-Dirac representation, this means that
F‘nk(r) l
e () r Yim (6, )
Y ) = () = (4.4)
gnk(r) G (1) i
— V(6,9

where f,,(r) is the upper component and g, (r)is the lower component of the Dirac spinors
inn(e, @) and inn(e, @) are spin and pseudospin spherical harmonics and m is the projection of

the angular momentum on the z-axis. Substituting (3.4) into (3.1), one obtains two coupled

differential equations for the upper and the lower radial wave functions as follows [2-6]:

L Y Fo(r) = M + Ene — ADIG
(o +5) Faactr) = M + By = AGY G ()

e (4.5)
(E _ ;> Grie(r) = [M — Epje + ()] F i (1)

with
A(r) =V(r)—S()
() =V(r)+S)

Solving (3.5) leads to a second-order Schrodinger-like differential equation for the upper and the

(4.6)

lower components of the Dirac wavefunctions as follows:

d> k(k—1)
[dTZ - r2 IGnk(r)

=M+ B = A0 (M~ Eye + 50)

(% ) Y =1r)

M — Enk + Z(T‘)

(4.7a)

Gni() =0
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42 — )]
ler - K(Krz )_ Fre ()

+ —(M + En — A(T‘))(M —Eqr + Z(T‘)) (4.7b)

) (dA(r)/dr) (d/dr n k/r)

M + Enk - Z(T‘)

Fnk(r) =0

4.1.1. Spin symmetry limit case:
In the limit of spin symmetry, dA(r)/dr = 0 or A(r) = C, = const Ref [7,8] Additionally, And

k(k —1) =1+ 1) and x(x + 1)=1 (I + 1). When the vector potential V/(r) equals the scalar
potential S(r), the equation (3.7b) obtains.

d? 1
[drz D et M)z(r)] Fue(r) = [M? = By (1) (4.8)
d?> k(k+1)
ldrz - 72 - (Enk + M — CS)Z(T) - (Enk + M — Cs)(M - Enk)l Fnk(r) =0

And with (3.8), we have

G (1) = + é] Fpi(r) (4.9)

1 [d
M + Enk dr
4.1.2. Pseudospin symmetry case:

Meng and al [7,8] show that the precise symmetry may be inferred from equation (4.7a). In the
Dirac equation, it appears when dZ(T)/dr = 0or % (r) = Cps = const.Equation (4.7a) with this
symmetry states that.

d?2 k(k—-1) (4.10)
dr?2 - 72 + (M — En + Cps)A(r) + (Enk +M - Cps)(M - Enk) Gnk(r) =0
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4.2. The Semi inverse variation method for Dirac equation
U is shifted to Y in the equation (2.3) for the Spin symmetry limit special case C; = 0 and the
Euler formula (2.6) and factor (2.7). Assuming [9-11], the consistency criteria is now met.
gr)=r?

Y(r;F;F';F'") =r2U(r; F;F'; F'")
? Frge (1) n dFp (1)

- dr? dr (4.11)
+ <_@ — (Epg + M)V (r) + EnkZ_M2> r? Fu(r) =0

For the equation (2.9), we create a generic functional process in an alternate manner as:

J(r) =f OoL(r;F;F';F")dr (4.12)
0

Which L(r; F; F'; F'") is the function of lagrange (lagrangian) depends on and its derivatives,

guise reads:

L=2a (r dg:") 4 b( @ By + M)T() + Eny —M2> GE)?+f  (413)

Using equation (2.11) and the Euler-Lagrange condition, we've established.

d?F, dF, k(k +
2ar?—2K _2q— 1 4 2p ¥ (Enx + M)V (r) + Ep>—M? | r2F,,
dr? dr
(4.14)
+2L
SFue
We refer to sif as the variation derivative of f with respect to F,,;, expressed by:
nk
1) 0 d /o 0
L _of _dofy, 4oy 415)
O0F,, O0F, dr\oF, dr \oF,,’

In order for equation (4.14) to match the original equation, we seek for the values of f, « and b,
and b. Thus, we found @ = b =1/2 and f = 0.

So 5i =2 ( k(iﬂ) — (B + MOV (1) + Epye —MZ) %Fpr then we can find F with:
nk

k(k+1)
F= (=20 By + MV() + B2 =M?) r2F i 4+ fo
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fo is a constant

dFpe\ k(k +1
L= [( drk) + <_ (—rj ) (Enie + M)X(r) + Enkz—M2> Fnkzl r2dr (4.16)

As a result, the problem's Lgrange may be expressed as:

J(r) = fo ) [(dg;”‘) + <—@ — (Ep + MY(r) + EnkZ—M2> Fnkzl ridr  (4.17)

With the same method for the case of Pseudospin symmetry case and special one for C,; we have

applied the same conditions of Euler and the method of variation semi-inverse we got:

T dGoi) k(k +1
Jr) = jo [( dr") +<—%—(Enk—M)A(r)—Enk2+M2)Gnkzlr2dr (4.18)

4.3. Dirac equation with harmonic oscillator:
4.3.1. Spin symmetry limit case for Dirac equation with harmonic oscillator potential:
In considering (4.8), we obtain

d> k(k+1)
dr? 2

— (Enge + MX(r) + Epy* —M? | Fppe(r) = 0 (4.19)
The harmonic oscillator potential is given on the form.
x(r) = %mwzrz (4.20)

where w is the pulsation.

