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 ملخص

ة القلب. إنه حساس للغاية لأنواع مختلف( هو إشارة غير ثابتة وذات تردد منخفض تعكس النشاط الكهربائي الكلي لعضلة ECGمخطط كهربية القلب )

( حيث EM( وضوضاء الحركة الكهربائية )BW( وضوضاء التجوال الأساسي )MAمن الضوضاء أثناء عملية التسجيل مثل ضوضاء العضلات )

ن ، نظرًا لأفي هذا العمل ح الإشارة الأصلية.تتداخل أطيافها مع طيف إشارة مخطط كهربية القلب بأشكال وكميات مختلفة، والتي يؤدي إلى مس

إشارة  من EMو BWو MA، يُقترح مرشح متكيف جديد لضوضاء ECGالمرشحات التقليدية لم تنجح في إزالة الضوضاء دون تشويه إشارة 

ECG ؛ يعتمد المرشح على خوارزمية التالفةSC-LNLMS رات ذات حجم خطوة متنوع ومعامل تسرب متنوع. تم إجراء الاختبار باستخدام إشا

ECG  الخالية من الضوضاء من قاعدة بيانات عدم انتظام ضربات القلبMIT-BIH ( والضوضاء من قاعدة بيانات اختبار إجهاد الضوضاءnstdb .)

ة ( ووظيفSWT؛ التحويل المويجي الثابت )مزيج من طريقتين موجودتين مسبقًامن أجل مقارنة قيمة، تم اقتراح طريقة أخرى لتقليل الضوضاء وهي 

( يحقق نسبة SC-LNLMS( تظهر النتائج التجريبية أن مرشح تقليل الضوضاء المقترح الأول )NLMSالمعياري )خوارزمية المربع المتوسط 

 ، واحتفظ بالإشارة الأصلية(MSEالخطأ المربع )، أقل متوسط SNR، تحسن (SNRإشارة إلى ضوضاء خرج أفضل )

 والتقنيات الأخرى الموجودة في الأدبيات. NLMSو SWTضة عند مقارنتها بالطريقة القائمة على خالية من التشوهات عند السعة المنخف

 الكلمات المفتاحية:

 التحويل المويجي الثابت ،مرشح التصحيح الذاتي ،أقل مربع تطبيع التسرب،معامل  ،الضوضاء الضوضاء، إلغاء، ECGإشارة 

Abstract 

The Electrocardiogram (ECG) is a non-stationary, low-frequency signal that reflects the total electrical activity of 

the heart muscle. It is very sensitive to different types of noise during the recording process such as Muscle noise 

(MA), Baseline Wander noise (BW), and Electro Motion noise (EM) artifact as its spectra overlap the spectrum of 

the ECG signal with different shapes and quantities, which leads to blanking out the original signal. In this work, 

since the conventional filters did not succeed in removing noise without distorting the ECG signal, a new adaptive 

filter for MA, BW, and EM noise removing from corrupted ECG signal is proposed; the filter is based on Self-

Correcting Leaky Normalized Least Mean Square algorithm SC-LNLMS with varied step size and varied leakage 

coefficient. Testing was performed using noise-free ECG signals from the MIT-BIH Arrhythmia Database and the 

noise from Noise Stress Test Database (nstdb). For a valuable comparison, another method of the noise reduction 

has been suggested which is a combination of two existing methods; the Stationary Wavelet Transform (SWT) 

and a variant of a Normalized Least Mean Square algorithm (NLMS). The experimental results show that the first 

proposed denoising filter (SC-LNLMS) achieves better output signal-to-noise ratio (SNR), improvement SNR , 

lower Mean Square Error (MSE) and  keep the original signal free from distortions at low amplitude when 

compared to the SWT and NLMS based method and other existing techniques in the literature.  

Keywords: 

ECG signal, noises, noise canceller, the leakage coefficient, normalized least mean square, self-correcting filter, 

stationary wavelet transform. 

Résumé 

L’électrocardiogramme (ECG) est un signal de basse fréquence non stationnaire qui reflète l'activité électrique 

totale du muscle cardiaque. Il est très sensible à différents types de bruit pendant le processus d'enregistrement tels 

que le bruit Musculaire (MA), le mouvement de la Ligne de Base (BW), et le bruit d'Electro-Mouvement (EM) 

car ses spectres chevauchent le spectre du signal ECG dans différentes formes et quantités, conduit à masquer le 

signal d'origine. Dans ce travail, étant donné que les filtres conventionnels n'ont pas réussi à supprimer le bruit 

sans déformer le signal ECG, un nouveau filtre adaptatif pour la suppression du bruit MA, BW, et EM du signal 

ECG corrompu est proposé; le filtre est basé sur l'algorithme des Moindres Carrés Normalisés à fuite automatique 

SC-LNLMS avec un pas et un coefficient de fuite variés. Les tests ont été réalisés en utilisant les signaux ECG 

sans bruit de la base de données MIT-BIH Arhythmia et le bruit de la base de données Noise Stress Test (nstdb). 

Pour une comparaison valable, une autre méthode de réduction du bruit a été suggérée qui est une combinaison de 

deux méthodes existantes; la transformée en ondelettes stationnaire (TOS) et une variante de l'algorithme des 

Moindres carrés Normalisés (NLMS). Les résultats expérimentaux montrent que le premier filtre de débruitage 

proposé (SC-LNLMS) permet d'obtenir un meilleur rapport signal / bruit de sortie (SNR), un SNR amélioré, une 

erreur quadratique moyenne (MSE) plus faible, et maintenir le signal original exempt de distorsions à faible 

amplitude par rapport à la méthode basée sur TOS et NLMS et avec d'autres techniques existantes dans la 

littérature. 

Mots clés: 

Signal ECG, bruits, suppresseur de bruit, coefficient de fuite, moindres carrés normalisés, filtre auto-correcteur, 

transformée en ondelettes stationnaire. 
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General introduction 

The heart is the most important organ in the vital cardiovascular system, which performs 

many physiological processes related to certain types of different biomedical signals that reflect 

their nature and activities [1]. Bio-electrical signals such as the electrocardiogram (ECG) are 

signals that reflect the electrical activity of the human heart in real-time. And given their 

importance in detecting some heart diseases that may lead to death, scientists have paid great 

attention to this signal, whether in how it is generated, recorded, or in how it is filtered from all 

types of noise that may interfere with some of their characteristics and thus prevent a correct 

interpretation of human heart health. 

The heart is a muscle located behind the rib cage between the lungs. It consists of three walls, 

four chambers, and four valves that make it an organic pump divided into right and left sides, 

the. The right side receives the blood and pumps it to the lungs to complete the pulmonary 

circulation. And from the lungs, the left side receives the blood and pumps it to all parts of the 

body, thus completing the systemic circulation [2]. The heart's pumping process goes through 

two primary phases called systole and diastole. The sequence of these two phases forms the 

cardiac cycle and is the basis of the normal anatomy and physiology of the heart. The cardiac 

cycle begins immediately after the heart receives electrical stimulation based on a natural 

electrical pacemaker called SA node [3] [4], where this electrical stimulation follows an 

electrical path through the entire heart muscle, forcing it to depolarize and repolarize in a 

successive manner. The heart muscle has the ability to generate electrical impulses at a constant 

rate (from 60 to 100 beats per minute at rest) [5]. During depolarization and repolarization of 

cardiac cells, changes occur in membrane potentials from resting potentials to action potentials 

i.e. an electrical signal is generated, where it can be collected and measured by an 

electrocardiogram (ECG) [6]. 

An electrocardiogram (ECG) is a graphical representation recording that reflects the 

electrical activities of millions of cardiac muscle cells. The ECG underwent gradual discovery 

developments from 1887, where Augustus DE Waller recorded the first "electrocardiogram" 

(ECG) of a healthy human heart using a capillary electrometer [7] [8], to 1924 where the first 

12-channel electrocardiogram was created [9] [10]. The ECG signal is recorded through 

electrodes placed over the skin and then displayed graphically. It includes 10 electrical 

electrodes attached to the body, which provide 12 different viewpoints of the heart’s electrical 

activity [11]. These views are known as leads, this why it is called the 12-lead standard ECG. 

The 12-lead standard ECG consists of 12 leads, six distributed on the frontal plane (I, II, III, 
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aVR, aVF, aVL), and six distributed on the horizontal plane (V1-V6) [12]. A normal one 

cardiac cycle of ECG signal consists of three waves, which have been by convention named; P, 

QRS complex, and T wave, also consists of segments and intervals. The P wave is a positive 

deflection that reflects sequential depolarization of the atria, QRS complex reflects the 

ventricular depolarization, T wave is a rounded positive deflection that represents ventricular 

repolarization, PR interval extends from the onset of the P wave to the onset of Q wave, where 

PQ segment extends from the offset of the P wave to onset of Q wave, ST-segment extends 

from the ends of the QRS complex to the onset of the T wave, The QT interval is the time 

extended from the onset of Q wave to the offset of T wave [13].  

There are mainly two types of noises encountered in ECG signals: a physiological type 

incorporating muscle (EMG) noise, while the second type is of a technical nature incorporating 

baseline wander (BW), electrode motion artifacts, and power line interference. In some cases, 

the lower amplitude wave may interfere as the P wave, in others; The QRS complex may be 

completely interfered with EMG noise, and likewise, very large baseline wander variance can 

prevent the distinction of an anomaly of the plus or minus type in the S-T segment [14]. These 

examples and other interferences between the noises and the ECG signal have become 

misleading to an accurate diagnosis of cardiac activity, and thus filtering the signal from such 

noises has become necessary.  

A filter is a physical hardware or software that is applied to a noisy signal with the aim of 

minimizing the effect of the noise at the filter output according to some criterion such as mean 

square error (MSE) [22]. Minimizing the mean square value of the error obtained by the 

difference between the desired signal and the filter output is a helpful manner to such filter 

optimization. For stationary inputs, the obtained solution is known as the Wiener filter. The 

minimum point of the error performance surface, which is obtained by plotting the value of the 

MSE versus the adjustable filter coefficients, represents the optimum Wiener solution. 

However, this solution is insufficient when dealing with non-stationary signals like noisy ECG 

signals [23], thus, the practical solution to Wiener filter like adaptive filtering was required. 

An adaptive filter is a self-designing filter that is able to adjust its coefficients automatically 

to adapt the input signal through a recursive adaptive algorithm; it does not need prior 

knowledge about input data characteristics, where after successive iteration the adaptive can 

track time variation in the statistics of non-stationary input [22]. Adaptive noise canceller is one 

configuration of the adaptive filter consists of two components, a filtering process and an 
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adaptive process [23]. A filtering process includes calculating the output linear filter and then 

creates an estimation error between the desired signal and filter output. The linear filter itself 

can take different structures, that are vastly manipulated in filtering non-stationary signals [25] 

[26] [27], the Finite Impulse Response (FIR) filter based on the transversal structure is the most 

popular used due to its inherent stability, it is first described by Kallmann [28] as a continuous 

time device, and then it has been implemented in digital circuitry. The output of the FIR filter 

is an expression that is called a finite convolution sum which convolves the filter input with a 

finite duration impulse response of the filter [23, 29]. Once the filter output is obtained, then 

generating an estimation error between the desired signal and this output is the second step.  

The estimation error is used to establish the objective function (cost function) like mean square 

error (MSE). In the adaptive process, according to the obtained cost function during the 

filtration process, the filter coefficients are automatically adjusted using a performing 

mechanism. The mixture of these two components operating with each other forms a feedback 

loop around this mechanism that called an adaptive algorithm. The least mean square algorithm 

(LMS) is the commonly known adaptive algorithm and the most used in many applications of 

the adaptive filter, this algorithm is obtained by applying the method of steepest descent that 

uses the gradient vector on the optimum Wiener solution [29, 30]. The resulted LMS algorithm 

is described in words as the updated value of the coefficient vector equals the old coefficient 

vector plus the product of a positive constant (step size parameter) times the input vector and 

the error signal. The step size parameter has to satisfy certain condition to ascertain the stability 

and rate of convergence [22]. Although the LMS algorithm is easy to implement and robust, it 

is sensitive to the round off error that is resulted from the quantization process [31], and suffer 

from slow rate convergence due to selecting the small value of step size, while selecting a large 

value results in a lower error estimation performance [32]. The Normalized least mean squares 

algorithm (NLMS) which is a variant of the LMS algorithm was proposed to overcome the 

limitation of slow convergence by normalizing the power of the input, and thus the step size 

parameter becomes a time-varying version. While the limitation of the sensitivity of the round 

off error was solved by introducing a leakage coefficient into the LMS algorithm [33], the 

resulted new algorithm is called leaky least mean square (LLMS) algorithm [34], where the 

leakage coefficient also should satisfy some condition in order to ascertain the stability during 

the digital implementation of the LMS algorithm [35], and reduce the misalignment in noise 

cancellers [30]. 
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Several works have been carried out in the context of baseline wander noise removal [38-

44], muscle noise removal [45-53], and electro motion artifact removal from ECG signal [54-

59]. In this work, based on the general structure and working principle of the noise canceller 

adaptive filter, we proposed an adaptive filter named self-correcting leaky normalized least 

mean square adaptive noise canceller with varied step size and varied leakage coefficient (SC-

LNLMS), our aim is to remove the muscle noise, the base wander noise and electro motion 

artifact which may corrupt the ECG signal with taking care to preserve the standard shape of 

that signal, our proposed adaptive filter is a multistage noise canceller. In the first stage, the 

noisy ECG signal passes through digital FIR filter, the resulted output is then subtracted from 

the desired signal to get the error. According to this error, the FIR filter coefficients are updated 

via leaky normalized least mean square algorithm. All following stages have the same structure 

and algorithm as the first stage, but the noisy input (corrupted ECG signal) to each stage is the 

FIR filter output from the previous stage and so on, also the step size and leakage coefficient 

are varied from stage to stage. the MSE and noise to signal ratio are two criteria that have been 

used to evaluate the performance of the proposed adaptive filter in addition to a comparative 

study with other existing techniques was made to show the effectiveness of the proposed 

method. The clean ECG signals and the noises were taken from the MIT-BIH database available 

on physionet [60-61]. 

The domain of stationary wavelet transformation (SWT) plus a variant of NLMS algorithm 

also is proposed to denoising ECG signal form noises, this method is presented and 

experimented into this thesis. As for the rest of the existing techniques, we were taking the 

results from their original articles [47] [49] [50-52]. The stationary wavelet transform SWT is 

an offshoot of the conventional discrete Wavelet transform (DWT), but it differs in its shifted 

invariant main characteristic. SWT localizes signal features in the time–frequency domain 

which made it widely used in the domain of filtering, when using SWT is never sub-sampled, 

and the filters are up-sampled, i.e. the obtained coefficients have the same length as the original 

signal, its main application is denoising contaminated signals and images. SWT denoising 

consists of three steps. In the first step, the signal is decomposed by using an appropriate level 

and an appropriate wavelet function (Daubechies, Coiflets, Symlets, discrete Meyer, 

Biorthogonal, and Reverse Biorthogonal) to obtain two sab-band coefficients named 

approximate and detail coefficients. In the second step, an appropriately selected threshold and 

selected thresholding rule (soft, hard, hyperbolic, nonnegative garrote and firm thresholding) 

[74] [75] are applied on details coefficients to obtain thresholded coefficients. In the last step, 
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the approximation coefficient obtained at the last decomposition level, and the thresholded 

coefficients are used by the inverse stationary wavelet transform to obtain the denoised signal. 

We propose to add a variant of NLMS algorithm as the second stage of denoising to smooth 

out the signal and get the best results for comparison.  

The contribution of this thesis is divided into four chapters: 

The first chapter briefly presents the heart anatomy and physiology and the basics of 

electrocardiography. Anatomy includes: the study of the shape, structure of the heart and blood 

vessels, and define the path of blood flow .while physiology includes the study of the 

mechanical function of the heart in pumping blood and sending it to all parts of the body, then 

studying the electrical component that stimulates this mechanical component. The 

electrocardiography presents the generation, recording the ECG signal, and the unwanted noises 

that may corrupt it. 

The second chapter presents a theoretical reminder on adaptive filtering with its basic 

properties, main configurations, and the operation mechanism between the filtering process 

component and the adaptive process component in the noise canceller adaptive filter 

configuration that is used in the proposed algorithm. 

The third chapter introduces some related work in ECG signal filtering presented in the 

literature, followed by a detailed description of different steps of the proposed adaptive filter 

which is based on adaptive noise canceller configuration and leaky normalized least mean 

square algorithm with varied step size and leakage coefficient, as well as an overview on 

stationary wavelet transform method and a description of the proposed second method based 

on SWT and NLMS algorithm for noise removal from corrupted ECG signal for the purpose of 

comparison with the first proposed method. 

The fourth and last chapter explains the results achieved from the filtration of ECG signals 

from three types of unwanted noises by the implementation of the proposed approach. These 

are discussed and compared with results obtained when using stationary wavelet transform with 

the NLMS algorithm method, and those of other researchers in the literature. 
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1.1. Introduction: 

An electrocardiogram (ECG) reflects a series of electrical activity in the heart, it is a non-

invasive, painless test performed by people of all ages to screen for common heart conditions 

such as myocardial infarction and monitor their condition as an arrhythmia, this test is 

performed either at rest or while exercising in sports. It is used in the doctor's office, hospital 

room, operating room, and ambulance [2]. Prior knowledge of the heart basics is necessary to 

understand the basics of the ECG signal, so the first chapter presents the anatomy and the 

physiology of the heart within the first part, while the second part presents the basics of 

electrocardiography.  

1.2 Heart Anatomy: 

The heart is an essential and important organ of the cardiovascular, it is approximately the 

size of a person’s fist, its main function is to pump and propel oxygen-rich blood and nutrients 

to all the cells and tissues of the body, the heart is classified as a strong conical muscle (upside-

down triangle) located in the rib cage (ribs and vertebrae), between the lungs, slightly tilted to 

the left, and settles on the diaphragm.  

1.2.1 Heart’s wall 

From superficial to deep; the heart wall consists of three basic layers of tissue, epicardium, 

myocardium, and endocardium. 

 

a) Epicardium 

The heart wall is surrounded by a thin protective membrane known as the pericardial 

membrane or sac (Pericardium), this sac consists of two different sub-layers: external fibrous 

pericardium and serous inner pericardium, where this latter consists of two sub-layers: parietal 

pericardium, which merges with the fibrous pericardium, and internal visceral pericardium, or 

epicardium, which is the inner layer of the heart. The parietal pericardium and visceral 

pericardium are separated by a space called the pericardial cavity, filled with lubricating serous 

fluid [15].  
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b) Myocardium 

Also called the cardiac muscle, it is the middle and thickest heart’s wall. The cardiac muscle 

is covered by a collection of blood vessels that supply it, and the nervous fibers that help to 

regulate it. Heart muscle fibers consist of 3 billion heart cells (of one or more nuclei) [16] 

encapsulated by the surface plasma membrane, the cells are linked together by an intercalated 

disc that helps support simultaneous contraction of the muscle, and it also consists of large 

numbers of gap junctions (channels) that can open or close to allow or prevent the passage of 

ions, and help synchronize the contraction. This muscle tissue contracts with each heartbeat, 

and composed of two types of cardiac muscle cells, myocardial contractile cells, and myocardial 

conducting cells [2].  

 Myocardial contractile cells constitute the largest part of the cells in the atria and 

ventricles, they conduct impulses and are responsible for contractions that pump blood 

through the body.  

   Myocardial conducting cells (Nodal cells) are specialized cells able to generate and 

diffuse the electrical impulses that rapidly spread throughout the heart, and thus activate 

the contractions phenomena. These cells have four main characteristics; contractility 

(the extent to which a cell contracts after receiving a stimulus), automaticity (It is the 

cell's ability to automatically initiate an impulse), conductivity (the ability of a cell to 

spread an electrical impulse from a cardiac cell to another), and excitability (results from 

the ions exchange through the cell membrane and denotes how well a cell reacts to an 

electrical stimulus) [15].  

 

c) Endocardium 

The innermost layer of the heart wall, this layer provides protection to the valves and heart 

chambers. It consists of squamous epithelium tissue called endothelium with small blood 

vessels and bundles of smooth muscle. It is also the inner lining of the heart’s chambers, where 

blood circulates [6].  

1.2.2 Heart’s chambers 

The heart consists of four basic chambers distributed on two sides, the left side and the right 

side, each side contains the upper atria and the lower ventricle. The two sides are separated by 

a vertical muscular wall called a "septum". The two upper atria receive blood from the veins, 

and the two lower ventricles pump blood to the arteries, the right atrium receives blood via 
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superior and lower vena cava (the largest veins in the body), while the left atrium receives 

oxygenated blood via four pulmonary veins, the right ventricle pumps venous blood to the 

pulmonary artery, and the left ventricle pumps oxygenated blood to the aorta (see figure 1.1). 