So, for m = 1 the LaGrange in equation (2.16) becomes:

* I dF 0\ k(k+1) 1
J(r) = ]0 [( drk> + <_r—2 — E(Enk + M)w?r? + Enkz—M2>Fnkzl r2dr (4.21)

4.3.1.1 Some application on the harmonic oscillator for spin symmetry limit:

The approach is examined in this section using three examples. This application considers the
harmonic oscillator potential. It is preferable to make educated guesses about the answers by
formulating the trial radial wave functions as follows since the wave function disappears at the

originand at r — oo.
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Foie = h(r)e ™’ (4.22)

Where h(r) is polynomial function and k are constant quantities to be determined and are
considered as variational parameters. These parameters are deduced from the condition of
stationarity (minimization).

Fist example: The solution we are looking for is expressed as:
F = ae™*r* (4.23)

When we apply the stationary condition to equation (4.21) and substitute the wave function

expression (4.23), we obtain.

aZ\E (3(1 + t) + 8k(1 + 3k — t?)) (4.243)
J(a k) = 128k5/7

The following expressions are provided by the stationary condition.

3J(a, k) _ag(3(1+t)+8k(1+3k—t2)) (4.24b)
da 64k5/2

(4.24c)

2 T 2 _ 2
8j(a,k) 3a \/;(5+8k+8k + 5t — 8kt*?)
ok 256k7/2
The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. folelzrzdr

Each time that we use Mathematica, we obtain: k =~ 0.63 And E =~ 2.18807

We conclude that this outcome is consistent with the arrangement.:n = 1,1 = 0 (state 1s)

1 2
The wave function becomes Fy, = ae™ 3"
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2,0

1,5

1,0

0,5

0,0

r(A)

Fig.4.1. The wave function F;, forw = 1

second example:

F = (ar? + b)e™** (4.25)

Equation (4.21) may be changed to reflect the wave function expression (4.27) by applying the

stationary condition.

1 i
— _ 2 _ 2

J(a, g, k) = 5048k (\/; (3a*(35(1 +t) + 8k(5 + 11k — 5t*)) + 24abk(5(1
(4.26a)

+t)+8k(1+k—t?)+16c%k?(3(1 +t) + 8k(1 + 3k — tz)))>

The stationary condition provides the following expressions.
J@bk) 1 \/ﬁ6 35(1 + t) + 8k (5 + 11k — 5t2)) + 24bk(5(1
S = Sorerars | |7 (6a(35(1+ ) + 8k( ) (5(

(4.26Db)

+b) +8k(1+k— tZ)))>
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9/(a,9,k) f(24ak(5(1 +6) +8k(1 + k — £2)) + 32bk2(3(L + t)
b 2048k9/2
(4.26¢)
+ 8l(L + 3k — tz)))>
aj(a, 9, k) - \/7 21,2 2 2 2 2
2 4096k9/2 (16b2k2(5 + 8k + 8k? + 5t — 8kt?) + 5a%(88k

+ 63(1+t) — 56k(—1+t?)) + 8ack(24k? + 35(1 + t) — 40k(—1  (4.26d)

+ tz))))

The normalizing condition may be used to determine the values of the constants and the values of

k provided by the resolution of the algebraic system. f0°(|R|2r2dr

Always with Mathematica we obtain: k = 0.74a ,b =~ —1.01a And E = 3.36826

We deduce that this result corresponds to the configuration:n = 2,1 = 0 (state 2s)

The wave function becomes Fy, = a(r? — 1.01)e 074"

0,8 -
0,6
0,4
0,2 4
0,0 ; ; ; ; = ; )

oo 0,5 ,0 1,5 2,0 2,5 3,0 3,5 4,0
0.2 r(A)

-0,4

-0,6

-0,8 -

Fig.4.2. The wave function F,, for w = 1
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third example:

F = (ar* + br? + d)e " (4.27)

Equation (4.21) is changed to include the expression for the wave function (4.32), and the

stationary condition we derived is then applied.

J(a,b,d, k) = f(105a2(99(1 +t) + 8k(9 + 19k — 9t?))

+ 16k?(3b%(35(1 + t) + 8k(5 + 11k — 5t2)) + 24bdk(5(1 + t)
+ 8k(1+ k —t?) + 16d%k?(3(1 + t) + 8k(1 + 3k — t?))) (4.28a)
+ 120ak(b(63(1 + t) + 8k(7 + 11k — 7t?)) — 4dk(—=7(1 + t)

+8k(—1+k+ tZ))))>

The stationary condition provides the following expressions.

9j(a,b,d k) _ \f 210a(99(1 8k (9 + 19k — 9t2
da 32768k13/2 (210a(99(1 +1) + 8k (9 + )
+120k(b(63(1 + £) + 8k(7 + 11k — 7t2)) — 4dk(~=7(1+¢)  (4.28b)
+8k(—1+k+ tz))))>
9j(a,b,d, k) \f 120ak(63(1 8k(7 + 11k — 7¢2
ab 2048k9/2 (120ak(63(1 + 1) + 8k(7 + 11k = 7))
+16k2(6b(35(1 + t) + 8K (5 + 11k — 5t2)) + 24dk(5(1 +¢)  (4.28¢)
+8k(1+k — tz))))>
Sabd k) - f 480ak?(=7(1 8k(—1+k +t?
ad = 3076372 \\ 2 (TH80aKT(=7(1 + 1) + 8k(=1 +k +1%))

+ 16k2(24bk(5(1 + t) + 8k(1 + k — £2)) + 32dk?(3(1 + t) + 8k(1 (4.280)

+ 3k — tz)))))
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d/(a,b,d, k) _ -1
ok  65536k15/2

+ 16k?(16d?k?(5 + 8k + 8k? + 5t — 8kt?) + 5b%(88k? + 63(1
+t) — 56k(—1 + t2)) 4+ 8bdk(24k? + 35(1 + t) — 40k(—1 + t2)))  (4.28¢)
+ 40ak(7b(88k? + 99(1 + t) — 72k(—1 + t?)) — 4dk(40k? — 63(1

<3\/§ (315a2(152k? + 143(1 + t) — 88k(—1 + t2))

+t) + 56k(—1+ tz))))>

The normalizing condition may be used to derive the values of k and the constant a from the

resolution of the algebraic system. f0°<|R|2r2dr
When we use Mathematica, we obtain: k = 0.82a,b = —3.05a ,d = 1.4 And E = 4.35974
We conclude that this outcome is consistent with the arrangement.: n = 2,1 = 0 (state 35s)

The wave function becomes F,, = a(r* — 3.05r2 + 1.4)e 082"

r(A)

Fig.4.3. The wave function F;, forw = 1

We continued displaying the findings in the table below for various values of © .
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Table 4.1:The eigenvalues of Harmonic oscillator potential for different values of w for Spin

symmetry limit case.

0 1.14485 1.14485 1.65139 1.65139 2.18807 2.18807
1 1.32464 1.32464 2.3518 2.3518 3.36826 3.36826
2 1.49266 1.49266 2.95546 2.95546 4.35974 4.35974

According to the drawn figures 4.1, 4.2 and 4.3 we observed :
e n=1:the curve has no node, so it corresponds to the ground state.
e n=2:The curve has a node, so it corresponds to the first excited state.
e n =3: the curve has two nodes, so it corresponds to the second excited state.

Table 4.1 the eigenvalues of Harmonic oscillator potential for different values of o for Spin
symmetry limit case we noticed that :

- The energy increases as the values of w increase.
- Anincrease in energy is correlated with a rise in quantum number n.
- With inaccuracy of 0%, the results are in good agreement with the findings in reference
[12].
4.3.2. Pseudospin symmetry case:
Using (4.10), we obtain
d> k(k—-1)

dr? r2

— (Epie = M)X(1) + Enge?—M?| G (r) = 0 (4.29)

On the form, the harmonic oscillator potential is provided.
S(r) = %mwzrz (4.30)

where w is the pulsation.

So, for m = 1 the LaGrange in equation (2.16) becomes:

+° 1 [ /d G\ k(k—1) 1
J(r) = .[0 - [( k) + <— % ~3 (Enk — M)w?r? + EnkZ—M2> Gnkzl r2dr (4.31)

2\ dr
4.3.2.1.Some Application on the harmonic oscillator:
The approach is examined in this section using three examples. This application considers the
harmonic oscillator potential. It is preferable to make educated guesses about the answers by
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formulating the trial radial wave functions as follows since the wave function disappears at the
originand at r — oo.
G = h(r)e ¥ (4.32)

Where k is a constant quantity that must be found and is regarded as a variational parameter, and
h(r) is a polynomial function. These variables are derived from the stationarity (minimization)
requirement.

Fist example: The solution we are looking for is expressed as:
G = ek’ (4.33)

When we apply the stationary condition to equation (4.40) and substitute the wave function

expression (4.42), we obtain.

a? |5 (3(~1+1t) + 8k(1 + 3k — t2))

— (4.34a)
The stationary condition provides the following expressions.
T 2
3J(a k) _a\/;(B(—1+t)+8k(1+3k—t ) (4.34b)
da 64Kk5/2
2 [T _ 2 _ 2
a](a,k)__3a \/;( 5+ 8k + 8k* + 5t — 8kt*) (4.34¢)

ok 256k7/2
The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. folelzrzdr

Mathematica consistently gives us: k = 0.28 And E ~ 1.6438

We conclude that this outcome is consistent with the arrangement.:n = 0,1 = 0 (state 0s)

- . 2
Wave function changes into Goq = ae®28"
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1,0

0,5

0,0

r(A)

Fig.4.4. The wave function Gy, for w = 1

second example:

G = (ar?+ b)e "’ (4.35)

Equation (4.40) is changed by substituting the formula for the wave function (4.46), and when the
stationary condition is used, we obtain.

1 T
_ f 2 2
J(a,b, k) = 2048Kk%/2 < > (3a“(35(—1+1t) +8k(5+ 11k — 5t%)) + 24abk(5(—1

(4.36a)
+t) 4+ 8k(1+ k —t?)) + 16b%k*(3(—1+t) + 8k(1 + 3k — tz)))>
The stationary condition provides the following expressions.
@b k) \/76 35(=1+ t) + 8k(5 + 11k — 5¢2)) + 24bk(5(—1
220 o ([ (6a5 (-1 + 1) + 8k( ) (5(-
(4.36b)
+t)+8k(1+k— tz))))
9)(a,b, k) \f(24ak(5( 1+4+1t)+8k(1+k—1t2)+32bk?(3(—1
db 2048]("/2
(4.36¢)