The ventricles and atria cells are made up of 99 percent of myocardial contractile cells [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Heart anatomy [15]. 

 

1.2.3 Heart’s valves 

The heart has four valves, whose importance is that they allowing the blood to flow in one 

direction and preventing its reflux. 

 Two atrioventricular (AV) valves, called tricuspid and mitral valve, the tricuspid valve 

is located between the right atrium and the right ventricle. Its function is to allow blood 

to flow from the right atrium to the right ventricle. It opens and closes when the right 

atrium relaxes and when it contracts consecutively. When relaxing, this valve allows 

oxygenated blood to flow from the right atrium to the right ventricle. As for contraction, 

this valve closes to prevent the blood from refluxing and thus the blood goes its way to 

the pulmonary artery via the pulmonary valve [5]. The mitral valve (bicuspid) is located 

at the opening between the left atrium and left ventricle, its function is to allow blood 

to flow from the left atrium to the left ventricle. It opens and closes when the left atrium 

relaxes and when it contracts consecutively. When relaxing, this valve allows 
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oxygenated blood to flow from the left atrium to the left ventricle. As for contraction, 

this valve closes to prevent the blood from refluxing and thus the blood goes its way to 

the aorta via the aortic valve.  Both valves consist of leaflets. The tricuspid valve has 

three, while the mitral valve consists of two leaflets. The leaflets in each valve are 

attached by chordae tendineae to the papillary muscles that emanate from the ventricular 

wall and which control the opening and closing of the valves [2] (see figure 1.1). 

 Two semilunar valves called pulmonic and aortic valve, the pulmonary or pulmonic 

valve is located between the right ventricle and the pulmonary artery. Once the right 

ventricle contracts; the blood pressure increases causing this valve to open and push the 

deoxygenated blood out of the heart into the artery. When the ventricle relaxes, the 

pressure inside the heart decreases, so this valve closes, preventing blood from returning 

to the heart. The aortic valve is located at the base of the aorta; it opens and closes when 

the left ventricle relaxes and when it contracts consecutively. When contracting, this 

valve opens to allow oxygenated blood to flow into the aorta. As for relaxation, this 

valve closes to prevent the blood from returning and causing it to rush into the aorta. 

These valves are called semilunar valves because they consist of three cusps of 

endothelium strengthed with connective tissue similar to three half-moons (see figure 

1.1) [14].  

1.2.4 The mechanism of blood flow: 

The mechanism of blood flow to and from the heart requires a group of veins and arteries, 

the veins carry blood to the heart, and the arteries carry it from the heart.  

The Oxygen-free blood (with blue color as shown in figure 1.2) returns to right atrium from the 

upper extremities, head, neck and chest, via the superior vena cava, and from the lower 

extremities via inferior vena cava. From there, the blood is forced to flow through tricuspid 

valve into the right ventricle from where it is pumped through the pulmonic valve into the 

pulmonary arteries and then into the lungs where gases are exchanged and the blood supply 

with nutrients, then the oxygenated blood (with red color as shown in figure 1.2) returns to the 

left atrium through the four pulmonary veins, which achieves the pulmonary circulation (small 

circulation). Then, the left atrium contracts and forced oxygenated blood to move through the 

mitral valve into the left ventricle. The mitral valve closes, so the left ventricle contracts and 

pumps blood through the pulmonary valve into the aorta and from there to the rest of the body 

organs and tissues (exception the lungs) [2]. The aorta branches into smaller and smaller arteries 
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that connect to every tissue in the body. Around every tissue in the body there is a network of 

capillaries connecting arteries and veins. All the veins in the body drain into the upper and 

lower vena cava, where they carry blood back to the right atrium, completing a circuit called 

the systemic circulation. 

The heart itself, like any organ or tissue in the body, needs its own blood supply to obtain the 

oxygen and nutrition that are needed for the continuous contraction process, and this nutrition 

takes place through the very short coronary circulation through two arteries originating from 

the aorta immediately after it exits the left ventricle and passes on both sides of the heart, as 

representing the shape of the crown, and therefore called the two coronary arteries, each of 

which feeds half of the heart [12].  

 

 

 

 

 

 

 

 

Figure 1.2 The blood circulation system [12]. 

1.3   Heart physiology 

Cardiac physiology is the study of the healthy and vital function of the heart, this study 

includes: the cardiac cycle, cardiac muscle innervating process, and cardiac conduction 

system.  

1.3.1 Cardiac cycle  

The cardiac cycle or the mechanical component of the heart rhythm can be defined as the 

sequence of contraction and relaxation of the cardiac muscle in order to pump blood throughout 

the body in less than a second. Each cardiac cycle begins at the beginning of a heartbeat and 

https://www.kenhub.com/en/library/anatomy/the-blood
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ends with the beginning of another, and is divided into two main stages called systole and 

diastole [2, 3]. The diastolic phase is the phase of relaxation of the ventricles and the heart 

filling with blood brought in by the veins and is characterized by the opening of the two 

atrioventricular (AV) valves and the closing of two semilunar valves as shown by figure (1.3), 

diastole phase occupies ⅔ of the cardiac cycle duration under resting conditions. In the phase 

of systole, the ventricles contract, and blood is pumped from the heart to the arteries and is 

characterized by the closure of the two atrioventricular (AV) valves which gives a “lub” sound, 

and the opening of the two semilunar valves as shown by figure (1.3), systole phase occupies 

⅓ of the cardiac cycle duration under resting conditions. The cardiac cycle is completed when 

the chambers of the heart fill with blood and blood is pumped out of the heart, implying a 

succession of ventricular contraction and ventricular diastole [6]. 

 

 

 

 

 

 

 

Figure 1.3. Cardiac cycle [15]. 

When the heart beats, a single cardiac cycle consists of five sequenced events, isovolumic 

ventricular contraction, ventricular ejection, isovolumic relaxation, ventricular filling, and atrial 

contraction.  

 Ventricular filling; the atrial pressure exceeds the ventricular pressure, which causes the 

two atrioventricular (AV) valves to open and blood flows from the atria to the ventricles 

(during this stage, about 70% of the ventricular filling occurs); this stage ends when the 

two atrioventricular (AV) valves close and the ventricular relaxation begins [17]. 

 Atrial contraction: The atria contract and the two atrioventricular (AV) valves open, the 

atria supply the ventricles with 30% of the blood for each heartbeat, this phase is completed 
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before the ventricular contraction begins. The ventricular filling phase and atrial 

contraction are called the ventricular filling phase (mid to late diastole) [2]. 

 Isovolumic ventricular contraction; begins with an increase in pressure within the 

ventricles due to ventricular depolarization, which causes the closure of the two 

atrioventricular (AV) valves while the two semilunar valves remain closed during the 

entire stage [17].  

 Ventricular ejection; begins when the ventricular pressure exceeds the aortic and 

pulmonary arterial pressure, causing the two semilunar valves to open and the ventricles 

to drain blood. The isovolumic ventricular contraction phase and the ventricular ejection 

phase are called the ventricular systole phase (atria in systole) [12]. 

 Isovolumic relaxation;   in this stage, the ventricular pressure decreases (but the volume 

remains constant), which leads to the closure of the aortic valve and the pulmonary valve, 

and the pressure in the aorta and pulmonary artery increases. Atrial relaxation occurs when 

the atria fill with blood (during this stage all valves are closed). This phase is also called 

early diastole.  

Each heart muscle contraction controls blood flow in the form of a heart rate measured in beats 

per minute. The duration of the cardiac cycle increases with the decrease in the heart rate and 

decreases with the increase in the heart rate because the duration of the cardiac cycle is inversely 

proportional to the heart rate. The normal resting heart rate ranges from 60 to 100 beats per 

minute [3]. 

1.3.2 Cardiac muscle's innervating 

There are two branches of the autonomic (involuntary) nervous system that supply the heart 

and control the heart rate; the sympathetic (adrenergic) nervous system (SNS) and the 

parasympathetic (cholinergic) nervous system (PNS). The sympathetic nervous system (SNS) 

liberates the hormones (catecholamines - epinephrine and norepinephrine) to precipitate the 

heart rate, automaticity, atrioventricular (AV) conduction, and contractility. While the 

parasympathetic nervous system (PNS) (and specifically the vagus nerve that carrying the 

impulses) liberates the hormone acetylcholine to decelerate the heart rate and the conduction of 

impulses through the AV node and ventricles [15]. There are other factors that temporarily 

speed up the heart rate such as stress, caffeine, excitement, and medications such as nitrates, 

while factors that help slow the heart rate such slow and deep breathing, medications such as 

beta-blockers, vomiting [6]. 
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1.3.3 Electrical activity of cardiac muscle 

The cardiac cycle occurs after the emergence of the electrical component that is directly 

responsible for it. The electrical component is the generation and transmission of electrical 

impulses (action potential). Due to automaticity and the ability properties (mentioned in section 

1.2) of a cluster of sub-specialized cardiac muscle cells called sinoatrial (SA) node; an electrical 

impulses are generated, and then, due to the conductivity property of cardiac muscle cells; these 

impulses are rapidly transmitted throughout the myocardium from the SA node through the 

electrical conduction system. During the impulses transmission process, the cardiac cells follow 

depolarization and repolarization cycles with each heartbeat. Depolarization (in electrical term) 

causes the contraction phase, and repolarization causes the relaxation phase [6].  

1.3.3.1 Action potential of cardiac cells 

In a basal and rest conditions, normal myocardial cells maintain their polarization 

(relaxation) with a membrane potential difference called resting potential which reaches about 

-70 mV [19]. The membrane potential difference is caused by the difference in ion 

concentration on both sides of the membrane cellular, where different ions are involved: the 

sodium Na+, potassium K+, and calcium Ca++ [16]. At rest, the cell membrane is nearly 100 

times more permeable to potassium than sodium [15]. Therefore, potassium diffuses out of the 

cell more than the sodium diffuses into it, which results in more negative charges inside the cell 

due to the open potassium channels, and the positive and negative charges remain uniformly 

distributed at each of the two mediums inside and outside the cell. After the electrical 

stimulation occurs, the sodium channels in the cell membrane open to allow sodium ions to 

pass through to the inside of the cell, and quickly the inner part of the cell becomes positive 

compared to the surface of the membrane, which leads to the depolarization of the cell (i.e. 

shrinks) and the emergence of a new potential contrary to the underlying resting membrane and 

capable to spread, called action potentials, followed by the process of cellular repolarization 

(when the cell returns to its resting state) [2, 12]. 

During ion exchange, two types of current can be distinguished: "inward" currents are those 

in which a positive charge enters the cell and that makes the membrane potentials more positive, 

which we call "depolarization", "outward" currents are those in which a positive charge leaves 

the cell and that makes the membrane potential more negative. This is what we call 

"repolarization". 

https://en.wikipedia.org/wiki/Action_potential
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The electrical changes in the myocardium cell during the depolarization - repolarization 

cycle is illustrated by the ventricular action potential curve represented in figure (1.4), where 

this curve is consist of five different phases; phase 4, phase 0, phase 1, phase 2, and phase 3. 

  Phase 4 is the baseline that membrane potential starts and completes at it. Potassium 

channels are open, and ion potassium diffuses out of the cell, where potassium currents 

are essential determinant of resting membrane potentials (- 90mV) [4]. 

 In phase 0 (Fast Depolarisation); the voltage sodium channels open, and the sodium 

ions rapidly flow into the cell, resulting in a rapid and steep depolarization. While the 

calcium moves slowly in the cell (intracellular space) causes a positive resting 

membrane potential. Sodium channels become almost inactive after opening as long as 

the cell is devoid of polarization and cannot create an additional working voltage in that 

cell (the membrane potential elevates to about +30 mV) [11]. 

 In phase 1(Notch); the potassium channels rapidly repolarize the cell before the plateau 

stage due to the influx of potassium ions out of the cell. Higher potassium currents 

during the notch phase allow more repolarization so that the plateau appears at lower 

voltages; while lower potassium currents allow less repolarization and a plateau phase 

appears at higher voltages (notch phase takes about 3–5 ms) [13]. 

 In phase 2 (the plateau), the calcium continues to flow inward and binds to ryanodine 

receptors on the SR, while maintaining the membrane potential, the membrane potential 

decreases towards the resting state, the calcium channels gradually become negative, 

and the potassium channels gradually open up, so the potassium continues to flow out 

of the cell (plateau phase takes about 175 ms) [15]. 

 In phase 3 (Repolarisation); after the calcium channels are closed, the cell quickly 

restores the potassium ions, and the potassium currents succeed in repolarizing the cell, 

while the sodium is restored to the outside after the sodium channels start to activate, 

and thus the membrane potential becomes more negative. The potassium channels open 

completely and the cell becomes polarized again and this allows the cycle to restart (The 

repolarization takes about 75 ms). 
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Figure 1.4. Ventricular action potential phases (Adopted from [2]). 

During phases 1 and 2 and at the beginning of phase 3, cardiac cells are in their absolute 

refractory period that takes about 200 ms, and no stimulus can excite them. But, the strong 

stimulus can depolarize the cells in the second half of phase 3 when the cells are in its relative 

refractory period that takes 50ms. In phase 4, the membrane potential decreases until it reaches 

resting levels again and the cell is ready for another stimulus, and the cycle repeats. The whole 

cycle takes between 250 and 300 milliseconds [2]. The total electrical activity of the heart is 

the summation in time and space of the primary electrical activities represented by each of the 

cellular action potentials. It is represented by a trace called an electrocardiogram or ECG. 

1.3.3.2 Electrical conduction system pathway 

 The impulses generated by the SA node are rapidly transmitted throughout the myocardium 

through a specialized pathway called the conduction system, and thus causing the heart to 

contract. The conduction system consists of the SA node, the Bachmann bundle, the 

atrioventricular (AV) node, the Atrioventricular Bundle, and the Purkinje fibers .as shown by 

figure (1.5). 

 Sinoatrial (SA) Node, a precise point in the heart known as the heart’s main pacemaker, 

located at the top of the right atrium where the superior vena cava joins the atrial tissue 

mass. This source is made up of a cluster of cells capable of generating impulses 60 to 

100 times per minute. The SA node is able to transmit its impulses as an oil patch to the 

rest of the two atria to their base through preferential conductive pathways, causing them 

to contract [18]. The impulses usually can’t flow backward because the cells can’t 

respond to a stimulus immediately after depolarization.  

 Bachmann bundle and Inter-nodal Pathways, The electrical impulses are transmitted 

from the SA node through the left atrium via the Bachmann’s bundle (Interatrial 
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pathway), on the other hand, through the right atrium; the electrical impulses spread 

from the SA node to the atrioventricular node (AV) via the internal pathways which are 

divided into the anterior, middle, and posterior internal pathways (see figure 1.5) [4]. 

 Atrioventricular (AV) Node (The slow node), is a concentrated conductive tissue that 

lies near the bottom of the right atrium (in medial posterior to the tricuspid valve), 

although the AV node is also capable of generating an action potential but is slower than 

that of the SA node. As a result, it operates in response to activity from the SA node. 

The AV node then delays the impulses it has reached to give enough time to allow the 

atria to contract. Thus, the ventricles complete the filling phase with the atria 

contracting. Then the AV node sends the impulses down the atrioventricular bundle into 

the ventricles [15]. 

 The atrioventricular fiber bundle, or bundle of His, extends into the heart septum 

from the AV node to the bottom of the septum and is divided into two branches: the 

right and the left bundle branches, the left bundle feeds the left ventricle and is itself 

divided into the left anterior fasciculus, which elongates across the anterior portion of 

the left ventricle, and the left posterior fasciculus, which passes through the lateral 

portions of the left ventricle, while the right bundle branch feeds the right ventricle [18]. 

 Purkinje fibers are conductive fibers that branch from the His fibers and extend into 

the wall of the left and right ventricles. These fibers are characterized by a rapid transfer 

of impulses to the contractile cells in the ventricles in about 75 milliseconds [15] causing 

them to contract.  

 

 

 

 

 

 

 

Figure1.5 Normal conduction pathway of the heart (Adopted from [2]).  
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1.4 The electrocardiogram  

The graphic recording of the heart’s electrical activity is called an electrocardiogram (ECG), 

as this recording gives us an electrical signal consisting of a series of ordered and repeated 

waves and intervals, the height of which represents a millivolt while its width represents a 

period of time. It is a common non-invasive and painless test performed for people of all ages 

to detect common heart diseases such as myocardial infarction and monitor its condition such 

as irregular heartbeat in many situations such as rest or exercise. Electrocardiogram signals are 

obtained by attaching electrodes (leads) to the patient's skin away from the heart, at the patient's 

ankles, wrists, and chest. The device used for this examination of the heart is called an 

electrocardiograph, where the plot then appears on a strip of paper and can be interpreted 

instantly [5]. The waves and periods originated during depolarization and repolarization 

expressed by the ECG are distinguished from each other in terms of sharpness of the peak and 

smoothness. Those resulting from depolarization are sharpest and have a higher peak than the 

waves associated with repolarization [6].  

1.5 The electrocardiogram history 

This ECG signal has an ancient history since its first discovery and development, which we 

summarize as follows: 

In 1887, Augustus D Waller recorded the first "electrocardiogram" (ECG) of a healthy 

human heart using a capillary electrometer. The tracer announced only two deviations described 

by V1 and V2 to designate ventricular effects [7]. In 1893, the Dutch physician and physiologist 

Willem Einthoven introduced the term "electrocardiogram" at a meeting of the Dutch Medical 

Association. He continued to develop it until 1901 when he invented the string galvanometer 

(series of galvanometers) using a fine silver-coated quartz chain. Then, in 1912 he presented 

for the first time the famous equilateral triangle consisting of the standard derivations of DI, 

DII, and DIII, and which was later called the "Einthoven Triangle" [8]. In 1932, Charles 

Wolferth and Francis Wood described the medicinal use of the V1 - V6 primary derivatives, 

and it was the first precordial lead in clinical diagnostic cardiology [9]. In 1944, Emmanuel 

Goldberger added 3 terminal leads, aVR, aVL and aVF, to the leads identified by Einthoven. 

Combined with the previous six leads, V1 - V6, he was allowed to perform the first 12-channel 

electrocardiogram [10], which has been widely used in contemporary medicine. 
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1.6 Generation of the ECG 

The propagation of the depolarization and repolarization processes of myocardial cells along 

the muscle cardiac fibers is represented by the theory of a dipole-vector, The dipole consists of 

a pair of electrical charges and is associated with a vector that determines the dipole's time-

varying position, direction and magnitude, all vectors that are related to specific groups of cells 

in the myocardium are combined to form one vector that determines the main direction of the 

electrical pulse and is called a "dominant vector" (see figure 1. 6) [19]. 

 

 

 

 

Figure 1.6 The dominant vector [6]. 

The dominant vector head is situated at the positive pole of a dipole, where an electrode that 

faces the head of the vector registers a positive deviation [3]. Thus, the vector sequence 

representation of the different phases of depolarization and repolarization of myocardial cells 

illustrates how the ECG waves are generated as registered by electrodes (leads) placed on a 

surface body, The position of electrodes on the body greatly affects the shape and polarity of 

single waves, and their amplitudes are also affected by the distance between the heart and the 

electrode [6]. Depolarization- repolarization phases and associated morphology can be 

summarized as follows: 

1.6.1 Atria depolarization 

The ECG signal begins with a horizontal line (isoelectric line) that represents the baseline, 

and this reflects the state of the heart cells that are at rest, see figure 1.7 (a). Then when the SA 

node fires an impulse, the atria depolarization phase takes place. The dominant vector is 

orientated to the bottom towards the AV node, and thus an atria wave with positive polarity is 

created in the registered ECG and called p wave, see figure 1.7 (b). Due to the comparatively 

small atria muscles, this wave is characterized by low amplitude and usually ranges between 

1.5 and 2.5 mm [12]. At the end of the complete depolarization phase of the atria, the 

depolarization of the AV node and its bundles begins but does not reflect any apparent ECG 
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waves due to its small muscle masses, and for this, the ECG recovers the isoelectric line upon 

the complete depolarization of the atria and extends until the depolarization phase begins from 

ventricles [6], see figure 1.7(c).  

 

 

 

 

Figure 1.7 .(a) All cardiac cells at rest,  (b) Atrial depolarization, (c) Passage of electrical 

impulse through the AV node (Adopted from [6]). 

1.6.2 Septal depolarization 

The AV node delays the incoming electrical flow for a short time,  then the flow travels 

rapidly down the bundle of His and through the left and right bundle branches to the septum 

between the ventricles where its cells begin undergoing depolarization process. The 

depolarization of the septum leads to a small negative wave reflected on the registered ECG 

and called Q wave, see figure (1.8). This wave takes of short duration due to the great 

conduction celerity of the cells in this portion [13]. 

 

Figure 1.8 Septal depolarization (Adopted from [6]). 