+t) + 8k(1+ 3k — tz))))
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dJ(a,b,k) -1 \/ﬁ 212 2 2 2 2
T = 7096117 <3 - (16b%k*(=5 + 8k + 8Kk? + 5¢ — 8kt?) + 5a” (88K
+63(—1+1t) — 56k(—1+t?)) + 8abk(24k? + 35(—1 + t) (4.36d)

— 40k(—1+ tz)))>

The normalizing condition may be used to determine the values of the constant a and the values

of k provided by the resolution of the algebraic system. fOKIRIZerr

Every time we use Mathematica, we: k =~ 0.47 a,b = —1.61a And E = 2.74597

We conclude that this outcome is consistent with the arrangement.: n = 1,1 = 0 (state 25)

The wave function becomes G, = a(r? — 1.61)e‘0-47r2

r(A)

Fig.4.5. The wave function G, forw =1
third example:
G = (ar* + br? + d)e ¥ (4.37)

Equation (4.40) is changed by substituting the formula for the wave function (4.51), and when we

use the stationary condition, we obtain.
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J(a,b,d, k) = f (105a2(99(—1 + t) + 8k(9 + 19k — 9¢t2))

+ 16k?(3b?(35(—1 + t) + 8k (5 + 11k — 5t?)) + 24bdk(5(—1 + t)
+8k(1 + k — t2)) + 16d2k?(3(—1 + t) + 8k (1 + 3k — t2))) (4.38a)
+ 120ak(b(63(=1 + t) + 8k(7 + 11k — 7t?)) — 4dk(7 — 7t

+8k(—1+k + tz))))>

These expressions are made possible by the stationary condition.

d/(a,b,d, k) _
da 32768k13/2

+ 120k (b(63(—1 + t) + 8k(7 + 11k — 7t%)) — 4dk(7 — 7t (4.38b)

I(210a(99( 1+t) + 8k(9 + 19k — 9t2))

+8k(—1+k+ tz))))>

9/(a,b.d, k) f 120ak(63(—1 8k(7 + 11k — 7t
b 2048k9/2 (120ak(63(—1 +t) + 8k(7 + —7t%))
+ 16k?(6b(35(—1 + t) + 8k(5 + 11k — 5t?)) + 24dk(5(—=1 + t)
(4.38¢)
+8k(1+k— tz))))>
9/(ab,d k) f 480ak?(~7(1 8k(—1+ k + t2
ad 32768k13/2 (=480ak™(=7(1 + ) + 8k(=1 + k +17))
16k?(24bk(5(1 8k(1+ k — t?)) + 32dk*(3(1 8k(1
+ ( GCA+)+8k(1+k—t%))+ (B +1t) +8k( (4.380)

+ 3k — tz))))>
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(bl —1 3\/ﬁ 315a2(152Kk2 + 143(—1 + ) — 88k(—1 + £2
9k 65536K157Z | 547 B ( ) ( )
+ 16k?(16d?k?*(—5 + 8k + 8k? + 5t — 8kt?) + 5b%(88k? + 63(—1
+t) — 56k(—1 + t2)) + 8bdk(24k? + 35(=1 + ) — 40k(—1 (4.38¢)

+t2))) + 40ak(7c(88k* + 99(—1 +t) — 72k(—1 + t?))
— 4dk(40k? — 63(—1+1t) + 56k(—1 + tz))))>

The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. f0°<|R|2r2dr
Mathematica always gives us: k =~ 0.58 , b = —4.29a ,d = 2.76a And E = 3.71797
We determine that this outcome matches the setting.: n = 2,1 = 0 (state 3s)

The wave function becomes G,o = a(r? — 4.29r + 2.76)e 58"

r(A)

Fig.4.6. The wave function G, for w = 1

We continued displaying the findings in the table below for various values of w.
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Table 4.2:The eigenvalues of Harmonic oscillator potential for different values of w for

Pseudospin symmetry case.

Ref [12]
0 101113  1.01113  1.22686  1.22686  1.6438 1.6438
1 1.05785  1.05785 = 178799 178799  2.74597  2.74597
2 113298  1.13298 234875 234875  3.71797  3.71797

According to the drawn figures 4.4, 4.5 and 4.6 we observed :
e n=1:the curve has no node, so it corresponds to the ground state.
e n =2:The curve has a node, so it corresponds to the first excited state.
e n =3: the curve has two nodes, so it corresponds to the second excited state.

Table 4.2 The eigenvalues of Harmonic oscillator potential for different values of o for
Pseudospin symmetry case. we noticed that :

- The energy increases as the values of w increase.
- Anincrease in energy is correlated with a rise in quantum number n.
- With inaccuracy of 0%, the results are in good agreement with the findings in reference
[12].
4.4. Dirac equation with Coulomb potential:
4.4.1. Spin Symmetry Limit:
In considering (4.8), we obtain

> k(k+1)
dr? T2

(Eng + M)X(1) + Eny > —M? | Fop(r) = 0 (4.39)
On the form, the Coulomb potential is provided.