1.6.3 Apical and early ventricular depolarization 

Ventricular depolarization takes longer, and this is because the left ventricular wall is thinner 

compared to the right ventricular wall, and as a result, the dominant vector orientations change 

progressively downward and to the left, see figures 1.9 (a)-(b). The process of depolarization is 

almost over, and a wave of a negative polarity is produced that is reflected on the registered 

ECG and called R wave [2], see figure 1.9 (b). 
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Figure 1.9 (a) Apical, (b) Early ventricular depolarization (Adopted from [6]). 

1.6.4 Delayed ventricular depolarization 

Ventricular depolarization ends when the small spaces at the extremities of the ventricles are 

depolarized. The electrical stimulation moves, resulting in a longer R wave which represents 

the right ventricular late depolarization, or a smaller S wave, which represents the left 

ventricular depolarization [12], see figure (1.10). 

 

 

 

 

 

Figure 1.10 Delayed ventricular depolarization (Adopted from [6]). 

1.6.5 Ventricular repolarization  

When the ventricular depolarization phase is completely complete, the cells return to their 

normal resting state, this is reflected on the ECG as an isoelectric line that remains until the 

ventricular repolarization occurs. During ventricular repolarization, the dominant vector 

direction changes from the top to the bottom causing production of wave with positive polarity 

called T wave [15], see figure (1.11). 

 

 

 

 

Figure 1.11.Ventricular repolarization (Adopted from [6]). 
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1.7 ECG Recording Techniques 

Since the dominant vector describes the main direction of the electrical wave-front generated 

during the heart electrical activity, then confirming this direction becomes necessary because it 

defines the upward or downward deflection of an electrocardiogram waveform, so the ECG 

records information about these waveforms from diverse viewpoints called 'leads' that have 

positioned on the skin. In electrical term 'lead' is the voltage difference between a pair of 

electrodes [4, 5]. The electrocardiogram (ECG) recording requires a set of leads that include 

unipolar or bipolar leads or both. The unipolar lead records the voltage difference of one 

electrode and is evaluated in relation to a reference electrode placed so that the voltage stays 

approximately constant during the whole cardiac cycle; the reference is named the "central 

terminal." While bipolar lead records the potential difference between two electrodes, for 

example, between the left and right arm [6]. There are two ECG recordings types, the standard 

12-lead ECG and a rhythm strip [2]. Both types provide precious details about heart activity. In 

this thesis we are interested with the 12-lead ECG. 

1.7.1 Standard 12-lead ECG 

This system has 12 leads, which are like 12 different angles that simultaneously track the spread 

of electrical activity. These 12 leads cover much of the heart tissue, and can often be classified 

as six leads on the frontal plane and six on the horizontal plane. 

1.7.1.1 Leads in the frontal plane 

The leads on the frontal plane consist of three bipolar limb leads (I, II, III) also called 

Einthoven leads, and three augmented unipolar limb leads also called Goldberger leads 

(augmented vector right (aVR), augmented vector left (aVL), and augmented vector foot 

(aVF)).  

a) Regarding bipolar limb leads, lead I measure the potential differences between the left 

to the right arm, lead II measures the potential differences between left leg and right arm, 

where lead III measures the potential differences between left leg and left arm. Bipolar 

limb leads were first defined by Einthoven as a triangle (Einthoven's Triangle in the form 

of a closed circle, see figure 1.12 (a). Where according to Kirchhoff's law; the voltage in 

each lead should follow equation II = I+III. By shifting the three sides of the Einthoven 

triangle toward its center, Bailey derived a reference figure called Bailey’s triaxial 

system [3].  
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b) Augmented unipolar limb leads (aVR, aVL, and aVF) are denoted 'augmented' because 

their voltage is higher than that of the bipolar limb leads (corresponding to Einthoven’s 

law) [3]. they are shifted 300 from those of the bipolar limb leads, the space between I 

and II is covered by -aVR, between II and III by aVF, and between III and I by aVL, i.e. 

they determine the voltage differences between one angle of the triangle and the average 

of remaining two angles, see figure 1.12 (b). In augmented limb leads one electrode is 

detecting while the average of the two other acts as the reference electrode [6]. Bailey 

added these three leads to Bailey’s triaxial system to obtain Bailey’s hex-axial system, 

see figure 1.12 (c). 

The three bipolar limb leads have three positive poles correspond 00, +600, and +1200 

respectively, and have three negative poles correspond ±1800, -1200, and -600 respectively. 

Thus, they are separated by 600. where regarding augmented unipolar limb leads, each has lines 

going from a positive pole to a negative pole passing across the center of a triangle: the line of 

aVR extends from positive pole to negative pole corresponding -1500 to +300 respectively, that 

of aVL from the positive pole to negative pole corresponding -300 to +1500 respectively and 

that of aVF from positive pole to negative pole corresponding +900 to -900 respectively, see 

figure 1.12 (c) [5]. 

Figure 1.12 (a) Einthoven’s triangle, (b) Augmented unipolar limb leads and bipolar limb 

leads, (c) Bailey’s hexaxial system (Adopted from [3]). 

1.7.1.2 Leads in the horizontal plane  

In the horizontal plane, there are six chest leads (also known as precordial leads) that named 

(V1–V6). They are placed on the surface of the chest (the front and left side) through different 

areas of the heart in order to record the electrical activity of the ventricular areas in a plane 

perpendicular to the frontal plane [4], see figure (1.13). The activity of the right ventricle 

(anteroseptal) is reflected by Leads V1 and V2, Leads V3 and V4 mainly explore the front of 
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the ventricles (interventricular wall and the tip of the heart), while a view of the left ventricle 

(anterolateral) is explored by V5 and V6.  The difference in potential of a chest lead is registered 

between the relevant chest electrode and a central terminal which is defined as the average 

potential registered from the three bipolar limb leads [4, 6]. 

 

 

 

 

 

 

 

Figure 1.13 Standard attachment sites for chest leads (Adopted from [4]). 

1.8 Normal Electrocardiogram tracing components 

The ECG machine provides a graphical representation of the human heart electrical activity 

after treating the signals captured from the skin by electrodes, the graphical representation 

depends on the basic pattern of electrical activity that was first explored more than a hundred 

years ago which states that electrical activity flowing away from the lead causes a downward 

deflection, while that flowing towards the lead causes an upward deflection [5, 11]. The ECG 

signal comprises three waves, which have been by convention named P, QRS complex, and T 

wave, also consists of segments (the region between two waves), and intervals (includes one 

segment and one or more waves), see figure (1.14). 

 

  

 

 

 

 

 

 Figure 1.14. ECG normal waveform graphical representations (Adopted from [11]). 



Chapter 1                                                                                                      Heart and electrocardiogram basics 

 

24 
 

1.8.1 P wave 

The first upward deflection from the isoelectric line is named the P wave, which represents 

a sequential atria depolarization wave (Figure 1.14). In general, its shape is rounded, upright 

has a positive polarity. The amplitude of the P wave is low and less than 300 µV (not exceed 

2.5 mm) which is generally masked by concurrent ventricular depolarization (QRS complex), 

where its duration is less than 120 ms (width) [4, 6]. The spectral characteristic of a normal P 

wave is generally regarded to be low-frequency, below 10-15 Hz. 

1.8.2 PR interval and segment 

The PR interval is the time interval that extends from the beginning of atria depolarization 

(P wave) to the beginning of ventricular depolarization (initiation of the QRS complex). It is 

more medically appropriate because it reflects the time needed for the electrical impulse to 

spread from the SA node to the ventricles [3, 6]. The normal PR interval ranges reflected at 

adult is between 0.12 and 0.2 s (up to 0.22 s at the aged and as short as 0.1 s at the pediatric) 

[6]. 

The PQ segment extends from the end of the P wave to the beginning of the QRS (onset) 

and is generally an isoelectric line (no more electrical current can flow across the myocardium). 

1.8.3 QRS wave complex 

The three waves of the QRS complex represent ventricular depolarization which in the 

normal heart takes about 70-110 ms [15]. The first downward deflection from the baseline after 

the P wave is named Q wave that is narrow and small in amplitude and reflects the 

depolarization of the inter-ventricular septum, and its duration does not beyond 0.03 second 

[4]. The first upward deflection after the P wave is named R wave and reflects depolarization 

of the ventricular mass, this is why it is the largest wave in ECG. The S wave reflects the final 

stage of depolarization of the ventricles at the base of the heart [5]. The QRS complex has 

significantly higher frequency content than other waves and is mainly ranged in the interval 10-

50 Hz [6].  

1.8.4 ST Segment 

The ST segment (also known as the ST interval) is the time between the ends of the QRS 

complex (also known as J point) or from the end of ventricular depolarization and the beginning 

of the T wave [5]. It reflects the period of zero potential between ventricular depolarization and 
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repolarization. Generally, the frequency content of the baseline is between 0.5 Hz and 7 Hz 

[14]. 

1.8.5 T wave 

The T wave reflects the ventricular repolarization (atrial repolarization is obscured by the 

large QRS complex). This wave becomes narrow and closer to the QRS complex when heart 

rates are accelerated; the normal T wave is smooth and rounded. In most leads, the T wave is 

reflected by a single positive peak [6]. another wave named U may follow the T wave, and it is 

generally of the same polarity as the T wave, which reflects a final stage of the repolarisation 

of certain ventricular cells in the middle of the myocardium (repolarization of papillary 

muscles) [4]. 

1.8.6 QT interval 

The QT interval is the time extended from the beginning of the Q wave to the end of the T 

wave. It reflects the onset of ventricular depolarization to the completion of ventricular 

repolarization. At more accelerated heart rates, the QT interval becomes shorter [15]. 

1.9 Noises in the ECG signal 

During the recording process, the ECG signal is exposed to the interference of different types 

of noise that arise from different sources, the range of this noise can be within the frequency 

range of the ECG signal, which may change its properties and completely overlap their waves 

and intervals, thus it is difficult for the specialist to interpret the ECG signal if this interference 

is external or reflects a problem in heart function. The noise is divided into two types: a 

physiological type that includes muscle noise (MA noise), while the second type is of technical 

nature and includes baseline wander (BW), electrode motion artifacts (EM), and power line 

interference (PLI) [6]. ECG and noise signals recordings showed below are digitized at 360 

samples per second per channel at 11-bit resolution over a 10-mV range, where the duration of 

each is 30 minutes. 

1.9.1 Muscle noise (EMG noise) 

The muscle or electromyographic noise is caused by the contraction of skeletal muscles 

located near the heart during their electrical activity, this electrical activity reflected as 

waveforms can be detected and reflected by an ECG during the process of recording (from 
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using chest leads), and more during exercise. The frequency range of the ECG is overlapping 

with the spectrum of muscle noises is in between 20-1000 Hz [20], it appears as a narrow and 

quick spike of ECG and makes the doctor suspicions of shivering and Parkinson’s disease [21] 

(see figure 1.15).The spectral content of muscle activity significantly overlaps that of the 

PQRST complex and extending into higher frequencies, making cancelling muscle noise from 

an ECG signal without introducing distortion remains difficult in ECG signal processing.  

 

 

 

 

 

Figure 1.15. Corrupted ECG signal by muscle noise. 

1.9.2 Baseline wander (BW) noise 

Baseline wander is a low-frequency activity in the ECG picked up in chest-lead ECG signals 

by coughing or breathing with a great motion of the chest, or when an arm or leg is moved in 

the case of limb-lead ECG acquisition that leads to the clinical interpretation incorrect and 

misleading, see figure (1.16).  Baseline wander noise is described by a slow wander of the 

baseline [12].  Its frequency range generally 0.5Hz, but it may contain higher frequencies during 

vigorous exercise.  

 

 

 

 

 

 

Figure 1.16. Corrupted ECG signal by baseline wander noise 
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1.9.3 Electrode motion artifacts 

Electrode motion artifacts appear roughly in the biomedical signals that are captured by the 

electrodes. It results from skin stretching which varies the impedance of the skin surrounding 

the electrode, coughing, and ambulation. The spectral content of the motion artifacts 

significantly overlaps with the content of the PQRST complex, mostly in the range from 1 to 

10 Hz, where it manifests as large amplitude waveforms that are confused with the QRS 

complex in the ECG (figure 1.17). Electrode motion artifacts are the main source of incorrectly 

detected heart rhythms recorded from a mobile ECG [21]. 

 

 

 

 

 

 

Figure 1.17 Corrupted ECG signal by electrode motion artifacts 

1.9.4 Power line interference (50/60 Hz) 

Power line interference (50/60 Hz) is resulted from the interference from neighboring 

equipment because of electromagnetic fields caused by a power line, also resulted from the 

incorrect grounding of the ECG equipment [12]. It is described by 50 or 60 Hz sinusoidal 

interference and causes problems in interpreting low amplitude waveform in the ECG signal, 

see figure (1.18). 

 

 

 

 

 

Figure 1.18. Corrupted ECG signal by power line interference. 
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1.10 Conclusion 

An ECG generally offers an important evidence of a heart abnormality, and it also gives to 

some extent accurate evaluation of the anatomy and physiological importance of that 

abnormality. Moreover, the ECG is the best way to analyze cardiac arrhythmias, but on the 

other hand, this signal is a low-frequency electrical signal and has very weak physiology, the 

maximum amplitude usually does not exceed 5mV, and the signal frequency is between 0.05 

and 100Hz, it is subject to interferences with different types of noise that lead to overlapping 

some of its waves, especially the QRS complex, which reflects ventricular activity responsible 

for pumping blood either to the lungs or to all parts of the body. Therefore, denoising this signal 

from annoying interference has become necessary to ensure accurate and non-distorted signal. 

Many techniques were proposed to overcome this problem as classic and adaptive filtering; the 

next chapter is exposed to noise canceller adaptive filter theory. 
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2.1 Introduction 

During the recording of the ECG signal, and before its final measurement, it contaminates 

with various unwanted interference called "noise". The noise rarely appears so distinct from the 

signal of ECG, which makes it difficult to remove it. Knowing the characteristics that 

discriminate the ECG signal from noise is imperative in order to apply noise reduction 

techniques as noise reduction techniques must usually contain a compromise between the 

quantity of noise to be removed and the quantity of the ECG signal that must be preserved. 

Many techniques have been achieved for this purpose, some of which are classic and some are 

adaptive, where some have given satisfactory results, and others showed defects and 

shortcomings. This chapter deals with adaptive filtering theory that addresses the problem of 

noise interference with the ECG signal. 

2.2 Adaptive filter history 

In the 1930s and 1940s, Andrei Kolmogorov, Norbert Wiener, and Norman Levinson began 

to solve linear estimation problems by proposing the candidate known as Wiener-Kolmogorov 

is the optimal solution in the sense of square error. Between 1957 and 1960 Howells, 

APPLEBAUM, and their colleagues at General Electric developed the first adaptive noise 

cancellation work by designing a side-lobe canceling system for the antenna that uses reference 

inputs generated from an additional antenna simple two-weight adaptive filter. In 1959, Widrow 

and Hoff at Stanford University were designing the least-mean square (LMS) adaptive 

algorithm and the model recognition system known as Adaline (for adaptive linear threshold 

logic element) [36]. In Great Britain, adaptive filters were developed by GABOR and his 

colleagues. In the early and middle 1960s, the first application of adaptive filtering at the Bell 

Laboratories by Lucky was done, where he succeeded in the reduction of inter-symbol 

interference in high-speed MODEM’S which is designated for digital communication [23]. Two 

students at Stanford University and in 1965, was designed the first adaptive noise canceling. 

The goal was to cancel 60-Hz interference at the output of an electrocardiographic amplifier 

and recorder. Hence, adaptive noise cancellation has been adequately requested to a number of 

further issues, such as noise removal from ECG signal, periodic interference cancelation, and 

echo cancellation in long-distance telephone transmission lines [36, 37]. 
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2.3 Adaptive filter definition 

The term filter is used to characterize a small piece of physical material embedded in a device 

or software that is applied to a set of noisy data in order to separate information about a specific 

amount of the desired signal [23], where an adaptive filter is a digital filter with self-adjusting 

characteristics.  It is able to adjust its linear filter coefficients automatically to adapt the input 

signal according to optimization or adaptive algorithm. This filter is a central topic in adaptive 

signal processing which is widely used in telephone echo cancellation, biomedical signal 

enhancement, noise cancellation, adaptive control systems, equalization of communications 

channels, and active noise control [32]. There are four basic information processing tasks that 

an adaptive filter can accomplish: 

 Filtering means using the data measured up to the current time t and containing it in 

order to separate information about a specific desired amount of interest [23]. 

 Smoothing is an advanced filtering step i.e. more accurate than filtering. The filtering 

is performed more accurately because it is used after the current time and before it to 

extract the information, which causes delays in the output. [24]. 

 Prediction, the aim of which is to extract information about the amount of desired at 

some future time, using measured data after time t and before [23]. 

 Deconvolution includes the restoration of the filter characteristics given the filter’s 

input and output signals [24]. 

2.4 Property of the adaptive filter 

Adaptive filters have the property that their coefficients change with the input to make the 

filter converge to an optimal state and improve its performance according to some criterion.  If 

we consider the general structure of an adaptive filtering environment given by the figure (2.1), 

where n represents the discrete time (n =0, 1…., N-1), X (n) is the input to the digital filter, d (n) is 

the desired signal, w(n) is the digital filter,  y(n) is the filter output, and e(n) is the error signal 

(the difference between X(n) and y(n)) [29]. The error signals also called estimation error is 

required to create a cost function or criterion, needed by the adaptation algorithm, there are 

many criteria that are suggested in the literature like mean square of the estimation error (MSE), 

an expectation of the absolute value of the estimation error, and expectation of high power of 

the absolute value of the estimation error [22, 23], where all of them, satisfy the optimization 

and non-negativity properties, In our case, we will use the MSE. Adaptive filters work mainly 
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for unknown or time-varying noise, adapting the changing environments, spectral interference 

between the desired signal and the noise, where the signal and the noise occupy fixed and 

separate frequency bands [32]. Many conventional linear filters such as low pass filter, notch 

filter with the fixed filter coefficients are investigated to remove such interferences and extract 

the signal, but they failed because their coefficients characteristics need to be variable and 

adapted to changing signal characteristics, where it is needed in some cases such spectral 

overlapping between signal and noise [22] like ECG signal and muscle noise.  

 

 

 

 

 

 

Figure 2.1. General structure of the adaptive filter. 

2.4.1 Mean square error (MSE) 

In the 1940s, due to research with important applications in communication theory, Norbert 

Wiener was investigating the problem of filter design that produces optimal signal estimation 

from a noisy measurement or observation [22]. The discrete form of the Wiener filtering 

problem, shown in figure (2.2) has basic idea that is to design a filter using a linear combination 

of the noisy reference X(n) to produces (recover ) an estimate y(n) of the desired signal when 

the MSE function (cost function) is minimized [24, 29, 30]. This filter requires prior 

information on the statistics of the data to be processed, which is not generally possible in 

practice. The use of adaptive filtering techniques solves this problem. The cost function defined 

as the statistical mean squared error (MSE) is given by equation (2.1), which corresponding to 

the expected value of the squared error loss. 

𝐽(𝑛) = 𝐸[(𝑑(𝑛) − 𝑦(𝑛))
2
] = 𝐸[𝑒2(𝑛)]              (2.1) 

The mean square error (MSE) leads to simple mathematics and has a special minimum that 

uniquely determines the optimum statistical filter design [23]. It is always positive, and the 

closer its value is to zero, it is the better. 
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 Figure 2.2. Wiener optimum filtering problem block diagram. 

2.5 Performance measures in adaptive systems 

Developing performance metrics for an adaptive filter is necessary to know how well a 

particular adaptive system is performing, also to offer comparative performance for diverse 

filter structures and adaptive algorithms to help in the suitable selection of a good solution in 

the limitations of the application. Such important features are:  

 Rate of convergence is a very important performance criterion that must be evaluated; 

it means how much iteration is required to reach a close optimum Wiener solution [25]. 

 Misadjustment, is a ratio between the finale value and the minimum value of the mean 

square error obtained by Wiener solution, it measures how much the steady state 

solution calculated by an adaptive algorithm is away from the Wiener solution [23]. 

  Tracking, capacity to follow the variations in statistical properties of non-stationary 

environment [25]. 

  Robustness, Whether with regard to algorithmic ill-conditioning and arithmetic 

quantization error, or with regard to external noise disturbances, means that small 

disturbances yield only small estimation errors [ 29]. 

 Computational Complexity, means realistic power requirements, computational 

operations per iteration, data storage and programming requirements [25]. 

 Numerical properties concerns numerical stability and numerical accuracy, as their 

numerical is related to the degree of sensitivity of the adaptive algorithm to changes that 

occur during quantization process [23]. 