Y(r) = é (4.40)

2
where A = ——— and supposing e = 4me, = 1
4-7'[80

So, for m = 1 the LaGrange in equation (2.16) becomes:

J(r) = jo 1 [(dF"") + (k(krj D) + % (B + M) + EnkZ—M2> Fnkzl r2dr (4.41)

2|\ dr
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4.4.1.1.Some application on the coulomb potential in case of spin symmetry limit:

Three examples are used in this section to explore the methodology. We take the Coulombian
potential into account in this application. It is preferable to make educated guesses about the
answers by formulating the trial radial wave functions as follows since the wave function

disappears at the origin and at r — oo,.
Fox = h(r)e " (4.42)

We examine a few cases using various values of k whether k < 0 ork > 0

Firstexample:n=0 k=11=1

The solution we are looking for is expressed as:
F =are™® (4.43)

Equation (4.40) may be solved for r by substituting the wave function's expression (4.43) and the
stationary condition.
a*(—9 — 16k? + 9t + 6k(1 + 1))

J(a k) = — TS (4.443)
The following expressions are provided by the stationary condition.
3/ (a, k) _ a3(—9 — 16k? + 9t? + 6k(1 + t)) (4.44b)
da 256k>
0j(a,k) _ 3a*(16k* —8k(1+1) — 15(=1 +1t%)) (4.440)
ok 1024k6

The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. folelzrzdr

Mathematica consistently gives us: k = 0.35 and E = 0.882353
We determine that this outcome matches the setting.: n = 0,1 =1 (state 0p)

The wave function becomes F,,; = are®3°"
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0,10

0,08 +

0,06 +

0,04 +

0,02 +

0,00 LI I L L B RN I R R R B |
0O 2 4 6 8 10 12 14 16 18 20 22 24

r(A)

Fig.4.7. The wave function Fy,

Secondexample:n=1 k=11l=1

The conclusion that we seek is written as follows:
F = (ar + b)re %" (4.45)

When we apply the stationary condition to equation (4.40) and substitute the wave function

expression (4.45), we obtain.

J(a, b, k) = (3(a2(15 + 7k? — 15t — 5k(1 + t)) + 2abk(5 + 3k? — 5t2

16k’ (4.46a)
—2k(1+1t)) + b2k?(2 + 2k? — 2t* — k(1 + 1))))
These phrases are made possible by the stationary condition.
dJ(a,b k) ) 2 2 2
7a = Ten? (3(2a(15 + 7k* — 15t* — 5k(1 + t)) + 2bk(5 + 3k* — 5t (4.46b)
—2k(1+t))))
a_](a, b, k) _ 2 2 2 2 2
b = Ter? (3(2ak(5 + 3k* —5t* — 2k(1 +t)) + 2bk*(2 + 2k* — 2t (4.460)
—k(1+1))))
d/(a,b, k) _ 1 21,2 2 2 2(71,2
K = Ters (3(2b“k*(5 + 3k* — 5t* — 2k(1 + t)) + 5a°(7k* — 6k(1 + t) (4.46d)

—21(—1+t%)) + 4abk(6k? — 5k(1 + t) — 15(—1 + t2))))
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The normalizing condition may be used to determine the values of the constant and the values of
k provided by the resolution of the algebraic system. fomlRlzrzdr

Mathematica consistently gives us: k = 0.32, b = —6.17 and E = 0.945946

We conclude that this outcome is consistent with the arrangement.:n = 1,1 =1 (state 1p)

The wave function becomes F;; = (ar — 6.17)re%32"

0,04

0,02

0,00 LU R B A B B BN LA S S BELE BELE BELE
8 10 12 14 16 18 20 22 24 26 28 30 32 34

r(A)

N -
N

u  -0,02

-0,04

-0,06

-0,08

Fig.4.8. The wave function F,;

Thirdexample:n=0 k=-3 =2

The clarification we seek is written as follows:
F = arle-kr (4.47)
When we apply the stationary condition to equation (4.40) and substitute the wave function

expression (4.47), we obtain.

15a(3 + 3k? — 3t% — k(1 + t))

J(a, k) = 87 (4.48a)
The following expressions are provided by the stationary condition.
dJ(a, k) _ 15a(3 + 3k? — 3t%2 — k(1 + t)) (4.48b)
da 8k7
dJ(a, k) _ 45a2(7 + 5k? — 7t? — 2k(1 + t)) (4.480)
ok 16k8

154



Chapter 4 The Resolution of Dirac Equation with The Semi Inverse Variational Method

The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. fOOCIRlerdr
Mathematica always provides us with: k = 0.32 and E =~ 0.945946
We conclude that this outcome is consistent with the arrangement.:n = 0,1 = 2 (state 0d)

The wave function becomes F,, = ar?e%32"

0,05 +
0,04 +
0,03 +
0,02 +

0,01 4

0,00 T T T T T T T T T T T T T T T T T T T 1
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40

r(A)

Fig.4.9. The wave function F,

Fourthexample:n =1 k=-31=2

The reply that we seek is written as follows:
F = (ar + b)re %" (4.49)

Equation (4.40) may be solved for, and the stationary condition is applied by substituting the
expression of the wave function (4.49) in it.

15(3a2(28 + 16k? — 28t% — 7k(1 + t)) + 6abk(7 + 5k% — 7t2
3250 (15Ba( d+0) ( (4.50a)

—2k(1+41t)) +2b%k?(3 + 3k? — 3t? — k(1 + 1))))
The stationary condition provides the following expressions.

J(a,b, k) =
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9j(a,bk) _ (15(6a(28 + 16k? — 28t% — 7k(1 + t)) + 6bk(7 + 5k* — 7t?
da - 32k° (4.50b)
—2k(1+1t))))
d/(a,b, k)
= 15(6ak(7 + 5k? — 7t? — 2k(1 + t)) + 4bk?(3 + 3k? — 3t?
ab 3250 (15 (6ak( d+0) ( (4.50¢)
—k(1+1))))
d/(a, b, k) _ —1 2 2 2 21,2 2 2
S = Terio (45(14a?(9 + 4k? — 9t? — 2k(1 + t)) + b?*k?(7 + 5k? — 7t (4500)

— 2k(1 +1t)) + 2abk(15k? — 7k(1 + t) — 28(—1 + t%))))

The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. f0°<|R|2r2dr
Each time we use Mathematica, we: k = 0.25, b = —12.1875 and E = 0.969231
We conclude that this outcome is consistent with the arrangement.:n = 1,1 = 2 (State 1d)

The wave function becomes F;, = a(r — 12.1875)re%25"

0,02

0,00 T T T T
10 20 30 40
% | r(A)

-0,02 4

-0,04 -

Fig.4.10. The wave function F;,

In the table below, we repeated the results for various values of | and.
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Table 4.3 :The eigenvalues of coulomb potential for different values of x and I for spin

symmetry case

semi inverse Ref [13] K semiinverse
1 1 0.882353 0.882353 -2 0.882353 0.882353
2 2 0.945946 0.945946 -3 0.945946 0.945946
3 3 0.969231 0.969231 -4 0.969231 0.969231
4 4 0.980198 0.980198 -5 0.980198 0.980198
i1 1 0.945946 0.945946 -2 0.945946 0.945946
2 2 0.969231 0.969231 -3 0.969231 0.969231
3 3 0.980198 0.980198 —4 0.980198 0.980198
4 4 0.986207 0.986207 -5 0.986207 0.986207

According to the drawn figures 4.7, 4.8, 4.9 and 4.10 we observed :
e n =0,I=1: the curve has no node, so it corresponds to the ground state.
e n=1I=1:The curve has a node, so it corresponds to the first excited state.
e n =0,I=2: the curve has no node, so it corresponds to the ground state.
e n=11=2:the curve has a node, so it corresponds to the first excited state.

Table 4.3 The eigenvalues of coulomb potential for different values of k and 1 for spin symmetry
case. we noticed that :

- Aniincrease in energy is correlated with a rise in quantum numbers n,l and x.
- With an inaccuracy of 0%, the results are in good agreement with the findings in
reference [13].
Following the determination of the energy eigenvalues for various quantum numbers n and the
variation of the pulsation constant w using equations (40) for the cases of spin symmetry limit
and pseudo symmetry limit over the harmonic oscillator potential, it is obvious that the semi-
inverse variation method was used. The results are shown in tables 4.1 and 4.2 When comparing
it to earlier research in reference [13], we have identical findings with 0% incertitude,
demonstrating the validity of this approach and demonstrating how accurate it is.
4.4.2. Pseudospin Symmetry Limit:
Using (4.10), we obtain
d> k(k—-1)

drz 1z (Eni = M)T(r) + Eni*—M?| G (1) = 0 (4.51)

Continuing with the same potential which is Coulomb potential .

So, for m = 1 the LaGrange in equation (2.16) becomes:
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+00 2 _
J(r) = f %[(di"‘) + <K(Kr2 D_ (En — M) é - Enk2+M2> Gnkzl rdr (4.52)
0

4.4.2.1.Some Application on the coulombmb potential in case of Spin Symmetry Limit:

The approach is examined in this section using three examples. We take the Coulombian
potential into account in this application. It is preferable to make educated guesses about the
answers by formulating the trial radial wave functions as follows since the wave function

disappears at the origin and at r — oo.
G = h(r)e k" (4.53)

We try to identify instances with various values of x whether k < 0 orx > 0

Firstexampleen=0 k=2 [=2

The clarification we desire is written as follows:
G = are™ " (4.54)

Equation (4.53) may be changed to reflect the wave function expression (4.54), and when we

apply the stationary condition, we obtain.

3a2(2 + 2k? + k(—1 + t) — 2t2)

_ 4.55a
J(@ k) s (4:552)
The stationary condition provides the following expressions.
2 _ _ 2

0J(ak) _3a(2+2k* +k(=1+¢t) — 2t%) (4.55b)

da 8k>

2 2 _ — 2

9J(a k) _ 3a*(5+3k?+2k(-1+1t) — 5t7) (4.55¢)

ok 8k©

The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. f0°<|R|2r2dr

Mathematica consistently gives us: k = 0.47 and E ~ —0.882353
We conclude that this outcome is consistent with the arrangement.: n = 0,1 = 2 (state 0d)

The wave function becomes G,, = are®*’"
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Fig.4.11. The wave function G,

Secondexample:n=1 k=21=2

The conclusion that we need is written as follows:
G = (ar + b)re™*" (4.56)

Substituting the expression of the wave function (4.56) in equation (4.53) and we apply the

stationary condition we get.

a,b,k) = 3(a?(15 + 7k? + 5k(—1 + t) — 15t%) + 2abk(5 + 3k? + 2k(—1
J(a,b,k) = 7= (3(a*( (~1+1) - 15¢%) ( 1 572
+t) = 5t2) + b2k?(2 + 2k? + k(-1 + t) — 2t?)))
The stationary condition provides the following expressions.
dJ(a, b, k) 2 2 )
7a = Teh7 (3(2a(15 + 7k?* + 5k(—1+1t) — 15t*) + 2ck(5 + 3k (4.57b)
+ 2k(—1 + t) — 5t2)))
a](a, b, k) 2 2 2 2
b = 1ok (3(2ak(5 + 3k* + 2k(—1 + t) — 5t*) + 2bk*(2 + 2k* + k(-1 (4570
+t) — 2t%)))
d](a,b, k) —1 27,2 2 2 20712
k= 1eks (3(2b%*k?*(5 + 3k* + 2k(—1 + t) — 5t) + 5a*(7k* + 6k(—1 (457d)