2.6 adaptive filtering configurations 

Adaptive filters branch out into four basic configurations that are commonly used to solve 

practical engineering problems, the configurations are, system identification configuration, 

adaptive noise canceling configuration, adaptive linear prediction configuration, and inverse 

system configuration.  
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2.6.1 System identification configuration 

System identification illustrated by the figure (2.3) is an approach for determining 

mathematical models of dynamic systems using measurements of the input and output signals 

of the system. By using the structure enforced by the adaptive system, the adaptive filter offers 

an unknown system model when the adaptive process has formed the optimum estimation in 

the MSE sense [29]. 

 

 

 

 

 

Figure 2.3. System identification configuration (Adopted from [29]). 

2.6.2 Adaptive linear prediction configuration 

In this configuration, an input vector X(n) is used to predict the output y(n), see figure (2.4), 

y(n) is the prediction value and strongly correlated with x(n) and e (n), which is used in line 

enhancement applications, while e(n) represents the prediction error, which is uncorrelated with 

X(n) is used in different applications like linear predictive coding [38]. 

 

 

 

 

Figure 2.4. Linear prediction configuration (Adopted from [29]). 

2.6.3 Inverse system configuration 

In this configuration the adaptive filter is placed in series with an unknown system as shown 

by the figure (2.5), the adaptive algorithm drives the output y(n) to create the best MSE 

approximation to a delayed input signal. The adaptive algorithm drives the output y(n) to create 
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the optimum MSE estimation to a delayed of the input signal. This configuration is the basis 

for adaptive equalization [29], where reduces dispersion and eliminates inter-symbol 

interference in digital communications systems [38]. 

 

 

 

 

 

 

 

Figure 2.5. Inverse system configuration (Adopted from [29]). 

2.6.4 Adaptive noise canceling configuration 

An adaptive filter as noise canceller consists of two different components:  

1. A filtering process which includes, (a) calculating an output of digital filter that have 

known special structure, and that have produced by a set of tap of inputs, (b)  comparing 

the output filter to desired response  in order to generate an estimation error[22,23]. 

2. An adaptive process, which includes an automatic adjustment of the filter tap weights 

according with estimation error.  

Two input signals are applied directly and at the same time to the adaptive filter, the primary 

input, and the reference input, the first one is the noisy input which contains the desired signal 

d(n) and the noise v0(n), supposed uncorrelated with each other, the second one is the v1(n) 

which is considered as a measure of the noisy signal, assume that v0(n) and v1(n) are correlated 

in some unknown way [36], see figure (2.6) [23]. The reference input passes through a linear 

digital filter, to produce an output which is an estimate signal y(n) of the noise v0(n). The filter 

output is subtracted from the primary input to produce the system output e(n) which is given by 

equation (2.2). 

𝑒(𝑛) = 𝑑(𝑛) + 𝑣0(𝑛) − 𝑦(𝑛)                                        (2.2) 

The obtained system output is used in a feedback arrangement to the digital filter in order to 

adjust the digital filter coefficients through liner adaptive algorithm, thus the system output acts 

as an estimate of the desired signal, and as an error signal for the adaptive process. The 

significance of the primary input, reference inputs, and the output system or method they are 

derived usually depends on the application they are incorporated into [22]. 
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Figure 2.6 Adaptive filter as noise canceller block diagram [29]. 

Assume that d(n), v0(n), v1(n), and y(n) are statistically stationary, where v0(n) and v1(n) have 

zero means. By squaring equation (2.2), we get equation (2.3) as follows: 

 
𝑒2(𝑛) = 𝑑2(𝑛) + (𝑣0 − 𝑦)

2 − 2𝑑(𝑣0 − 𝑦)               (2.3) 

Taking expectations of both sides of equation (2.2), and since the desired signal d(n) is 

uncorrelated  with v0(n) and with y(n), thus one obtain 

𝐸[𝑒2(𝑛)] = 𝐸[𝑑2(𝑛)] + 𝐸[(𝑣0 − 𝑦)
2] − 2𝐸[𝑑(𝑣0 − 𝑦)] 

= 𝐸[𝑑2(𝑛)] + 𝐸[(𝑣0 − 𝑦)
2]                                        (2.4) 

It is evident in equation (2.4) that if the estimate y(n) replicates 𝒗𝟎(n), the output power will 

contain only the desired signal power 𝐸[𝑑2(𝑛)]. When adjusting the adaptive filter towards the 

optimum solution, the remainder noise power 𝐸[𝑑(𝑣0 − 𝑦)] will also be minimized and hence 

the total output power 𝐸[𝑒2(𝑛)] is minimized, stating that the desired signal power will not be 

affected as the filter is adjusted to minimize the total output power, since d(n) and 𝒗𝟎(n) are 

uncorrelated. Thus, the minimum output power is given by equation (2.5) 

 𝑚𝑖𝑛 𝐸[𝑒2(𝑛)] = 𝐸[𝑑2(𝑛)] + 𝑚𝑖𝑛 𝐸[(𝑣0 − 𝑦)
2]                     (2.5) 

It is evident from equation (2.5) that, since the desired signal power is unaffected, and then 

minimizing the total output power and minimizing the remainder noise power leads to 

maximize the output signal to noise ratio (SNR). 
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When the primary input comprises no noise (𝒗𝟎(n) = 0), the adaptive filter turns itself off (at 

least in theory) by setting all the weights to zero, while when the filter setting is such y(n) = 

𝒗𝟎(n), thus the output of the adaptive filter canceller is noise free [22]. 

2.7 Linear digital filter structure 

Since the structure of the digital filter has a deep impact on algorithm operation, the choice 

of the appropriate filter structure is a very important step in designing an adaptive filter system. 

There are three basic types of filter structures frequently used, the transversal structure that 

forms the basis of most used finite impulse response (FIR) discrete-time filter, infinite impulse 

response (IIR) or lattice predictor (a modular structure with a lattice appearance), and systolic 

array (a parallel computing network ideally suited for mapping important linear algebra 

computations) [23]. In this thesis FIR structure is considered.  

2.7.1 FIR filters structure 

The FIR filter structure is quite regular (also called FIR filter), as shown by figure (2.7); it 

has an arrow that shows the direction from the input toward the delay unit, but considerably no 

path exists from the output side back to the input side. It takes the name feed-forward (non-

recursive filters) for this reason. A FIR filter that produces the minimum mean-square estimate 

of a given process d (n) is completely specified by the following system function: 

𝑤(𝑧) = ∑ 𝑤𝑛𝑧
−𝑛𝑀−1

𝑛=0                                                           (2.6) 

Where, (M – 1) is the order of the filter (the number of delay elements), and M is the length of 

the filter (which is equal to the number of coefficients), and wnare the filter tap weights 

(coefficients). Assuming that X(n) and d(n) are jointly wide-sense stationary with known both 

autocorrelations and cross-correlation [24]. 

From figure (2.7) the FIR filter structure will filter a real-valued stationary process input X (n), 

to produce an estimate (output) y(n) of a desired real-valued signal d(n) [22]. By assuming that 

X(n) and y(n) have zero mean values, and filter coefficients do not change with time. Thus, the 

output y(n) is generated as a linear combination (which is a linear convolution) of the delayed 

samples of the input sequence X(n) and the filter coefficients according to input-output 

deference equation (2.7) relationship [30]:   

𝑦(𝑛) = ∑ 𝑤𝑘(𝑛)𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

= 𝑤𝑇𝑋(𝑛)                                          (2.7) 
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Where, the tap inputs given by equation (2.8) form the elements of the M-by 1 tap input 

vector for X(n). 

 

𝑋(𝑛) = [𝑥(𝑛)  𝑥(𝑛 − 1)  𝑥(𝑛 − 2). . . . 𝑥(𝑛 − 𝑀 + 1)]𝑇             (2.8) 

The tap weights shown by equation (2.9) form the elements of the M-by 1 tap-weight vector 

w (n) 

𝑤(𝑛) = [𝑤0(𝑛)  𝑤1(𝑛)… . . 𝑤𝑀−1(𝑛)]
𝑇                                          (2.9) 

 

Substitute equation (2.7) into equation (2.1), we obtain 

 

𝐽(𝑤) = 𝐸 {(𝑑(𝑛) − 𝑤𝑇𝑥(𝑛))
2
}                                                 (2.10) 

 

= 𝐸{(𝑑(𝑛) − 𝑤𝑇𝑥(𝑛))(𝑑(𝑛) − 𝑤𝑇𝑥(𝑛))} 
 

= 𝐸{𝑑2(𝑛)} − 2𝑤𝑇𝐸{𝑑(𝑛)𝑥(𝑛)} + 𝑤𝑇𝐸{𝑥(𝑛)𝑥(𝑛)𝑇}𝑤 

 

𝐽(𝑤) =  𝜎𝑑
2 − 2𝑤𝑇𝑃𝑑𝑥 +𝑤

𝑇𝑅𝑥𝑤                                             (2.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.7 Adaptive filters with FIR transversal structure. 

 

Where, 𝑤𝑇𝑥(𝑛) = 𝑥(𝑛)𝑇𝑤 (scalar), 𝜎𝑑   is the variance of the desired signal d (n), 𝑃𝑑𝑥  is M 

length cross correlation vector between d (n) (scalar) and the tap input vector X(n), and  𝑅𝑥 is 

M x M autocorrelation matrix of  the tap input X(n) [22].  

Compared to some other filter structures such as IIR filter structures are always stable, quite 

simple, and can be designed to have a linear phase response, which is suitable in some 

applications [35]. The structure of the FIR filter includes four forms: 
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 Direct form: In this form the difference equation (2.6) is implemented directly as given 

(see figure 2.7). Only this form is considered in this thesis. 

 Cascade form: In this form the system transfer function is factored into 2nd-order 

factors, which are then implemented in a cascade connection. 

 Linear-phase form: the impulse response of this form shows particular symmetry 

conditions. 

 Frequency-sampling form: A parallel structure obtained from a discrete Fourier 

transform of the impulse response [35]. 

2.8 Least mean square (LMS) algorithm 

Once a filtering process using the appropriate filter is performed, a mechanism for 

performing an adaptive control process on the tap weights of the FIR filter is required; the 

adaptive weights control mechanism called an adaptive algorithm. A recursive adaptive 

algorithm is used to adjust the coefficients of the digital filter such as MSE according to some 

criterion. Least mean square (LMS) algorithm, Kalman filter algorithms, and recursive least 

square (RLS) are various algorithms that have proven effective in many filtering operations in 

many fields. The least mean square algorithm is the most efficient since it is characterized by 

numerical stability as other algorithms lack it [23]. 

The expression of the mean square error (cost function) in equation (2.11) represents a 

weights quadratic function, which resulted in “a bowl-shaped with unique bottom” when it is 

plotted versus adjustable filter coefficient w, this shape also known as the error performance 

surface that never goes negative, see figure (2.8) [23, 36]. To develop a recursive algorithm for 

adjusting transversal filter coefficients to minimize the error we should: first, perform a process 

of descending along this surface to get the “bottom of the bowl.” this process can be 

implemented by using a well-known technique called steepest descent that requires the use of 

gradient vector. The gradient of performance surface (error) is obtained by differentiating 

equation (2.11) as follows 

∇(𝐽) ≜
𝜕(𝐽)

𝜕(𝑤)
= −2𝑃𝑑𝑥+𝑅𝑥𝑤                                   (2.12) 

Each set of filter coefficients represents to a point on the error performance surface (see figure 

2.8). The optimal weight vector W opt  which is known as Wiener weight vector is obtained by 

setting the gradient of the mean square error function to zero: 
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wopt = 𝑅𝑥
−1𝑃𝑑𝑥                                                               (2.13) 

The equation (2.13) is a matrix form of the Wiener-Hopf solution (reflects the minimum point); 

it depends the correlation matrix of the tap input to the FIR filter, and on the cross-correlation 

vector between the same input and the desired response. In the second step, the instantaneous 

values of these correlations are used to drive an estimate for the gradient vector causing it to be 

stochastic character [23] [36]. The resulting algorithm is known as the least mean square (LMS) 

algorithm, invented by B. Widrow and M. E. Hoff in 1959. The LMS is a modified system of 

Wiener- Hopf equations and was used to find close approximate solutions to equation (2.13) in 

real-time. It is obtained by an implementation of the steepest descent method, where the weight 

vector is updated from sample to sample as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Concave hyperparaboloid error function [22]. 

 

 

𝑤𝑛+1 = 𝑤𝑛 − 𝜇 ∇(𝐽)                                          (2.14) 

The parameter 𝜇 is the factor that controls the stability and the rate of convergence, 𝑤𝑛 and 

∇(𝐽)are the weight and the true gradient vectors respectively. 

Since the true gradient is derived from equation (2.12), the steepest descent algorithm in 

equation (2.14) still needs the knowledge on cross correlation vector and autocorrelation matrix. 

In this case the LMS algorithm seeks to replace the true gradient by the estimate gradient that 

is given by equation (2.15). 

 

∇̂= −2𝑒𝑛𝑥𝑛                              ( 2.15) 
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Then by substitute equation (2.15) in equation (2.14), we obtain the Widrow Hopf LMS 

algorithm for updating the weight from sample to sample as follows: 

 

𝑤𝑛+1 = 𝑤𝑛 + 2𝜇𝑒𝑛𝑥𝑛              ( 2.16) 
 

 

The LMS algorithm uses instantaneous estimates of the signal (such correlation and cross-

correlation) statistics while it does not need prior information of these statistics. The estimates 

of weights obtained by the LMS algorithm slowly improve over time as the weight is adjusted 

and the filter discovers the characteristics of the signal [22]. Filter weights are converging 

according to the following condition: 

0 < 𝜇 <
2

ℷ𝑚𝑎𝑥
                           (2.17) 

Where, ℷ𝑚𝑎𝑥  is the maximum eigenvalue of the input data matrix  𝑅𝑥 .  The algorithm will 

convergent in the mean square (i.e. the algorithm should satisfy J (∞) =constant) and will remain 

stable as long as the step size parameter 𝜇 is greater than 0 but less than the reciprocal of the 

largest eigenvalue ℷ𝑚𝑎𝑥 [23, 32]. 

The condition convergence (2.17) on 𝜇 can be related to the total input power as follows: 

ℷ𝑚𝑎𝑥 = ∑ 𝑥2(𝑛 − 𝑘)𝑀−1
𝑘=0          (2.18) 

Where, ∑ 𝑥2(𝑛 − 𝑘)𝑀−1
𝑘=0  is the tap-input power is the sum of the mean square values of all the 

tap inputs in the transversal filter [37]. 

The Summary of the LMS recursion algorithm is given by table (2.1) 

 

Table 2.1. Summary of the LMS algorithm 

Inputs 
 

Tap-weight vector w(n). 

Input vector X(n). 

μ,M, N, ℷ𝑚𝑎𝑥 Parameters initialization 

 

0 < 𝜇 < 2/ℷ𝑚𝑎𝑥 Set condition 

w(n) = [w0(n)  w1(n)… . . wM−1(n)]
T = 0Mx1 Initialized filter coefficient vector 

 

For n =0, 1…. N-1 Processing 

x(n) = [x(n)  x(n − 1)  x(n − 2). . . . x(n −M
+ 1)]T 

 



Chapter 2                                                                                                         Adaptive noise cancellation theory 

 

41 
 

Output Filter output, y(n), 

Tap-weight vector update, wn+1 

y(n) = wTx(n) Filtering 

e(n) = d(n) − y(n) Compute error 

wn+1 = wn + 2μenxn Adaptation 

End  

2.8.1 Characteristics of the LMS algorithm  

Since the LMS algorithm is simple, easy to implement, performs strong performance 

according to the independence of its model, involves a step-size parameter that can be selected 

suitably to control stability and convergence speed of the algorithm, and does not require 

squaring, averaging, or differentiation, it is still required to reach satisfying performances 

during adaptation process under appropriate conditions [30]. The LMS only requires (2M +1) 

multiplications and (2M+1) additions per iteration, where its performance depends on three 

factors: 

 The eigenvalue of the input data matrix 𝑅𝑥, 

 The length M of the filter w. 

 The adaptation step size μ, where with a small adaptation step, the LMS converges 

slowly, while with a large adaptation step size, the LMS converges quickly but perhaps 

less stable around the minimum value. Where the LMS convergence analysis is 

performed using the convergence of J(n) criterion, i.e. if the  lim
n→∞

J(n) = J(∞) =

constant, or equivalently,  lim
n→∞

E{w(n)} = wopt, thus the LMS algorithm is said to be 

convergent in the mean-square, and μ has to satisfy condition (2.17) [23]. 

2.8.2 Limitation of the LMS algorithm 

The main limitation of the LMS algorithm is it suffers from relatively slow convergence and 

is sensitive to the ratio of the largest to smallest eigenvalue (condition number) of the tap inputs 

correlation matrix, the higher the ratio, the slower the convergence [25]. 

A small value of step size achieves the optimum value but results in slow convergence, which 

is equivalent to the LMS algorithm having a long memory, as a result, the excess mean-squared 

error after adaptation is small. On the other hand, the large value of step size achieves faster 

adaptation but leads to an increase in the average excess mean-squared error after adaptation. 

And therefore; fewer data enter the estimation that leads to lower error estimation performance 

[30, 22]. 
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Many modified LMS-type algorithms were proposed by researchers over the past years, with 

the aim to overcome the limitations of the LMS algorithm such as improving convergence 

behavior, reduce computational requirements. Such modified LMS-type algorithms are the data 

sign algorithm, error sign algorithm, normalized LMS (NLMS) algorithm, leaky LMS 

algorithm, variable step-size LMS (VSLMS) algorithm, and error normalized LMS algorithms 

[30]. In this thesis, we consider only the NLMS algorithm and the leaky LMS algorithm. 

2.9 Normalized least mean square (NLMS) algorithm 

The NLMS is a modified implementation of an ordinary LMS algorithm that selects a 

normalized step-size parameter. It has been proposed to make the LMS algorithm less 

dependent on characteristics of stochastic signals and the convergence rate insensitive to the 

power level of the input signal; by introducing the normalization of the step size. The 

implementation of the NLMS is derived from the same steps and the same equations as the 

LMS [30]. The difference is in the updating of the weights according to the following 

formulation: 

𝑤(𝑛 + 1) = 𝑤(𝑛) +  𝜇(𝑛)(𝑥(𝑛)𝑒(𝑛))                            (2.19) 

𝜇(𝑛) =
𝜇

𝑥𝑇(𝑛)𝑥(𝑛)
                                                                (2.20) 

The term 𝜇(𝑛)  is the normalized version of the step size  𝜇  also called a time- 

varying step-size parameter. The normalized LMS algorithm is convergent in the mean 

square if the adaptation constant satisfies the following condition [23] 

0 < 𝜇 < 2                                                                              (2.21) 

In practice, a more relaxed recursion is used that guarantees reliable results. Hence, we write 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 
𝜇

𝜌 + 𝑥𝑇(𝑛)𝑥(𝑛)
(𝑥(𝑛)𝑒(𝑛))                            (2.22)                       

Where, 𝜌 + 𝑥𝑇(𝑛)𝑥(𝑛)  is the normalization factor and  𝜌  is a small positive constant 

introduced to preserve the stability in cases where the power of the input is close to zero. 

The NLMS algorithm advantageous in reliable complexity of calculations, numerical 

stability, more suitable in filtering non-stationary signals such ECG signal, stability as well 

as convergence towards optimal solutions are easier, and most importantly, the normalized 
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LMS algorithm presents a rate of convergence that is faster than that of the ordinary LMS 

algorithm for both correlated and uncorrelated input data [30]. While as inconvenient the 

convergence can become very slow in some cases such as filtering speech. The Summary of 

the NLMS recursion algorithm is given in table (2.2). 

Table 2.2 Summary of the NLMS algorithm. 

Inputs 
 

Tap-weight vector w(n). 

Input vector X(n). 

μ,M, N, 𝜌 > 0 Parameters initialisation 

 

0 < 𝜇 < 2  Set condition 

w(n) = [w0(n)  w1(n)… . . wM−1(n)]
T

= 0Mx1 

initialized filter coefficient vector 

 

For n =0, 1…., N-1 Processing 

X(n) = [x(n)  x(n − 1)  x(n − 2). . . . x(n
− M + 1)]T 

 

Output Filter output y(n). 

Tap-weight vector update wn+1 

y(n) = wTX(n) Filtering 

e(n) = d(n) − y(n) Compute error 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 
𝜇

𝜌 + 𝑥𝑇(𝑛)𝑥(𝑛)
(𝑥(𝑛)𝑒(𝑛)) Adaptation 

End  

 

2.10 Leaky least mean square (LLMS) algorithm 

The implementation and design of LMS algorithm filtering digitally require a quantization 

step that is defined as a process converting from infinite precision to finite precision arithmetic, 

there are three considerations have to quantize, filter coefficients to obtain their finite word-

length representations, the input sequence [33], and all internal arithmetic. The process 

quantization may affect the overall quality of adaptive filter output (round-off error injected 

into the output of digital filter) by the most known effect called round off error [35]. This error 

causes a stalling phenomenon that means the digital implementation of LMS stops adapting 

which occurs when the correction term (quantized element) is too small, also causes the filter 

driven into an overflow condition which leads the algorithm to be numerically unstable. The 

impact of the error on the LMS algorithm is further increased when the input data 

autocorrelation matrix Rx is ill-conditioned (almost singular) [23]. 