+t) — 21(—1 + t?)) + 4abk(6k? + 5k(—1 + t) — 15(—1 + t2))))
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The resolution of the algebraic system provides the values of k and the constant a can be

determined via the normalization condition fO°C|R|2r2dr

Always with Mathematica we get: k = 0.32,c = —6.17 and E = —0.945946

We deduce that this result corresponds to the configuration:n = 1,1 = 2 (state 1d)
The wave function becomes G, = (ar — 6.17)re%32"

0,04 4

0,02

0,00 T T T T T T T T T T T T T T T
2 4 8 10 12 14 16 18 20 22 24 26 28 30 32 34
o -002- r(A)

-0,04

-0,06

-0,08

Fig.4.12. The wave function G,

thirdexample:n=1 k=-21=2

The answer we're seeking for is written as:
G = (ar + b)re™*" (4.58)

Equation (4.53) may be changed to reflect the wave function expression (4.58), and when we

apply the stationary condition, we obtain.

J(a,b,k) = (3(a?(15 + 7k? + 5k(—1 + t) — 15t?) + 2abk(5 + 3k? + 2k(-1

16k7 (4.59)
+t) — 5t%) + b2k?(2 + 2k?* + k(-1 + t) — 2t?)))

The following expressions are provided by the stationary condition.
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V@B _ L (3(2a(15 + 72 + k(1 + t) — 157) + 2bk(5 + 3K
T (4.602)

+ 2k(—1+t) — 5t2)))

a](a; b, k) _ 2 _ _ 42 2 2 —
A = Ter7 (3(2ak(5 + 3k* + 2k(—1+t) — 5t*) + 2bk“(2 + 2k* + k(-1 (4.60b)
+t) — 2t?)))
dJ(a,bk) -1

_ 3(2b2K2(5 + 3k? + 2k(—1 + £) — 5¢2) + 5a2(7k? + 6k(—1
ok Teke CELKGABKTA 2146 =S+ 5aT(TREH 61 o

+t) — 21(—1 + t%)) + 4abk(6k? + 5k(—1 + t) — 15(—1 + t2))))

The normalizing condition may be used to calculate the values of k and the constant a given the

resolution of the algebraic system. f0°<|R|2r2dr

Whenever we employ Mathematica, we: k = 0.32,b = —6.17 and E = —0.945946
We determine that this outcome matches the setting:n = 1,1 =1 (State 1p)

The wave function becomes G;; = a(r — 6.17 )re®32"

0,04

0,02 +

0,00 T T T T
10 20 30 40

rA)

-0,02

Fig.4.13. The wave function G,

Fourthexample:n =2 k=-11=1

The answer we seek is written as follows:
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G = (ar?+ br + d)re " (4.61)

Equation (4.53) may be changed by substituting the formula for the wave function (4.61), and

when we apply the stationary condition, we obtain.

J(a,b,d, k) = (45a%(28 + 8k? + 7k(—1 + t) — 28t?) + 30ak(b(21 + k(—6

32k°
+ 7k) + 6kt — 21t?) + 2dk(3 + (—1 + k)k + kt — 3t?)) (4.62a)

+ 6k2(b2(15 + k(=5 + 7k) + 5kt — 15t2) + 2bdk(5 + k(-2 + 3k)
+ 2kt — 5t%) + d?k?(2 + k(=1 + 2k) + kt — 2t?)))

These expressions may be obtained from the stationary condition.

d/(a,b,d k) _ (90a(28 + 8k? + 7k(—1+t) — 28t%) + 30k(b(21 + k(-6
P = 5 (90a( (~1+10)~286%) + 30k(b@L+Hk(-6 o

+ 7k) + 6kt — 21t%) + 2dk(3 + (=1 + k)k + kt — 3t?)))

oj(a,b.d k) _ (30ak(21 + k(—6 + 7k) + 6kt — 21t2) + 6k?(2b(15 + k(-5
ab 32k? (4.62c)
+ 7k) + 5kt — 15t%) + 2dk(5 + k(=2 + 3k) + 2kt — 5t?)))
9jta,bdk)  —1 (60ak?(3 + (=1 + k)k + kt — 3t?) + 6k?(2bk(5 + k(-2
ad 16k8 (4.62d)
+ 3k) + 2kt — 5t2) + 2dk2(2 + k(=1 + 2k) + kt — 2t?)))
d/(a,b,d, k) -1
ok 16k®
+ 2k(—=1+t) — 5t2) 4+ d?k?(3 + 5k? + 2k(=1 4+ t) — 3t?)) (4.62¢)
+ 15a%(7k? + 6k(—1 +t) — 21(—1+ t?)) + 12ak(dk(5 + 2k?
+ 2k(—=1+t) — 5t2) 4+ b(6k? + 5k(=1 4+ t) — 15(=1 + t2))))
The normalizing condition may be used to calculate the values of k and the constant a given the

(2k?(2bdk(6 + 5k? + 3k(—1 + t) — 6t%) + 3b?(5 + 3k?

resolution of the algebraic system. f0°<|R|2r2dr

Each time we utilize Mathematica, we: k ~ 0.25, b ~ —20.3125,d ~ 82.5195 and
E =~ —0.969231