 For increasing LMS algorithm robustness, and further stabilize the digital implementation 

of LMS algorithm; the introduction of leakage coefficient into LMS algorithm was needed to 
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get leaky least mean square algorithm LLMS [33, 34]. In the Leaky LMS algorithm, the cost 

function given by equation (2.22) is minimized with respect to the weight vector 𝑤(𝑛). 

𝐽(𝑛) = 𝑒2(𝑛) + 𝛾‖𝑤(𝑛)‖2                                                             (2.23) 

Where, 𝑒2(𝑛)  is the squared estimation error, 𝛾‖𝑤(𝑛)‖2 is the energy in the tap weight 

vector 𝑤(𝑛), and 𝛾  is positive control parameter. 

 The weight update equation of LLMS algorithm obtained after the minimization of equation 

(2.23) is given by equation (2.24) as follows: 

𝑤(𝑛 + 1) = (1 − 𝜇𝛾)𝑤(𝑛) + 𝜇 𝑥(𝑛) 𝑒(𝑛)                    (2.24) 

The factor(1 − 𝜇𝛾) is called leakage coefficient that satisfies the follow condition: 

0 ≤ 𝛾 <
1

𝜇
                                                                      (2.25) 

The leaky LMS algorithm is an intelligent technique that increases the eigenvalues of the 

underlying correlation matrix by controllable constant [30], and avoids the appearance of the 

overflow by delivering a compromise between minimizing the square error and containing the 

energy in the impulse response of the adaptive filter [23]. The Summary of the LLMS recursion 

algorithm is given in table (2.3).  

 

Table 2.3. Summary of the NLMS algorithm 

Inputs 
 

Tap-weight vector w(n). 

Input vector X(n). 

μ,M, N, 𝛾 Parameters initialisation 

 

0 ≤ 𝛾 <
1

𝜇
                                  Set condition 

w(n) = [w0(n)  w1(n)… . . wM−1(n)]
T

= 0Mx1 

initialized filter coefficient vector 

 

For n =0, 1…., N-1 Processing 

X(n) = [x(n)  x(n − 1)  x(n − 2). . . . x(n
− M + 1)]T 

 

Output Filter output y(n). 

Tap-weight vector update wn+1 

y(n) = wTx(n) Filtering 

e(n) = d(n) − y(n) Compute error 

𝑤(𝑛 + 1) = (1 − 𝜇𝛾)𝑤(𝑛) + 𝜇 𝑥(𝑛) 𝑒(𝑛)                     Adaptation 

End  
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2.11 Conclusion 

 In this chapter, we have presented the working principle of adaptive filtering, how it was 

derived from Wiener filter solution, its various configurations, its main components with their 

structure and functions, and the mechanism of filter coefficient adaptation. 

Since the adaptive filter is a self-designing filter and does not need a prior knowledge of input 

characteristics, and more important that it has the ability to track the variations in statistical 

properties of non-stationary signal such as ECG signal, thus it is the optimum solution to 

denoise the noisy version of that signal. the following chapter deals with filtering a corrupted 

ECG signal from unwanted noises using an adaptive filter as noise canceller configuration with 

multistage and combined algorithms, also filtering theory of ECG signal with other different 

known technique will presented for the comparison.  
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3.1 Introduction 

Many methods have been proposed in the literature for removing noise from the heart signal, 

some of which are classic, and some that are adaptive. In this chapter, we are interested in a 

detailed presentation of the method that we have proposed to remove noise from the ECG signal 

which is based on adaptive noise canceller filter, then we provide an overview of the concept 

of stationary wavelet transform and its basics in filtering the ECG signals as a second method 

that we have proposed and implemented in this thesis to compare both methods, in addition to 

mentioning some related work in filtering muscle noise, base wandering noise and electrical 

motion effect. 

3.2 ECG signal filtering 

Filtering the noisy ECG signals from unwanted interference is the first step in the processing 

and analysis of the ECG signal and is necessary for the effectiveness of dependent steps in the 

processing such as data compression, feature selection, signal classification, and interpretation, 

to obtain a clear and undistorted signal that helps detect any defects. 

3.2.1 Baseline wander filtering 

Baseline wander is the slow-varying distortions, in its standard shape it is taken as a reference 

to study the shape and height of the different heart waves [14]. Typically, frequency content of 

baseline wander is usually in the range below 0.5 Hz, but increases during the stress test. 

Removal of baseline wander is needed in order to reduce changes in beat morphology that do 

not have cardiac source [6].  

Several types of methods have been presented in the literature in order to eliminate this type 

of noise. The methods often rely on high-pass filtering, usually based on finite impulse response 

filters [38, 39]. The major drawback of these methods is signal distortion due to the spectra 

overlapping of the ECG and baseline wander. It is not possible to completely remove this type 

of noise with these filtering methods without causing signal distortion [40]. In [41], the authors 

proposed a method based on multivariate empirical mode decomposition to remove the baseline 

wander (BW) from the ECG signal. They estimate the baseline wander by a sum of IMFs 

numbered N and N − 1, then the baseline corrected signal can be obtained by subtracting the 

estimate from the original ECG signal. The method showed its ability to remove BW of the 

ECG signals and preserving the morphology of the ECG signals. In [42], the authors took a 

simulation study between five filtering techniques used in literature, Butterworth high-pass 
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filter, moving median and subtraction, spline approximation and subtraction, and discrete 

wavelet transform (DWT); to wander removal considering the preservation of ST changes in 

the ischemic ECG. The comparison showed the best results when using discrete wavelet 

transform that. However, the Butterworth high-pass filter is the better choice for medical 

applications. In [43], the authors propose a methodology based on the eigenvalue 

decomposition of the Hankel matrix to remove baseline wander and power line interference 

from ECG signal, these noises were removed simultaneously by eliminating eigenvalues 

corresponding to noisy constituents. The method achieved better results in comparison with 

other existing techniques in terms of output SNR, and the percent root mean square difference 

(PRD). In [44], to remove the baseline wander from ECG signal; the authors proposed a 

methodology based on the Combination of mathematical morphological filtering (MMF) 

algorithm and wavelet transformation. The combination overcomes the shortcomings in 

wavelet transform that introduce distortion in T wave and the shortcomings in MMF method 

that introduce the rectangular/trapezoidal distortions. The method showed effectiveness in 

preserving the outline of the BW and avoiding waveform distortions caused by the morphology 

filter. 

3.2.2 Muscle noise filtering 

The muscle noise is very difficult to deal with because it behaves like a random wideband 

spectrum signal, seriously overlapping the ECG spectrum; mainly with the spectrum of the QRS 

complex. The efforts to remove muscle noise lead to significant distortions of the ECG signal 

[45]. Many denoising methods were proposed for EMG noise removal from ECG signal, 

Thakor NV, Zhu YS proposed a recurrent least mean square (LMS) filter structure for obtaining 

the impulse response of the normal QRS complex and then applied it for arrhythmia detection 

in ambulatory ECG recordings, they show the effectiveness of such recurrent filter in detecting 

cardiac arrhythmia by noise reduction. However, the filter does not work adequately when only 

a single lead is available or when EMG noise arises at all the electrodes [46]. El B’charri et al. 

investigated the dual-tree wavelet transform (DWT) using tuning threshold to reduce synthetic, 

realistic, and colored noises in ECG signals; the performance of the method is affected by 

varying the threshold value, wavelet function, and decomposition level, the method achieved 

superior results over conventional DWT in removing all kinds of noises. However, wavelet is 

a non-adaptive tool in denoising ECG signal because of its dependence on the selection of 

wavelet function and thresholding technique [47]. Venkatesan et al. proposed a delayed error 

normalized LMS (DENLMS) with pipelined architecture for noise removal from ECG signal; 



Chapter 3                                                                                                                                 ECG signal filtering 

 

48 
 

a comparison with error normalized mean square (NLMS) and delayed NLMS algorithms, the 

pipelined DENLMS showed an increase in operation speed and reduction in power 

consumption because of the aspect of latches [48]. Kumar et al. proposed a combination filter 

between empirical mode decomposition (EMD) with a non-local mean (NLM) to denoise ECG 

signal; They collected information related to the input noise by calculating the differential 

standard deviation before passing it to the EMD filter with the aim of reducing noise, then the 

output obtained is passed through the NLM with aim of preserving ECG signal edges; the 

method showed superior results in term of mean square error (MSE), mean SNR improvement, 

and mean of percent root- mean-square difference (PRD). EMD is not ideal in denoising non-

stationary signals unless it is combined with another algorithm [49]. Suranai and Xiao-Hua 

proposed a combination between multi-resolution discrete wavelet transform (DWT) and the 

adaptive learning potentiality of artificial neural networks for noise removal from ECG signal, 

the obtained coefficients from the thresholding technique in the DWT step was used as input to 

the neural network in the initial filtering. Then, the obtained filtered ECG signal after converted 

to the time domain was used as input to the neural network in final filtering; the neural network 

in the final filtering accomplishes the inverse DWT to the output. The combination showed 

satisfactory results to remove the noise with important improvement on SNR [50]. Zia-Ur-

Rahman et al. proposed an adaptive noise canceller based on leaky NLMS algorithm for noise 

removal from ECG signal, by introducing a new variable step size containing the leaky 

coefficient in the weight update function; the results showed that the performance of the 

LNLMS based algorithm outperforms LMS based algorithm either in quantitative and 

qualitative results [51]. M. Liu et al. proposed a guided filter based on Butterworth high-pass 

filter for EMG and EM-based noises removal from ECG signals; a pre-filtering of ECG signals 

using Butterworth high-pass filter was used to remove BW, then removed ECG signals whose 

frequencies are between the BW will be retrieved using the edge-preserving  guided filter 

passing through average template algorithm, The obtained results showed better SNR, root-

mean-square error (RMSE), and features edge-preserving compared with other methods. 

However, the method has the risk of not recovering all the removed information which is 

important for interpreting the ECG signal [52]. In [53], the authors proposed to remove the 

muscle noise from ECG signal using the output of wavelet Wiener based filter and to design a 

variant of NLMS algorithm, where, they conclude that the wavelet functions sym8 for wavelet 

bank1, rbio1.1 for wavelet bank2, decomposition level of 4, LSMU threshold, and garrote rule 

combined with NLMS algorithm are suitable of removing muscle noise and gives the best 

performances compared to other factors. 
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3.2.3 Electrode motion artifact filtering 

Electrode motion artifact causes significant baseline fluctuation, and doubt of large 

amplitude signals [21], and it is difficult to deal with because its spectral content of the motion 

artifacts significantly overlaps with the content of the PQRST complex. Several denoising 

methods were proposed for motion artifact removal from the ECG signal, in [54], authors 

proposed an adaptive filter to remove the electrode motion artifact from the ECG signal. They 

used an accelerometer to measure the acceleration signal of the vibrations or movement of the 

trunk, then this measured signal was considered as the reference input to the adaptive filter, 

where the least mean square algorithm was chosen to adjust to the weight of the adaptive filter. 

The Experiments showed the effectiveness in distinction the QRS complex.  In [55], the authors 

proposed an online method based on a feed-forward neural network with three hidden layers to 

denoise very noisy ECG signal from motion artifacts. This denoising method showed a slight 

reduction in sensitivity, and an improvement in the positive predictivity. In [56], the authors 

proposed an online method based on wavelet based threshold methods with grey incidence 

degree threshold (GID) to remove motion artifacts from ECG signal. This method and 

according to the noise intensity, the grey incidence degree between approximation coefficients 

and detail coefficients, sets the thresholds on a different level of decomposition, then the 

selected thresholds adjust wavelet filter coefficients. The method gives filtered ECG signals 

with better smoothness and similarity. In [57], the authors proposed a method based on adaptive 

Fourier decomposition (ADF) for muscle and electrode motion artifacts removal from ECG 

signals. These noises were filtered by an ADF with the estimated-SNR based decision, and by 

introduced rules to choose and adjust the best decomposition level. The method outperforms 

other existing techniques such as Butterworth low pass filter, the EMD, and the wavelet 

transform. In [58], the authors proposed a Two-stage adaptive filter for motion artifact removal 

from the ECG signal. In the first stage which is the weighted adaptive noise canceller, the input 

motion artifact reference is replaced by an acceleration derivative, and the Pearson correlation 

coefficient between acceleration and ECG was used as the weighting factor. While in the second 

stage which is a recursive Hampel filter-based estimation method (RHFBE), spatial correlation 

of the ECG segment constituent that is obtained from sequential ECG signals is used to estimate 

the ECG signal segments. The method achieved a promising enhancement in the denoising 

ECG signals. In [59], the authors proposed empirical wavelet transform (EWT) and wavelet 

thresholding (WT) for motion artifact removal from the ECG signal. The method comprises 

five steps, spectrum preprocessing and is the first in which a noisy ECG signal is transmitted, 
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spectrum segmentation, EWT decomposition, wavelet threshold denoising, and EWT 

reconstruction. The method showed in either simulation ECG signals or practical non-contact 

ECG monitoring systems, effectiveness in filtering out the motion artifact. 

3.3 Proposed approach  

  In this work, an adaptive filter based on the noise canceller configuration and a combined 

adaptive algorithm is proposed to remove three kinds of noises that may interfere with ECG 

signal (in the original paper only the EMG noise was considered). The structure of the proposed 

filter consists of three distinct parts; inputs, self-correcting ECG noise adaptive canceller, and 

the outputs. 

3.3.1 First input to the adaptive filter 

Our proposed adaptive method has been validated using diverse real free noise ECG signal 

recordings with a large collection of wave morphologies from MIT-BIH arrhythmia database 

[60], and three real noises,  baseline wander (bw), muscle (EMG) artifact (ma), and electrode 

motion artifact ('em'),  are taken from MIT-BIH noise stress test database (NSTDB) [61]. Then, 

we perform the addition process the add any noise signal (under various signal to noise ratio 

level (SNRinp)) to the clear ECG signal to get the noisy ECG signal which is the input to the 

digital filter, the desired signal here is the clear ECG signal. 

3.3.2 Self-correcting ECG noise adaptive canceller 

The self-correcting [62] ECG noise adaptive canceller is multistage of one adaptive noise 

canceller, in the first stage, the first input which is the contaminated ECG signal passes through 

the digital FIR Wiener filter described by equation (2.7) to get the first filtered output, this later 

is subtracted from the clear ECG signal to get the first error signal which is needed to perform 

the adaptive algorithm required to update the filter coefficients. In the second stage, we will 

apply the same process as we did in the first stage, but the input to the FIR Wiener filter is the 

previous filtered output. The number of stages depends on the reached maximum SNR, 

minimum MSE, and the observed ith output filters. The output of the ith stage is related to the 

previous one by equation (3.1) as follows: 

𝑦𝑖+1(𝑛) = 𝑦𝑖 ∗ 𝑤𝑖+1                                                         (3.1)  

Where, i=1… I, is the number of stages. 
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3.3.3 Leaky normalized least mean square adaptive algorithm 

After obtaining the error signal e(n), it is used to perform the adaptive algorithm proposed 

in [51], the leaky normalized least mean square algorithm (LNLMS) is introduced by combining 

LLMS  and NLMS algorithms in the aim to improve both stability and filtering capability 

because of the normalization factor and leaky coefficient. The weights update relation for 

LNLMS algorithms is given by equation (3.2) as follows: 

𝑤(𝑛 + 1) = 𝑤(𝑛) +
(1−𝜇𝛾)

𝜌+𝑥𝑇(𝑛)𝑥(𝑛)
 𝑥(𝑛) 𝑒(𝑛)            (3.2) 

The new time varying step size parameter normalized with every new sample according to 

input power in equation (3.2) and leakage parameter is given by equation (3.3), As the input 

signal power changes, the algorithm computes the input power and adjusts  the step size to 

preserve an adapted value. Thus the step size changes with time and hence the LNLMS 

improves the convergence performance. 

𝜇(𝑛) =
(1−𝜇𝛾)

𝜌+𝑥𝑇(𝑛)𝑥(𝑛)
                                       (3.3)  

The weights update equation (3.2) is applied in the first stage only, where in the following 

stages we propose to apply the weights update equation (3.4)  given as follows  

𝑤𝑖(𝑛 + 1) = 𝑤𝑖(𝑛) +
1−𝜇𝑖𝛾𝑖

𝜌+𝑥𝑖
𝑇(𝑛) 𝑥𝑖(𝑛)

 𝑥𝑖(𝑛) 𝑒𝑖(𝑛)    (3.4) 

Where, i=1... I, is the number of stages, and 𝑥𝑖(𝑛) here is the new input which corresponds to 

the previous filtered output i.e. 

𝑥𝑖(𝑛) = 𝑦𝑖−1(𝑛)                                                          (3.5) 

In equation (3.4) we proposed that the time varying step size also changes according to the 

variable value of the expression (1−𝜇𝑖𝛾𝑖) form stage to stage, which means that the 

parameters 𝜇, 𝜇𝑖,𝛾, 𝛾𝑖… 𝜇𝐼 , 𝛾𝐼 are different from stage to stage. The proposed approach is 

represented by figure (3.1). 
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Figure 3.1 Block diagram of the self-correcting adaptive filtering (SCAF) based on SC-LNLMS 

algorithm 

3.3.4 Outputs from the adaptive filter 

The number of the adaptive filters is equal to the number of stages used during the filtration, 

where we determine the number of stages according to the reached maximum SNR, minimum 

MSE, and observed ith output filter with taking care to preserve the standard shape of the ECG 

signal with all its waveforms, intervals, and segments. The output of the ith stage is given by 

equation (3.6) as follows: 

𝑦𝑖+1(𝑛) = 𝑦𝑖 ∗ 𝑤𝑖+1                                               (3.6)  

Where, 𝑦𝑖is the previous filtered output. 

         Stage 1( 𝜇1, 𝛾1 ) 

 

 

         Stage 2( 𝜇2, 𝛾2 ) 

 

         Stage I( 𝜇I, 𝛾𝐼 ) 

 

- 

 

eI(n) 
LNLMS Algorithm 

wI(n) 

yI(n) 

+ 

e2(n

) 

LNLMS Algorithm 

- 

 

y2(n) 

+ 

Noisy ECG 

signal x(n) 

  

- 

 

d(n) Clear 

ECG signal 

e1(n) 

w
1
 (n) 

y1(n) 

+ 

LNLMS Algorithm 

 

w2(n) 



Chapter 3                                                                                                                                 ECG signal filtering 

 

53 
 

3.4 Comparative study 

3.4.1 Stationary wavelet transforms approach 

The wavelet transform (WT) is an effective tool in the ECG signal denoising and it is the 

best choice then classical filtering, as is local in both frequency/scale and time, which does not 

happen in typical filter design [63][64], see figure (3.2). Wavelet transform has two main 

concepts, scaling (frequency) and shifting (time); 

 Scaling means stretching or shrinking the signal in time, the scaling factor which is a 

positive value corresponds to how much a signal is scaled in time, a larger scale factor 

results in a stretched wavelet, which corresponds to a lower frequency, while a smaller 

scale factor results in a shrunken wavelet, which corresponds to a high frequency. A 

stretched wavelet helps in catching the slowly varying changes in a signal while a 

compressed wavelet helps in catching abrupt changes [65]. 

 Shifting means advancing or delaying the onset of the wavelet along the length of the 

signal.  Shifting the wavelet is needed to align with the feature we are looking for in the 

signal [66] [67]. 

 

 

 

 

Figure 3.2 Concepts of wavelet transform. 

The scaling and shifting concepts are combined to generate the mother wavelet (wavelet 

function) described by equation (3.7), the conjugate of the mother wavelet is used to be 

convolved with the original signal in order to transform this later in the wavelet domain and to 

extract needed coefficients. The most known wavelet transform are continuous wavelet 

transform (CWT) given by equation (3.8), discrete wavelet transform (DWT) described by 

equation (3.9) which is the discrete version of the CWT, and the Stationary wavelet transforms 

(SWT). The SWT is an offshoot of the conventional discrete wavelet transform (DWT), where 

it was introduced to restore translation invariance (stability), which classic DWT lacked [63] 

[65]. When using SWT, the signal is never sub-sampled, and the filters are up-sampled at each 
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level of decomposition, i.e. the obtained coefficients have the same length as the original signal, 

also the energy of a signal is conserved. In terms of the equations the slight difference between 

DWT and SWT lies in the parameter, called 𝜀 decimated DWT [65]. SWT is widely used for 

several applications such as breakdown points detection, where denoising a corrupted signal is 

its main application [66].  

𝜑𝑎,𝑏(𝑡) =
1

√𝑏
 𝜑 (

𝑡 − 𝑎

𝑏
)                                (3.7) 

Where the parameter a, is the scale of wavelet (dilatation) and the parameter b is the translation 

of the wavelet and indicates the time localization [68]. 

 

𝐶(𝑎, 𝑏) = ∫ 𝑥(𝑡)
+∞

−∞

𝜑𝑎,𝑏
∗ (𝑡)𝑑(𝑡)                     (3.8) 

 

𝑥(𝑡), is the signal, and 𝜑𝑎,𝑏
∗ (𝑡) is the conjugate of the mother wavelet. By different discretize 

of the scale and the translation parameters as 𝑏 = 2−𝑠  and 𝑎 = 2−𝑠𝜏, we obtain the dyadic 

DWT equation as follows: 

𝑊(𝜏, 𝑠) = 2(
𝑠
2
)𝑥(𝑛)𝜑(2𝑠𝑛 − 𝜏)             (3.9) 

 

Where s, 𝜏 are the scale and the shifting factors respectively (s=0, 1,…, 𝜏 = 0,1, … ..)  

The general SWT based method for denoising the corrupted signal is to transform the data into 

the wavelet domain by decomposing the signal into many levels, thresholding the wavelet 

coefficients, and invert the transform to reconstruct the signal. 

 3.4.1.1 Multilevel stationary wavelet decomposition step 

 The idea is to transform the corrupted signal into the wavelet domain by performing 

multilevel (scale) wavelet decomposition to obtain two types of coefficients; approximate and 

detail coefficients. For each level, the two coefficients can be obtained by convolving the 

corrupted signal with the appropriate filters, where approximate coefficients often resemble the 

signal itself and are obtained by convolution with a low pass filter named h, while detail 

coefficients are obtained by convolution of the signal with a high pass filter named 𝑔, see figure 

(3.3). In conventional DWT decomposition at level l, the approximate coefficients at level l 

(𝑐𝐴𝑃𝑙) [63], and detail coefficients at level l (𝑐𝐷𝑇𝑙) are given by equation (3.10) as follows: 

{
𝑐𝐴𝑃𝑙 = (ℎ) 𝑐𝐴𝑃𝑙−1,       𝑙 = 1,2,… , 𝐿

𝑐𝐷𝑇𝑙 = (𝑔) 𝑐𝐷𝑇𝑙−1,      𝑙 = 1,2,… , 𝐿
                    (3.10)    
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L is the maximum decomposition level; and 𝒄𝑨𝟎  is the original signal. The parameter ε in 

equation (3.10) is always 0, shifted by 0, and then the SWT decomposition at level l can be 

written by equation (3.11) as follows: 

{
𝑠𝑐𝐴𝑃𝜀1,…𝜖𝑙

𝑙 = (ℎ𝑙−1) 𝑐𝐴𝑃𝜀1,…𝜖𝑙−1
𝑙−1    , 𝑙 = 1,2. . 𝐿

𝑠𝑐𝐷𝑇𝜀1,…𝜖𝑙
𝑙 = (𝑔𝑙−1) 𝑐𝐷𝑇𝜀1,…𝜖𝑙−1

𝑙−1    , 𝑙 = 1,2. . 𝐿
        (3.11) 

In equation (3.11) 𝜀 = [𝜀1, … 𝜀𝑙], and are selected 0 and 1 respectively, ℎ𝑙 , 𝑔𝑙 are low pass and 

high pass filters respectively and satisfied the condition given by equation (3.12) as follows: 

{
ℎ𝑙 ↑ 2 = ℎ𝑙+1,      ℎ0 = ℎ

𝑔𝑙 ↑ 2 = 𝑔𝑙+1,        𝑔0 = 𝑔
                              (3.12) 

Thus in SWT, the approximate coefficients (𝑠𝑐𝐴𝑃𝜀1,…𝜖𝑙
𝑙 ), and the detail coefficients (𝑠𝑐𝐷𝑇𝜀1,…𝜖𝑙

𝑙 ) 

have the same length of the original signal (𝑠𝑐𝐴𝑃𝜀
0), where the length of the signal must be 

divided by 2L. in this step the decomposition of the corrupted signal is based on the suitable 

level and suitable wavelet function [63].  

The low pass filter and high filter must have equal length. 

 

 

 

  

   

 

 

 

Figure 3.3 SWT decomposition at level L. 

3.4.1.1.1 Wavelet function (mother wavelet) 

A wavelet is a rapidly decaying, that has zero mean, and exists for a finite duration unlike 

sinusoids, which extend to infinity, and has different sizes and shapes. The wavelet has chosen 

according to the signal characteristics and the filtering method. The wavelet selection must 

satisfy the following criteria: 

High 

pass 

filter  
g 

 

Low 

pass 

filter  
h 

Corrupted 
signal 

𝑠𝑐𝐴1 

  𝑠𝑐𝐷1 

↑ 2 

↑ 2 

Up sample 

High 

pass 

filter  
g 

  
Low 

pass 

filter  
h 

 𝑠𝑐𝐷2 

Second level of 

decomposition 

Up sample 

Up sample 

↑ 2 

↑ 2 

High 

pass 
filter  

g   
g 

Low 
pass 

filter  

h 

 L level of 

decomposition 

Up sample 

Up sample 

↑ 2 

↑ 2 

First level of 

decomposition 

𝑠𝑐𝐴𝐿 

Up sample 

 𝑠𝑐𝐷𝐿 

𝑠𝑐𝐴2 



Chapter 3                                                                                                                                 ECG signal filtering 

 

56 
 

 Existence of a scaling function. 

 Regularity, smoother wavelets provide sharper frequency resolution  

 Symmetry or anti-symmetry of the wavelet  

 Vanishing moments, where the wavelet with increasing numbers of vanishing moments 

results in sparse representations for a large class of signals. 

 Compactly supported wavelets (in time and frequency and rate of decay) [68]. 

 Some of the well-known orthogonal and biorthogonal that are used in discrete wavelet 

transform are illustrated in table (3.1). 

Table 3.1 Orthogonal and biorthogonal wavelet function 

Wavelet family name Wavelet family short name 

Daubechies 'db1' or 'haar', 'db2', ..., 'db10', ..., 'db45' 

Coiflets 'coif1', ..., 'coif5' 

Symlets 'sym2', ..., 'sym8', ...,'sym45' 

Discrete Meyer 'dmey' 

Biorthogonal

  

'bior1.1', 'bior1.3', 'bior1.5' 

'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8' 

'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7' 

'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8' 

Reverse Biorthogonal 'rbio1.1', 'rbio1.3', 'rbio1.5' 

'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8' 

'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7' 

'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8' 

 

 Haar is the oldest and simplest wavelet. The Haar wavelet is discontinuous and 

resembles a step function. It represents the same wavelet as Daubechies db1 [69]. 

 Daubechies compactly supported orthonormal wavelets that make discrete wavelet 

analysis practicable. Its family short name presented by dbN, where N is the number of 

vanishing moments or as referred in the literature by the number of filter [67] taps, 

and db the “surname” [69]. 

 Coiflets was built by Daubechies, it has 2N moments equal to 0 and the scaling function 

has 2N-1 moments equal to 0. The two functions have a support of length 6N-1[67]. 

 Symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to 

the db family. The properties of the two wavelet families are similar. Symlet wavelet 

reassembles the QRS complex [69] [63]. 

 Meyer wavelet and scaling function are defined in the frequency domain. 
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 Biorthogonal exhibits the property of linear phase, which is needed for signal and 

image reconstruction [63]. 

3.4.1.1.2 Decomposition level 

The choice of decomposition level is important in the process of wavelet transformation, the 

decomposition in the first level results in primer both approximation coefficient and detail 

coefficient, then the primer approximation coefficient will undergo the same decomposition 

process to produce the second both approximate and detail coefficients, and so on. All obtained 

coefficients are the same length as the original signal, where the length of the signal must be 

divided by two squares the total number of levels. When more levels are needed, the signal 

must be extended. 

3.4.1.2 Identify a thresholding technique step 

This step has proposed by Donoho and Johnstone [70] that applied on detail coefficients, it 

is varied based on types and rules to obtain the estimated wavelet coefficients that are calculated 

from 1 to level L, this step needs to choose and estimate the suitable thresholding algorithms 

and the suitable threshold value. 

3.4.1.2.1 Selection of threshold value 

The threshold value is one of the accurate parameters that alter the quality of noise 

suppression, there are many methods used to estimate the optimal threshold values [71]. 

According to the selected threshold value, if it was small or extremely large, the denoised signal 

may have some distortion and discontinuities or maintain some interference [47]. The common 

threshold values used in the literature [72] are illustrated in the table (3.2) as follows: 

 

Table 3.2. Thershold functions.  

Thershold name Corresponding expression Equation number 

Universal threshold 𝑡ℎ = 𝜎√2log (𝑁) (3.13) 

 Universal threshold level 

dependent 
𝑡ℎ = 𝜎𝑙√2log (𝑛𝑙) (3.14) 

Universal modified threshold 

level dependent 𝑡ℎ = 𝜎𝑙
√2log (𝑛𝑙)

√𝑛𝑙
 

(3.15) 

 Exponential threshold 
𝑡ℎ = (2(

𝑙−𝐿
2
)) 𝜎𝑙√2log (𝑁) 

(3.16) 
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Exponential threshold level 

dependent 
𝑡ℎ = (2(

𝑙−𝐿
2
) )𝜎𝑙√2log (𝑛𝑙) 

(3.17) 

Minimax threshold 
𝑡ℎ =  0.3936 +  0.1829 × (

log 𝑛𝑙
log 2

) 
(3.18) 

The Log Scale modified unified 

threshold [73] TSHLSMU =  σ𝑙
√2log(N)

log(𝑙 + 1)
 

(3.19) 

 

Where, N is the length of the signal, 𝑛𝑙 is the length of the signal at 𝑙 th scale, while  σ𝑙 is the 

standard deviation of the noise on 𝑙 th decomposition level which can be estimated using the 

median parameter [71] The standard deviation is expressed by equation (3.20) as follows: 

𝜎𝑙 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝐷𝑇𝑙|)

0.6745
                                                                  (3.20) 

Where:  
1

0.6745
  is a constant scale factor, it depends on distribution of the noise. 

3.4.1.2.2 Selection of thresholding algorithm 

The details wavelet coefficients are scaled or shrunken using the selected thresholding rule 

in order to reduce the noise in the corrupted signal, the most known thresholding rules are: hard 

and soft thresholding proposed in [74], hyperbolic, nonnegative garrote and firm thresholding 

[75] which they are derived from the mainly soft thresholding, see figure (3.4). The function of 

each one is expressed below: 

 Soft thresholding, first setting to zero the coefficient absolute values below the 

threshold and then shrinking the coefficients absolute values greater or equal the 

threshold towards zero. The soft routine is a continuous function but induces a biased 

estimation of large coefficients [70]. 

𝑓𝑠𝑜𝑓𝑡(𝐷𝑇, 𝑡ℎ) = {
𝑠𝑖𝑔𝑛(𝐷𝑇)(|𝐷𝑇| − 𝑡ℎ), |𝐷𝑇| ≥ 𝑡ℎ

0,                                          |𝐷𝑇| < 𝑡ℎ
                  (3.21) 

 Hard thresholding, the coefficient absolute values below the threshold are set to zero. 

The hard rule creates discontinuities [66]. 

 

𝑓𝐻𝑎𝑟𝑑(𝐷𝑇, 𝑡ℎ) = {
𝐷𝑇, |𝐷𝑇| ≥ 𝑡ℎ
0,          |𝐷𝑇| < 𝑡ℎ

                                (3.22) 
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 Garrote thresholding is an intermediate between soft and hard. It acts like soft 

thresholding for small data values and approximates hard thresholding for large data 

values [76] [77]. 

𝑓𝑔𝑎𝑟𝑟(𝐷𝑇, 𝑡ℎ) = {
𝑠𝑖𝑔𝑛(𝐷𝑇)(|𝐷𝑇| −

𝑡ℎ2

|𝐷𝑇|
) , |𝐷𝑇| ≥ 𝑡ℎ

0,                                            |𝐷𝑇| < 𝑡ℎ

                     (3.23) 

 Firm thresholding (semi soft) requires two threshold values (threshold-high and 

threshold-low) acts as soft thresholding for values below threshold-low and the same as 

hard thresholding for values above threshold-high. For intermediate values, the 

thresholded value is in between that corresponding to hard or soft thresholding. Firm is 

a continuous function as soft thresholding, but is unbiased for large values as hard 

thresholding [47]. 

𝑓𝐹𝑖𝑟𝑚(𝐷𝑇, 𝑡ℎ) =

{
 

 
𝐷𝑇, |𝐷𝑇| <  𝑡ℎ2

𝑠𝑖𝑔𝑛(𝐷𝑇)(
(𝐷𝑇 − 𝑡ℎ1) ∗ 𝑡ℎ2

𝑡ℎ2 − 𝑡ℎ1
)

0, |𝐷𝑇| <  𝑡ℎ1 

, 𝑡ℎ2 < |𝐷𝑇| ≤ 𝑡ℎ1     (3.24) 

 

Where, 𝑡ℎ2 is the maximum threshold value, and 𝑡ℎ1 is the minimum threshold value. 

 Hyperbolic thresholding can be obtained by soft thresholding energies of the wavelet 

coefficients [75]. 

𝑓𝐻𝑦𝑝𝑒𝑟𝑏(𝐷𝑇, 𝑡ℎ) = {𝑠𝑖𝑔𝑛(𝐷𝑇)
√𝐷𝑇2 − 𝑡ℎ,      |𝐷𝑇| ≥ 𝑡ℎ

0,                                     |𝐷𝑇| <  𝑡ℎ1
                    (3.25) 
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Figure 3.4 Threshold responses applied to linear test signal (a) Original signal, (b) Hard, (c) 

Soft, (d) Garrote, (e) Semi-soft, (f) Hyperbolic. 

 

3.4.1.3 Reconstruction step 

The reconstruction step is the last in the process of wavelet transformation; also called the 

synthesis process, the synthesis is achieved mathematically by using inverse stationary wavelet 

transform (ISWT), where all the thresholded details coefficients and the approximate 

coefficient of the last level are used to reconstructing the free noise signal. Generating the 

denoised signal will undergo the same process as the analysis step but with inverted operation 

as illustrated by the figure (3.5), which represents the reconstruction of the denoised signal at 

level L.  

 

 

   

  

 

 

Figure 3.5 SWT reconstructions at level L. 
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g' and h'  are high pass and low pass, respectively. 

3.4.1.4 Denoising ECG signal using SWT and NLMS algorithm 

Since the main application of the SWT is to denoise corrupted signal and image, in this 

thesis, we have applied this algorithm to the corrupted ECG signal with the aim to do a 

comparative study with the SC-NLMS algorithm that we have proposed in the context of noise 

reduction from the ECG signal without introducing distortion. We added a block of the NLMS 

algorithm as the second stage of denoising in order to smooth out the ECG signal and get the 

best results. The evaluation study using the SWT and the block of the NLMS algorithm is 

realized according to the diagram given in figure (3.6).  

  

 

  

  

 

  

   

  

 

Figure 3.6 SWT plus NLMS evaluation diagram to denoise corrupted ECG signal. 

The noisy ECG signal passes through the stationary wavelet transform where it will be 

decomposed into several levels, and then the detailed coefficients obtained during the splitting 

process pass into the thresholding process using several algorithms. Then we use the smoothed 

coefficients and the approximation coefficient of the last decomposition level to carry out the 

inverse stationary wavelet process. Then we pass the obtained denoised signal back through the 

NLMS filter to get a more distinct and smooth ECG signal 
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3.4.2 Suggested other techniques for comparison 

The other five methods that we have suggested for the comparison, we have chosen them 

among the best methods that were used in noises removal from the ECG signal. 

 Method one is based on dual-tree wavelet transform (DT-WT) using the tuning 

threshold to reduce synthetic, realistic, and colored noises in ECG signals. The base 

wander noise, muscle noise, and motion artifacts were generated using Matlab [47]. 

 Method two based on empirical mode decomposition (EMD) and non-local mean 

(NLM) technique, using added white and color gaussian noise [49]. 

 Method three based on discrete wavelet transform (DWT) and the adaptive learning 

potentiality of artificial neural networks technique, the base wander noise, muscle noise, 

and motion artifact were taken from MIT-BIH noise stress test database [50]. 

 Method four is based on constructing a guided filter by exploiting the butterworth Filter, 

the base wander noise, muscle noise, and motion artifact were taken from MIT-BIH 

noise stress test database [52]. 

 Method five is based on adaptive noise canceller to remove power line interference and 

baseline wander noise [51]. 

3.5 Conclusion 

Denoising ECG signals from unwanted noises using either adaptive noise canceller or 

wavelet transform are considered an important step in ECG signal processing. Both of them 

have been proposed to overcome some limitations when using conventional filtering. 

Mentioning some of the methods that have been used for filtering and reviewing their 

advantages and disadvantages helps in understanding the reasons for proposing adaptive 

cancellation, and the overview study that was conducted in this chapter made it possible to 

understand the theoretical foundations and characteristics of stationary wavelet transform in 

filtering ECG signal. In the following chapter, the application of the proposed adaptive filter 

and the stationary wavelet transforms for the denoising and edges preserving of the ECG signal 

is carried out, they constitute the contribution for this thesis. 

 

 

 

 

 



Chapter 4                                                                                                                             Results and discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter4 

 

Results and Discussion 

 

 

 

 
 

 

 

 

 

 



Chapter 4                                                                                                                             Results and discussion 

 

63 
 

4.1 Introduction 

In this chapter, we present the results that we obtained after applying the two methods we 

proposed to remove noise from the ECG signal. For the first proposed method, which is based 

on a self-correcting leaky normalized least mean square algorithm, we used the same parameters 

as we used in the original paper in denoising muscle noise [78], and we added in this thesis the 

simulation of removing baseline wander noise and electro motion artifact. While for the second 

method that is based on the combination between the SWT and block of NLMS algorithm, it 

was simulated to remove all kinds of noise.   

4.2 Evaluation ECG Database 

Specialized cardiology laboratories and hospitals have created reference databases by storing a 

variety of electrocardiograms that contain both normal and rarely observed conditions in 

mainstream clinics [79]. In this thesis, and for the evaluation and comparison purposes, we used 

ECG signals from the MIT-BIH database available on physionet. The MIT-BIH database is a 

universal database that contains several categories [60]. Among these categories, we adopted 

the category of MIT-BIH arrhythmia database for clean ECG signals. As for noise, we adopted 

the category of MIT-BIH noise stress test database (NSTDB) [61] [80]. 

4.2.1.1 MIT-BIH arrhythmia database 

The MIT-BIH Arrhythmia Database contains 48 half-hour segments of two-channel mobile 

ECG recordings; the recordings are numbered at 360 samples per second per channel at 11-bit 

resolution over a 10-mV range, where the duration of each of the 48 recordings is 30 minutes. 

The 23 records numbered between 100 and 124 for the first group are intended to serve as a 

representative sample of the variety of waveforms that an arrhythmia detector might encounter 

in routine clinical use, while the remaining and 25 records numbered between 200 and 234 for 

the second group are chosen to include a variety of pathological cases [79] [60]. In this work, 

we present the results of the quantitative evaluation of a set of data from eight records: 100, 

105, 107, 118, 200, 205, 213, 217, and only four of them (105, 118, 205, and 217) that achieved 

the best results are presented for the evaluation of graphics. 
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4.2.1.2 MIT-BIH noise stress test database 

The recordings were digitized at 360 samples per second per channel with 11-bit resolution 

over a 10 mV range. The database contains samples for three types of noise; that were 

assembled from the recordings by selecting intervals that contained predominantly baseline 

wander (in record 'BW'), muscle (EMG) artifact (in record 'MA'), and electrode motion artifact 

(in record 'EM'). In this work, all of three types of noises were used for the evaluation. 

4.2.1.3 Noise addition 

 The noises were directly added to the aforementioned original ECGs, where two levels of 

SNRinp of 5 and 10dB were performed. The process of addition is illustrated by the following 

equation [61] [82] [81]. 

𝑁𝑒𝑐𝑔(𝑛) = 𝐶𝑒𝑐𝑔(𝑛) + (𝑛 ∗ 𝑉(𝑛))                  (4.1) 

Where, 𝑁𝑒𝑐𝑔 is the noisy ECG signal, V(n) is the noise, 𝐶𝑒𝑐𝑔(𝑛) is the clean (noise free) ECG 

signal, and 𝑛 is a coefficient that has been tuned  to control the input signal to noise ratio 

(SNRinp) that is given by the following equation: 

𝑆𝑁𝑅𝑖𝑛𝑝 = 10𝑙𝑜𝑔10
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑛2𝑋𝑃𝑛𝑜𝑖𝑠𝑒
                               (4.2) 

Where,  𝑃𝑠𝑖𝑔𝑛𝑎𝑙 denotes the signal power, and  𝑃𝑛𝑜𝑖𝑠𝑒 denotes the noise power. 