We conclude that this outcome is consistent with the arrangement.: n = 2,1 =1 (State 2p)

The wave function becomes G,; = a(r? — 20.3125r + 82.5195)re%25"
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Fig.4.14. The wave function G,

In the table below, we tested the results for various values of [ and k.
Table 4.4: The eigenvalues of coulomb potential for different values of k and I for pseudospin

symmetry case

n |l k semiinverse Ref [13] semi inverse Ref [13]

0 1 2 —0.882353 —0.882353 1 -1 —0.945946 —0.945946
2 3 —0.945946 —0.945946 -2 —0.969231 —0.969231
3 4 —0.969231 —0.969231 -3 —0.980198 —0.980198
4 5 —0.980198 —0.980198 —4  —-0.986207 —0.986207

1 1 2 —0.945946 —0.945946 2 -1 —0.969231 —0.969231
2 3 —0.969231 —0.969231 —2 —0.980198 —0.980198
3 4 —0.980198 —0.980198 -3 —0.986207 —0.986207
4 5 —0.986207 —0.986207 —4  —0.989848 —0.989848

According to the drawn figures 4.11, 4.12, 4.13 and 4.14 we observed :
e n =0,I=1: the curve has no node, so it corresponds to the ground state.
e n=1,I=1:The curve has a node, so it corresponds to the first excited state.
e n =0,I=2: the curve has no nodes, so it corresponds to the ground state.
e n=11=2:the curve has a node, so it corresponds to the first excited state.

Table 4.4 The eigenvalues of coulomb potential for different values of k and I for pseudospin
symmetry case. we noticed that :

163



Chapter 4 The Resolution of Dirac Equation with The Semi Inverse Variational Method

- Anincrease in energy is correlated with a rise in quantum numbers n,l and x.
- With an inaccuracy of 0%, the results are in good agreement with the findings in
reference [13].

The Dirac equation was solved by Using the semi-inverse variation method, we investigated the
energy eigenvalues for various quantum numbers (n, I, and «) according to the requirements of
pseudospin symmetry and the spin symmetry limit over the coulomb potential. We observed the
logic of the results, where the absolute value of energy at each level increases as the number of
states (n, ) increases. After comparing the energy data in Tables 4.3 and 4.3 with those from past
research in reference [13], we see that the results agree exactly and there are no margins of error,

demonstrating the efficacy of the approach and how precise it is.

Conclusion

In conclusion, we have investigated the spin symmetry and pseudospin symmetry requirements
of the bound state solution of the Dirac equation with the harmonic oscillator and coulomb
potentials. To get the results, we employed the semi-inverse variation approach. The outcomes
obtained by applying the general form of each state's wave functions are described. Thus, we
have obtained the energy eigenvalue equations and related harmonic oscillator and coulomb
eigenfunctions in the case of spin symmetry and pseudospin symmetry, respectively. Particularly,
it is discovered that the non-relativistic Schrodinger equation and the Dirac equation share
mathematical similarities. If the solution of the non-relativistic Schrédinger equation with a
specific vector potential can be obtained. The semi-inverse variational approach is used for
determining the relativistic Dirac energy spectrum and the related wave functions for the
Coulomb potential. It has been demonstrated that this method is an effective and straightforward

technique for realizing various configurations of the Dirac equation.
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GENERAL CONCLUSION

The semi-inverse approach of building generalized variational principles is provided
here, demonstrating a novel theoretical foundation and new, diverse methods for constructing
generalized variational principles of different fluid and elasticity issues. The semi-inverse
approach will have a significant impact not only on fluid mechanics, but also on elasticity
theorems.

In this thesis ,the time independent Schrddinger equation (radial portion) has been
introduced in the first section. The current study's aim is to investigate the energy levels
associated with the Schrodinger equation with different types of potentials employing the
semi-inverse variation approach.

They used the semi-inverse variation approach to obtain the LaGrange expression of the Klein
Gordon and Dirac equations. Then We figured out what the bound states were and the
associate wave function.

We reviewed the semi-inverse technique findings by comparing them to the results
obtained by using the related polynomials to solve the radial Schrodinger equation. The semi-
inverse variational approach is a strong mathematical tool for developing a variational
formulation for a wave type differential problem. So far, this method provides an effective and
best strategy for establishing variational principles for a wide range of physical issues.

Particularly, the variational semi-inverse method is novel variational approach. Within
the context of the introduction of the Schrodinger equation, we arrived at the proper findings
given by a classical system and the quantum picture. The variational semi-inverse approach is
used to solve the Schrodinger equation using the radial 3D potential. We examined certain
state configurations, and the energies obtained are precise. A future effort is planned that will
focus on the screened potential, which is challenging to address from a quantum standpoint.
The second section of the thesis begins with determining the significance of the semi-inverse
variation approach and using knowledge of energy and related states. Its purpose is to ensure

the method's effectiveness. Using this strategy, we were able to determine the limit states of
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energy of the Klein Gordon equation with various potentials and gain certain results that
proved to be conclusive enough to reach the equation's solutions.

In the previous thesis, we attempted to improve the efficacy of this method even further
by calculating the Eigen energy by solving the Dirac equation with the harmonic oscillator
potential and the Coulombian potential for the two cases considered, spin symmetry limit case
and pseudo spin symmetry case. Exact results are obtained for the two cases considered.
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