4.3 Evaluation metrics 

 To validate the efficiency of the suggested methods in noise reduction from corrupted ECG 

signal, and for a significant comparison with other existing techniques; the output SNR out , the 

mean square error MSE, and the improvement SNR have been calculated and compared, their 

equations are given as follows: 

𝑆𝑁𝑅𝑜𝑢𝑡 = 10𝑙𝑜𝑔10 (
∑ [𝐶𝑒𝑐𝑔(𝑛)]2𝑁−1
𝑛=0

∑ [𝐹𝑒𝑐𝑔(𝑛)−𝐶𝑒𝑐𝑔(𝑛)]2𝑁−1
𝑛=0

)           (4.3) 

𝑀𝑆𝐸 =
1

𝑁
∑(𝐶𝑒𝑐𝑔(𝑛) − 𝐹𝑒𝑐𝑔(𝑛))

2
𝑁−1

𝑛=0

                      (4.4) 

𝑆𝑁𝑅𝐼𝑚𝑝 = 𝑆𝑁𝑅𝑜𝑢𝑡 − 𝑆𝑁𝑅𝑖𝑛𝑝                                     (4.5) 
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4.4 Evaluation results  

This section is subdivided into two subsection namely qualitative results and discussion, 

quantitative results and discussion, respectively. 

4.4.1 Qualitative results and discussion 

4.4.1.1 Filtering ECG signal using the first proposed method (SC-LNLMS) 

In qualitative sub section, the simulation results of the proposed filtering methodology based 

on self-correcting leaky NLMS adaptive filter, and filtering methodology based on stationary 

wavelet transform and NLMS to remove noises from free ECG signal are shown, We applied 

both methods to 48 clean signals taken from MIT-BIH database, then we presented the signals 

that achieved the best results. Signal of data number 105 is added to muscle noise (MA), the 

signal of data number 217 is added to the baseline wander (BW) noise and motion artifact (EM) 

to represent the results of the first proposed method, while signal of data number 118 is added 

to muscle noise, the signal of data number 205 is added to the baseline wander noise and motion 

artifact to represent the results of the second method.  

 Removing muscle noise added at 5 and 10dB 

Figure (4.1) displays the outputs of the proposed filtering for noise cancelation from the 

noisy ECG signal created by using added MA noise at 10 dB input SNR level. Figure 4.1 (a) 

shows noise free ECG signal of data number 105. Figure 4.1 (b) shows the noisy ECG signal. 

Figure 4.1(c) shows the output of the first stage. Figure 4.1 (d) shows the output of the second 

stage, and figure 4.1 (e) shows the output of the last stage [78]. 

Figure (4.2) displays the outputs of the proposed filtering for noise cancelation from the 

noisy ECG signal created by using added MA noise at 5 dB input SNR level. Figure 4.2(a) 

shows the noise free ECG signal of data number 105. Figure 4.2(b) shows the noisy ECG signal. 

Figure 4.2(c) shows the output of the first stage. Figure 4.2(d) shows the output of the second 

stage, and figure 4.2 (e) shows the output of the third stage.  

 As we can see in figure (4.1) and figure (4.2), whatever the added noise signal is weak or 

large; the proposed method can successfully remove major components of MA noise from the 

ECG signal, and even into the outputs of the first and second stages (Figure 4.1(c)), 



Chapter 4                                                                                                                             Results and discussion 

 

66 
 

figure 4.1 (d), figure 4.2 (c), and figure 4.2 (d)) there are a little noise components in Q waves 

and isoelectric line but the signals still keep the details, and all of the ECG features are distinct 

contrasted with the conventional filters which can remove most of the MA noise, but also filtrate 

the details. Although the PQST region in figure 4.1 (b), and the PQRST region in figure 4.2 (b), 

are completely overlap with the noise, the filter that we have proposed has achieved success in 

removing noise to a large extent from these sensitive areas without distorting the original signal 

[78].  

 

 

 

 

 

 

 

During applying the proposed denoising technique to many corrupted ECG signals to remove 

a realistic muscle noise, we found that the best length for filter M for some signals is 3 and for 

others it is 4, and we found that most signals do not need more than three stages in order to 

reduce a largest amount of noise without distorting small wavelets such P and T waves. Besides, 

Figure 4.1 Outputs of ECG denoising using 

proposed method, (a)Noise free ECG signal 

(record 105 from MIT-BIH), (b) Noisy ECG 

signal with added MA noise at 5 dB, (c)First 

stage of denoised ECG signal, (d) Second stage 

of denoised ECG signal, (e) Third stage of 

denoised ECG signal. 

Figure 4.2 Outputs of ECG denoising using 

proposed method, (a)Noise free ECG signal 

(record 105 from MIT-BIH), (b) Noisy ECG 

signal with added MA noise at 10 dB, (c) First 

stage of denoised ECG signal, (d) Second 

stage of denoised ECG signal, (e) Third stage 

of denoised ECG signal 
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we adjust the step size and leakage coefficient different from one stage to another, but also 

different from one signal to another [78]. 

 Removing baseline wander noise added at 5 and 10dB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3) displays the outputs of the proposed filtering for noise cancelation from noisy 

ECG signal created by using added BW noise at 10 dB input SNR level. Figure 4.3 (a) shows 

noise free ECG signal of data number 217. Figure 4.3 (b) shows the noisy ECG signal. Figure 

4.3(c) shows the output of the first stage. Figure 4.3 (d) shows the output of the second stage.  

Figure (4.4) displays the outputs of the proposed filtering for noise cancelation from noisy 

ECG signal created by using added BW noise at 5 dB input SNR level. Figure 4.4 (a) shows 

noise free ECG signal of data number 217. Figure 4.4 (b) shows the noisy ECG signal. Figure 

4.4 (c) shows the output of the first stage, and figure 4.4(d) shows the output of the second 

stage.  

Figure 4.3 Outputs of ECG denoising using 

proposed method, (a)Noise free ECG signal 

(record 217 from MIT-BIH), (b) Noisy ECG 

signal with added BW noise at 10 dB, (c)First 

stage of denoised ECG signal, (d) Second stage 

of denoised ECG signal, (e) Third stage of 

denoised ECG signal. 

Figure 4.4 Outputs of ECG denoising using 

proposed method, (a)Noise free ECG signal 

(record 217 from MIT-BIH), (b) Noisy ECG 

signal with added BW noise at 5 dB, (c) First 

stage of denoised ECG signal, (d) Second stage 

of denoised ECG signal, (e) Third stage of 

denoised ECG signal 
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The noisy signal in figure 4.3 (b) shows a slow wandering of the baseline resulting in an 

increased width of the R and S waves, while figure 4.4 (b) shows a rapid wandering at baseline 

where the ECG signal is completely distorted, however, the technique we proposed was able to 

successfully eliminate wandering at baseline, regardless of how quickly or slowed the resulting 

wandering, as the figure 4.3 (d) and  figure 4.4 (d) have shown respectively, noting that there 

are still very few narrow ripples around samples 1600 and 1400 in relation to figure 4.4 (d), and 

around sample 1400 with respect to figure 4.3 (d). For removing baseline wander noise, only 

two stages were required.  

By applying the proposed denoising technique to remove realistic baseline wander, we found 

that the best selected filter length M for some signals is 3 for a small amount of BW noise, 

while for a large amount of BW noise they need the length of 4. We also concluded that 

whenever the value of ℷ is very small than 1/µ, i.e. close to the value of µ, gives better results 

in removing BW noise. All the methods tested in the literature proved to be better if leaving 

baseline wander unfiltered, where none of the methods was able to reconstruct the original ECG 

signal without distorting the ST segment [42]. However, our proposed method has proven 

superior performance in removing BW noise from ECG signal without modifying the ST 

segment. 

 Removing electro motion artifact added at 5 and 10dB 

Figure (4.5) displays the outputs of the proposed filtering for noise cancelation from noisy ECG 

signal created by using added EM noise at 10 dB input SNR level. Figure 4.5 (a) shows noise 

free ECG signal of data number 217. Figure 4.5 (b) shows the noisy ECG signal. Figure 4.5 (c) 

shows the output of the first stage, and figure 4.5 (d) shows the output of the second stage.  

Figure (4.6) displays the outputs of the proposed filtering for noise cancelation from noisy ECG 

signal created by using added EM noise at 5 dB input SNR level. Figure 4.6 (a) shows noise 

free ECG signal of data number 217. Figure 4.6 (b) shows the noisy ECG signal. Figure 4.6 (c) 

shows the output of the first stage. Figure 4.6 (d) shows the output of the second stage, and 

figure 4.6 (e) shows the output of the third stage.  
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The noisy signal in figure 4.5 (b) shows that half of QRS complexes were distorted, while figure 

4.6 (b) shows that all of the QRS complexes were distorted and became with large amplitude 

and wide waveform. Nevertheless, the technique we proposed was able to separate electro 

motion noise from ECG signal and preserving all its features, especially since the motion effect 

was reported as the most difficult type of noise to be removed from the ECG signals because 

its spectrum completely overlaps the ECG signal. Its morphology is similar to that of the P, 

QRS, and T waves.  

4.4.1.2 Filtering ECG signal using SWT and NLMS algorithm 

Five thresholding rules were selected to perform the thresholding technique: hard, soft, firm 

(semi-soft), hyperbolic, and garrote, where the universal threshold level-dependent (see table 

3.2) was used to compute the threshold values.  

Figure 4.5 Outputs of ECG denoising using 

proposed method, (a)Noise free ECG signal 

(record 217 from MIT-BIH), (b) Noisy ECG 

signal with added EM noise at 10 dB, 

(c)First stage of denoised ECG signal, (d) 

Second stage of denoised ECG signal. 

Figure 4.6 Outputs of ECG denoising using 

proposed method, (a)Noise free ECG signal 

(record 217 from MIT-BIH), (b) Noisy ECG 

signal with added EM noise at 5 dB, (c) First 

stage of denoised ECG signal, (d) Second 

stage of denoised ECG signal, (e) Third stage 

of denoised ECG signal 
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 Removal muscle noise (MA) added at  10 dB 

 

 

 

 

Figure 4.7 Outputs of ECG denoising using SWT+NLMS method, (a)Noise free ECG signal (record 

118 from MIT-BIH), (b) Noisy ECG signal with added MA noise at 10 dB, (c)Denoised ECG using 

hard thr, (d) Denoised signal using hard thr+NLMS,(e) Denoised ECG using soft thr, (f)Denoised 

signal using soft thr+NLMS, (g) Denoised ECG using firm thr, (h) Denoised signal using firm 

thr+NLMS, (i)Denoised ECG using hyperbolic thr, (j) Denoised signal using hyperbolic thr+NLMS, 

(k)Denoised ECG using garrote thr, (l) Denoised signal using garrote thr+NLMS. 

 

Figure (4.7) displays the denoised outputs after using five thresholding rules; hard, soft, firm, 

hyperbolic, and garrote thresholding to remove realistic muscle noise from ECG signal that is 

added at 10dB to free ECG signal to data number 118, and then displays their corresponding 

outputs after using the selected thresholding rule plus NLMS algorithm. 

Figure 4.7(d) shows the denoised signal resulted after using hard rule and NLMS, figure 4.7(f) 

shows the denoised signal resulted after using soft rule and NLMS, figure 4.7(h) shows the 

denoised signal resulted after using firm rule and NLMS, figure 4.7(j) shows the denoised signal 

resulted after using hyperbolic rule and NLMS, figure 4.7(l) shows the denoised signal resulted 

by using garrote and NLMS. The SWT decomposition level that was selected for each rule is 

L=4. 
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 Removal muscle noise added at  5dB 

 

 

 

 

Figure 4.8 Outputs of ECG denoising using SWT+NLMS method, (a)Noise free ECG signal (record 

118 from MIT-BIH), (b) Noisy ECG signal with added MA noise at 5 dB, (c)Denoised ECG using 

hard thr, (d) Denoised signal using hard th+NLMS,(e) Denoised ECG using soft thr, (f)Denoised 

signal using soft th+NLMS, (g) Denoised ECG using firm thr, (h) Denoised signal using firm 

th+NLMS, (i)Denoised ECG using hyperbolic thr, (j) Denoised signal using hyperbolic th+NLMS, 

(k)Denoised ECG using garrote thr, (l) Denoised signal using garrote th+NLMS. 

 

Figure (4.8) displays the denoised outputs after using five thresholding rules; hard, soft, firm, 

hyperbolic, and garrote thresholding to remove realistic muscle noise from ECG signal that is 

added at 5dB to free ECG signal of data number 118, and then displays their corresponding 

outputs after using the selected thresholding rule plus NLMS algorithm. 

Figure 4.8(d) shows the denoised signal resulted after using hard rule and NLMS, figure 4.8(f) 

shows the denoised signal resulted after using soft rule and NLMS, figure 4.8(h) shows the 

denoised signal resulted after using firm rule and NLMS, figure 4.8 (j) shows the denoised 

signal resulted after using hyperbolic rule and NLMS, figure 4.8(l) shows the denoised signal 
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resulted after using garrote and NLMS. The SWT decomposition level that was selected for 

each rule is L=5. 

As we can see from figures (4.7) and (4.8), the second proposed method that is based on 

SWT and NLMS algorithm was largely successful in removing the added muscle noise at 10 

dB using a firm thresholding technique and decomposition level of 4 (figure 4.7(h))  but some 

ST interval remained distorted. Also, it succeeded in removing the MA noise when it was added 

at 5 dB by using the garrote thresholding technique and decomposition level of 5 (figure 4.8(l)), 

as the latter was able to remove noise while still leaving the distortion of the QRS complex 

which is the most important feature in the ECG signal because it reflects depolarization of the 

ventricular mass. NLMS was added in order to refine and restore this complex, but it succeeded 

only recovered QS waves. However, the proposed technique based on SC-LNLMS remains the 

best in eliminating muscle noise. 

 

 Removal of baseline wander added at 5 and 10 dB 

Figure (4.9) displays the denoised outputs after using five thresholding rules; hard, soft, 

firm, hyperbolic, and garrote thresholding to remove realistic baseline wander noise from ECG 

signal that is added at 5dB to free ECG signal of data number 205, and then displays their 

corresponding outputs after using the selected thresholding rule plus NLMS algorithm. 

Figure 4.9(d) shows the denoised signal resulted by using hard rule and NLMS. Figure 

4.9(f) shows the denoised signal resulted by using soft rule and NLMS, figure 4.9(h) shows the 

denoised signal resulted by using firm rule and NLMS, figure 4.9(j) shows the denoised signal 

resulted by using hyperbolic rule and NLMS, figure 4.9(l) shows the denoised signal resulted 

by using garrote and NLMS. The SWT decomposition level that was selected for each rule is 

L=5. 

Figure (4.10) displays the denoised outputs after using five thresholding rules; hard, soft, 

firm, hyperbolic, and garrote thresholding to remove realistic baseline wander noise from ECG 

signal that is added at 10dB to free ECG signal of data number 205, and then displays their 

corresponding outputs after using the selected thresholding rule plus NLMS algorithm. 

Figure 4.10(d) shows the denoised signal resulted after using hard rule and NLMS, figure 

4.10(f) shows the denoised signal resulted after using soft rule and NLMS, figure 4.10(h) shows 

the denoised signal resulted after using firm rule and NLMS, figure 4.10(j) shows the denoised 

signal resulted after using hyperbolic rule and NLMS, figure 4.10(l) shows the denoised signal 
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resulted after using garrote and NLMS. The SWT decomposition level that was selected for 

each rule is L=5. 

 

 

 

 

 

  

Figure 4.9 Outputs of ECG denoising using SWT+NLMS method, (a)Noise free ECG signal (record 

205 from MIT-BIH), (b) Noisy ECG signal with added BW noise at 5 dB, (c)Denoised ECG using 

hard thr, (d) Denoised signal using hard th+NLMS,(e) Denoised ECG using soft thr, (f)Denoised 

signal using soft th+NLMS, (g) Denoised ECG using firm thr, (h) Denoised signal using firm 

th+NLMS, (i)Denoised ECG using hyperbolic thr, (j) Denoised signal using hyperbolic th+NLMS, 

(k)Denoised ECG using garrote thr, (l) Denoised signal using garrote th+NLMS 

 

As we can see from figures (4.9) and (4.10), the second proposed method based on the SWT 

and NLMS algorithm was able to a small extent to remove BW in two cases, in the case of the 

additive BW noise at 5 dB using the firm threshold technique and decomposition level of 5 

(figure. 4.9(f)), then in the case of added BW noise at 10 dB using garrote threshold technique 

and decomposition level of 5(figure. 4.10(l)), in the first case, nearly every ST segments 

remained distorted, and in the second case all Q waves were deformed by widening in its width 

and increasing in its amplitude, and this, of course, will stand as a barrier to the doctor's 

diagnosis of this case, especially the Q wave reflects the depolarization of the septum between 

the two ventricles and ST segment reflects the period of zero potential between ventricular 
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depolarization and repolarization. Compared to the proposed SC-LNLMS-based technique for 

eliminating BW noise from the ECG signal, the latter remains the best. 

 

 

Figure 4.10 Outputs of ECG denoising using SWT+NLMS method, (a)Noise free ECG signal (record 

205 from MIT-BIH), (b) Noisy ECG signal with added BW noise at 10 dB, (c)Denoised ECG using 

hard thr, (d) Denoised signal using hard th+NLMS,(e) Denoised ECG using soft thr, (f)Denoised 

signal using soft th+NLMS, (g) Denoised ECG using firm thr, (h) Denoised signal using firm 

th+NLMS, (i)Denoised ECG using hyperbolic thr, (j) Denoised signal using hyperbolic th+NLMS, 

(k)Denoised ECG using garrote thr, (l) Denoised signal using garrote th+NLMS 

 

Figure (4.11) displays the denoised outputs after using five thresholding rules; hard, soft, 

firm, hyperbolic, and garrote thresholding to remove realistic electro motion artifact from ECG 

signal that is added at 5dB to free ECG signal of data number 205, and then displays their 

corresponding outputs after using the selected thresholding rule plus NLMS algorithm. 

Figure 4.11(d) shows the denoised signal resulted after using hard rule and NLMS, figure 

4.11(f) shows the denoised signal resulted after using soft rule and NLMS, figure 4.11(h) shows 

the denoised signal resulted after using firm rule and NLMS, figure 4.11(j) shows the denoised 
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signal resulted after using hyperbolic rule and NLMS, figure 4.11(l) shows the denoised signal 

resulted after using garrote and NLMS. The SWT decomposition level that was selected for 

each rule is L=8. 

 Removal of electro motion added at 5dB 

 

 

 

Figure 4.11 Outputs of ECG denoising using SWT+NLMS method, (a)Noise free ECG signal (record 

205 from MIT-BIH), (b) Noisy ECG signal with added EM noise at 5 dB, (c)Denoised ECG using 

hard thr, (d) Denoised signal using hard th+NLMS,(e) Denoised ECG using soft thr, (f)Denoised 

signal using soft th+NLMS, (g) Denoised ECG using firm thr, (h) Denoised signal using firm 

th+NLMS, (i)Denoised ECG using hyperbolic thr, (j) Denoised signal using hyperbolic th+NLMS, 

(k)Denoised ECG using garrote thr, (l) Denoised signal using garrote th+NLMS 

 

Figure (4.12) displays the denoised outputs after using five thresholding rules; hard, soft, 

firm, hyperbolic, and garrote thresholding to remove realistic electro motion artifact from ECG 

signal that is added at 10dB to free ECG signal of data number 205, and then displays their 

corresponding outputs after using the selected thresholding rule plus NLMS algorithm. 

figure 4.12(d) shows the denoised signal resulted after using hard rule and NLMS, figure 

4.12(f) shows the denoised signal resulted after using soft rule and NLMS, figure 4.12(h) shows 
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the denoised signal resulted after using firm rule and NLMS, figure 4.12(j) shows the denoised 

signal resulted after using hyperbolic rule and NLMS, figure 4.12(l) shows the denoised signal 

resulted after using garrote and NLMS. The SWT decomposition level that was selected for 

each rule is L=5. 

 Removal of electro motion added at 10 dB 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.12 Outputs of ECG denoising using SWT+NLMS method, (a)Noise free ECG signal (record 

205 from MIT-BIH), (b) Noisy ECG signal with added EM noise at 10 dB, (c)Denoised ECG using 

hard thr, (d) Denoised signal using hard th+NLMS,(e) Denoised ECG using soft thr, (f)Denoised 

signal using soft th+NLMS, (g) Denoised ECG using firm thr, (h) Denoised signal using firm 

th+NLMS, (i)Denoised ECG using hyperbolic thr, (j) Denoised signal using hyperbolic th+NLMS, 

(k)Denoised ECG using garrote thr, (l) Denoised signal using garrote th+NLMS 

 

We conclude from figures (4.11) and (4.12) that the second proposed method based on the 

SWT and NLMS algorithm did not succeed in removing EM noise except for a slight 

improvement in two cases, in the case of EM noise added at 5 dB using the firm threshold 

technique and decomposition level of 8 (figure. 4.11(h)), then the case of EM noise added at 10 
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dB using the garrote threshold technique and decomposition level of 5 (figure. 4.12(l)), in both 

cases the signal is completely distorted except for the retrieval of the R waves, This technique 

was unable to eliminate significant abrupt swing in the baseline and the appearance of large 

amplitude in the ECG signal. In contrast, the proposed method based on SC-LNLMS filtering 

has been shown significant improvement in removing EM artifacts. 

In this work, based on the overall experiment of filtering the ECG signal from MA, BW, 

and EM noise using the second proposed method based on the SWT and NLMS algorithm, we 

concluded that garrote is the best thresholding to deal with contaminated ECG signal with one 

of the aforementioned noise, followed by the firm,  then the soft thresholding, as for the 

appropriate wavelet function, we found that the family of symlet and db are more suitable in 

denoising ECG signals, while the decomposition level depends on the amount of added noise. 

On the other hand, we increased the length of the filter up to 44 which creates a longer delay 

and a greater calculation load which is not recommended for real time signal filtering. 

4.4.2 Quantitative results and discussion 

In the quantitative subsection, output SNR (SNRout), SNR improvement, and mean square 

error (MSE) of the proposed filtering methodology based on SC-LNLMS and the methodology 

based on SWT and NLMS algorithm are shown and compared with other existing techniques. 

4.4.2.1 Obtained results after using SC-LNLMS method 

Table 4.1 SNRout and MSE results after using SC-LNLMS method for removing MA noise. 

 

Added noise= muscle noise (MA) 

 SNR in=10dB SNR in=5dB 

Signals SNRout 

First 

stage 

SNRout 

(last stage) MSE at last 

stage 

SNRout 

(First stage) 

SNRout 

(last stage) MSE at last 

stage 

100 17.15 21.87 0.0001200 14.64 18.82 0.0005801 

105 20.87 28.56 5.059e-7 16.40 20.86 0.0001032 

107 18.19 22.59 0.0000461 15.09 19.63 0.0002840 

118 19.01 22.14 0.0000987 15.01 19.60 0.0001970 

200 19.97 24.10 0.0000053 14.72 20.14 0.0002800 

205 18.05 21.66 0.0003125 13.81 17.73 0.0010141 

213 18.01 21.30 0.0003462 13.22 16.53 0.0033742 

217 19.98 25.09 0.0000099 16.39 20.82 0.0001210 
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Table (4.1) illustrates the performances of MSE and SNRout of the SC-LNLMS filtering method 

when dealing with MA noise added at 5 and 10 dB input SNR for the first and the last stage. 

The results of processing the data number 100, 105, 107, 118, 200, 205, 213, and 217 show that 

the SNRout is improved from first stage to the last stage, for example, SNRout of the first stage 

for data number 105 is 20.87 dB while it achieves 28.56 dB for the last stage when considering 

added MA at 10 dB, and when considering added MA at 5 dB it is 16.40 dB and 20.86 dB for 

first and last stage respectively. The proposed denosing technique also achieves the best MSE 

at the last stage that alternating from 0.0003462 to 5.059e-7 when considering added MA at 10 

dB, and when considering added MA at 5 dB it alternates from 0.0033742 to 0.0001032 [78].  

 

Table 4.2 SNRout and MSE results after using SC-LNLMS method for removing BW noise 

 

Table (4.2) illustrates the performances of MSE and SNRout of the SC-LNLMS filtering 

method when dealing with BW noise added at 5 and 10 dB input SNR for the first and the last 

stages. The results of processing the data number 100, 105, 107, 118, 200, 205, 213, and 217 

show that the SNRout is improved from the first stage to the last stage, for example, SNRout of 

the first stage for data number 217 is 22.20 dB while it achieves 27.28 dB for the last stage 

when considering added BW noise at 10 dB, and when considering added BW noise at 5 dB it 

is 20.12 dB and 22.15 dB for first and last stage respectively. The proposed denoising technique 

also achieves the best MSE at the last stage that alternating from 0.00580477 to 2.86755e-06 

Added noise= baseline wander noise (BW) 

 SNR in=10dB SNR in=5dB 

Signals SNRout 

First 

stage 

SNRout 

(last 

stage) 

MSE at last 

stage 

SNRout 

(First 

stage) 

SNRout 

(last stage) MSE at last 

stage 

100 17.90 22.53 0.0027836 15.71 16.81 0.0612400 

105 18.39 24.41 0.0037331 15.70 17.92 0.0153233 

107 18.50 21.29 0.0021202 15.76 17.98 0.0151211 

118 18.53 23.09 0.0017439 16.02 18.18 0.0086163 

200 20.01 21.70 0.0053245 18.07 20.82 9.016843e-04 

205 18.21 24.50 0.00110588 16.35 18.01 0.01308033 

213 16.69 20.86 0.00580477 15.22 16.47 0.08219667 

217 22.20 27.28 2.86755e-06 20.12 22.15 1.857011e-05 
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when considering added BW at 10 dB, and when considering added BW at 5 dB it alternates 

from 0.08219667 to 0.0001032. 

Table (4.3) illustrates the performances of MSE and SNRout of the SC-LNLMS filtering 

method when acting with EM noise added at 5 and 10 dB input SNR for the first and the last 

stages. The results of processing the data number 100, 105, 107, 118, 200, 205, 213, and 217 

show that the SNRout is improved from the first stage to the last stage, for example, SNRout of 

the first stage for data number 217 is 22.59 dB while it achieves 27.97 dB for the last stage 

when considering added EM at 10 dB, and when considering added EM artifact at 5 dB it is 

17.18 dB and 22.21 dB for first and last stage respectively. The proposed denoising technique 

also achieves the best MSE at the last stage that alternating from 1.4462883e-04 to 1.5454146e-

06 when considering added EM artifact at 10 dB, and when considering added EM at 5 dB it 

alternates from 0.0332111 to 2.44956e-05. 

Table 4.3 SNRout and MSE results after using SC-LNLMS method for removing EM noise. 

 

Figure 4.13 displays the performance SNR improvement of the SC-LNLMS filtering method 

to remove MA noise. Figure 4.13(a) displays SNR improvement between the first and the last 

stage when acting with MA noise added at 10dB input SNR level. Figure 4.13(b) displays SNR 

improvement between the first and the last stage when acting with MA noise added at 5 dB 

input SNR level. We see from figure 4.13(b) that the improvement of SNR alternates from 3.31 

Added noise= electro motion (EM) 

 SNR in=10dB SNR in=5dB 

Signals 

SNRout 

First 

stage 

SNRout 

(last 

stage) 

MSE at last 

stage 

SNR out 

(First 

stage) 

SNR out 

(last 

stage) 

MSE at last 

stage 

100 19.59 23.76 4.425398e-05 15.69 18.54 0.00846643 

105 20.98 25.93 5.187104e-06 15.52 18.73 0.0069406 

107 20.70 23.82 4.378119e-05 14.64 19.21 0.0044294 

118 19.78 22.27 1.4462883e-04 15.99 18.71 0.00506461 

200 22.20 24.93 1.478135e-05 17.05 22.36 2.01149e-04 

205 19.32 23.05 8.682866e-05 15.83 18.29 0.0101219 

213 18.90 22.87 1.0349422e-04 13.81 17.08 0.0332111 

217 22.59 27.97 1.5454146e-06 17.18 22.21 2.44956e-05 
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dB resulting from processing data number 213 to 5.42 dB was resulting from processing data 

number 200, and from figure 4.13(a) the SNR improvement alternates from 3.13 dB was 

resulting from processing data number 118 to 7.69 dB was resulting from processing data 

number 105. It is clear that the improvement of SNR is significantly improved from the first 

stage to the last stage due to varied both step size and leakage coefficient in each stage that are 

controllable to achieve better SNR without distorting the shape of the original ECG signal. 

 

 

Figure 4.13 SNR improvements of SC-LNLMS filtering method for MA removing, (a) SNR 

improvement for MA removing at 10 dB, (b) SNR improvement for MA removing at 5 dB. 

 

Figure (4.14) displays the performance SNR improvement of the SC-LNLMS filtering method 

to remove BW noise. Figure 4.14(a) displays SNR improvement between the first and the last 

stage when acting with BW noise added at 10dB input SNR level. Figure 4.14(b) displays SNR 

improvement between the first and the last stage when dealing with BW noise added at 5 dB 

input SNR level. We see from figure 4.14(a) that the improvement of SNR alternates from 1.69 

dB was resulting from processing data number 200 to 6.29 dB was resulting from processing 

data number 205, and from figure 4.14(b) the SNR improvement alternates from 1.1 dB was 

resulting from processing data number 105 to 2.16 dB was resulting from processing data 

number 217. It is clear that the improvement of SNR is significantly improved from the first 

stage to the last stage, which indicates the effectiveness of the SC-LNLMS method. 
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Figure 4.14 SNR improvements of SC-LNLMS filtering for BW removing, (a) SNR 

improvement for BW removing at 10 dB, (b) SNR improvement for BW removing at 5 dB. 

Figure (4.15) displays the performance SNR improvement of the SC-LNLMS filtering method 

to remove EM noise. Figure 4.15(a) displays SNR improvement between the first and the last 

stage when acting with EM artifact added at 10dB input SNR level. Figure 4.15(b) displays 

SNR improvement between the first and the last stage when acting with EM artifact added at 5 

dB input SNR level. We see from Figure 4.15(a) that the improvement of SNR alternates from 

2.49 dB was resulting from processing data number 118 to 4.95 dB was resulting from 

processing data number 105, and from figure 4.15(b) the SNR improvement alternates from 

2.46 dB was resulting from processing data number 205 to 5.79 dB was resulting from 

processing data number 217. It is clear that the improvement of SNR is significantly improved 

from the first stage to the last stage, which indicates the effectiveness of the SC-LNLMS 

method. 

 

 

Figure 4.15 SNR improvements of SC-LNLMS filtering for EM artifact removing, (a) SNR 

improvement for EM artifact removing at 10 dB, (b) SNR improvement for EM removing at 5 

dB. 
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4.4.2.2 Obtained results after using SWT and NLMS method 

Table (4.4) illustrates the performances of MSE and SNRout of the SWT plus NLMS filtering 

method when dealing with MA noise added at 5 and 10 dB input SNR to the free ECG signal 

of data number 118. The results show that the best SNRout of 27.90 dB and MSE of 1.10009e-

6 were obtained by selecting db1 for filter bank 1, rbioi1.1 for filter bank 2, firm thresholding, 

and NLMS algorithm when dealing with added MA noise at 10 dB, while when dealing with 

added MA noise at 5 dB the best SNRout of 20.11 dB and MSE of 7.3046e-04 were obtained by 

selecting db2 for filter bank 1, rbioi1.1 for filter bank 2, garrote thresholding, and NLMS 

algorithm. The SWT and NLMS method achieved sufficient and satisfactory results when 

dealing with the removal of muscle noise from ECG signal.  

 

Table 4.4 SNRout and MSE results after using SWT and NLMS method for removing MA 

noise. 

 

Table (4.5) illustrates the performances of MSE and SNRout of the SWT plus NLMS 

filtering method when acting with BW noise added at 5 and 10 dB input SNR to the free ECG 

signal of data number 205. The results show that the best SNRout of 15.91 dB and MSE of 

0.0303022 were obtained by selecting Sym1 for filter bank 1, Sym1 for filter bank 2, soft 

thresholding, and NLMS algorithm when dealing with added BW noise at 10 dB, while when 

dealing with added BW noise at 5 dB the best SNRout of 8.54 dB and MSE of 0.113611 were 

obtained by selecting sym1 for filter bank 1, db1 for filter bank 2, firm thresholding and NLMS 

algorithm. The SWT and NLMS method achieved rather acceptable results when dealing with 

Added noise =  muscle noise (MA) 

SNR in=10 dB SNR in=5 dB 

Threshol 

ding rule 

Filter 

bank 1 

(SWT) 

Filter 

Bank 2 

(ISWT) 

SNR

out 

 

MSE 

Filter 

bank1 

(SWT) 

Filter 

Bank2 

(ISWT) 

SNRout 

 
MSE 

Garrote db2 db1 27.40 2.99801e-6 db2 Bior1.1 20.11 7.3046e-04 

Soft Sym4 Sym2 27.01 4.04244e-06 db1 dmey 19.66 1.88732e-3 

Hard Sym8 rbio1.1 22.21 0.0001259 db1 db1 16.70 0.0413812 

Semi soft db1 Bior1.1 27.90 1.10009e-6 Sym1 rbio2.2 19.82 1.00691e-3 

Hyperbolic dmey bior4.4 26.93 9.24721e-5 Sym2     Coif1 19.54 2.3700e-03 
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input SNR of 10 dB of added BW noise, while for input SNR of 5dB it achieved insufficient 

and unsatisfactory results to remove BW noise. 

 

Table 4.5 SNRout and MSE results after using SWT and NLMS method for removing BW 

noise. 

 

 

Table 4.6 SNRout and MSE results after using SWT and NLMS method for removing EM 

artifact 

Added noise= Base wander (BW) 

SNR in=10dB SNRin=5dB 

Thresholdi

ng rule 

Filter 

bank1 

(SWT) 

Filter 

Bank2 

(ISWT

) 

SNRout 

 
MSE 

Filter 

bank1 

(SWT) 

Filter 

Bank2 

(ISWT

) 

SNRout 

 
MSE 

Garrote 

 
Sym1 Sym4 15.91 0.0377840 bior1.1 Rbio3.7 8.10 0.254287 

Soft Sym1 Sym1 15.54 0.0303022 Dmey Coif1 7.72 0.548752 

Hard db4 dmey 
14.75 

 
0.0700205 Sym4 Coif5 7,22 0.860540 

Firm db1 db1 
15.65 

 
0.0386886 Sym1 db1 8,54 0.113611 

Hyperbolic Sym4 db4 
14.89 

 
0.1004717 db2 db2 7,12 0.914756 

Added noise= electro motion (EM) 

SNR in=10dB SNRin=5dB 

Thresholding 

rule 

Filter 

bank1 

(SWT) 

Filter 

Bank2 

(ISWT) 

SNRout 

 
MSE 

Filter 

bank1 

(SWT) 

Filter 

Bank2 

(ISWT) 

SNRout 

 
MSE 

Garrote 

 
Sym1 db1 

14.71 

 

0.2010796  

 
Sym1 db1 

8.02 

 
0.2542873 

Soft 
Bior1.

1 
Bior1.1 14.14 0.6490395 Bior1.1 Bior1.1 

7.09 

 
0.8231081 

Hard Sym1 db1 14.44 0.3002106 Coif2 Rbio1.1 
6.98 

 
0.9974547 

Semi soft 
Bior1.

1 
Bior1.1 14.22 0.3409551 Sym1 db1 

8.20 

 
0.2172143 

Hyperbolic dmey Sym2 13.87 0.8278035 Bior1.1 Bior1.1 
7.03 

 

0.8875487 

 



Chapter 4                                                                                                                             Results and discussion 

 

84 
 

 

Figure 4.16 SNR improvement after using SWT and NLMS method for noises removing, (a) 

SNR improvement for MA artifact removing at 10 and 5dB, (b) SNR improvement for BW 

removing at 10 and 5 dB, SNR improvement for EM removing at 10 and 5 dB. 

. 

Table (4.6) illustrates the performances of MSE and SNRout of the SWT plus NLMS filtering 

method when acting with EM artifact added at 5 and 10 dB input SNR to the free ECG signal 

of data number 205. The results show that the best SNRout of 14.71 dB and MSE of 0.2010796 

were obtained by selecting Sym1 for filter bank 1, db1 for filter bank 2, garrote thresholding and 

NLMS algorithm when dealing with added EM artifact at 10 dB, while when dealing with added 

EM artifact at 5 dB the best SNRout of 8.20 dB and MSE of 0.2172143 were obtained by 

selecting Sym1 for filter bank 1, db1 for filter bank 2, firm thresholding and NLMS algorithm. 

The SWT and NLMS method achieved insufficient and unsatisfactory results to remove EM 

artifact from ECG signal. 

 Figure (4.16) displays the performance of SNR improvement after using SWT and NLMS 

filtering. Figure 4.16(a) shows SNR improvement achieved when dealing with MA noise added 

at 10dB and 5dB input SNR level. Figure 4.16(b) shows SNR improvement achieved when 

dealing with BW noise added at 10dB and 5dB input SNR level. Figure 4.16(c) displays SNR 

improvement achieved when dealing with EM artifact added at 10dB and 5dB input SNR level. 

We see from figure 4.16(a) that the best improvement SNR resulted from removing MA from 

data number 118 added at 10dB is 17.9dB, while when dealing with added MA noise at 5 dB, 

the best resulted improvement SNR is 15.11 dB. Figure 4.16(b) illustrates the best improvement 

SNR resulted from removing BW from data number 205 added at 10dB is 5.91 dB, while when 

dealing with added BW noise at 5 dB, the best resulted improvement SNR is 3.54 dB. Figure 

4.16(c) illustrates the best improvement SNR resulted from removing EM artifact from data 

number 205 added at 10 dB is 4.71 dB, while when acting with added EM noise at 5 dB, the 

resulted best improvement SNR is 3.2 dB. It is clear that the SWT and NLMS filtering method 

did not succeed in removing EM noise from the ECG signal.    
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4.4.2. 3 Compare results with different techniques 

Table (4.7) and table (4.8) illustrate the performances of the two proposed filtering in terms of 

SNR improvement and MSE compared with dual tree wavelet transform [47], empirical mode 

decomposition (EMD) with non-local mean (NLM) technique [49], neural networks technique 

[50], leaky normalized least mean square technique [51], and constructing a Guided Filter [52] 

in aim of noises reduction from corrupted ECG signal.  

 

 After filtering MA noise  

Table 4.7 improvement SNRs (in dB) for MA, BW, and EM noise removal compared with other 

existing technique 

 

The SNR improvement and MSE on MA noise after using SC-NLMS approach and SWT and 

NLMS are the most significant (18.56 dB and 5.059e-7, 17.90dB and 1.10009e-6 respectively); 

when dealing with added MA noise at 10 dB. While, the resulted SNR improvement and MSE 

achieved when using reference [49], and reference [51] are the moderate one (less then12 dB 

and 0.000472, 11.8843dB respectively). Also when dealing with added MA at 5 dB, the resulted 

Type of added 

noise 
MA noise BW noise EM artefact 

Input SNR (dB) 10dB 5dB 10dB 5dB 10dB 5dB 

Denoising 

methods 

SNR 

imp (dB) 

SNR 

imp 

(dB) 

SNR imp 

(dB) 

SNR 

imp 

(dB) 

SNR imp 

(dB) 

SNR imp 

(dB) 

Proposed method 

based on SC-

LNLMS 

18.56 15.86 17.28 17.15 17.97 17.21 

Proposed method 

based on SWT 

and NLMS 

17.90 15.11 5.91 3.54 4.71 3.20 

Reference [49] <12 <11 / / / / 

Reference [50] 

5.19 

(SNRinp

=22.9) 

/ 

11.56 

(SNRinp=

19.18) 

/ 

9.64 ( 

SNRinp=

15.65) 

/ 

Reference [51] 11.8843 / 9.8429 / / / 

Reference [52] / 11.53 / / / 14.28 

Reference [47] / 
7.2195

3 
/ 5.65466 / 15.24564 
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improvement SNR and MSE after using SC-NLMS approach and SWT and NLMS are the most 

significant (15.86 dB and 1.032e-4, 15.11 and 7.3046e-04). While, the SNR improvement and 

MSE achieved when using the reference [49], reference [52] achieved moderate results (less 

than 11 dB and 0.001021, 11.53 dB and 0.0625), reference [47] achieved the lowest one 

(7.21953 dB and 0.00277). 

Table 4.8 Resulted MSE for MA, BW, and EM noises removal compared with other 

existing technique 

 

 After filtering BW noise 

The SNR improvement and MSE on BW noise after using SC-NLMS approach is the most 

significant (17.28 dB and 5.059e-7) when dealing with added BW noise at 10 dB. While, the 

SNR improvement and MSE achieved when using and SWT and NLMS is the lowest one (5.91 

dB and 0.0303022), reference [50] and reference [51] achieved the moderate one (11.56 dB, 

9.8429 respectively). Also when dealing with added BW at 5 dB, the resulted improvement 

SNR and MSE after using SC-NLMS approach is the most significant (17.15 dB and 

1.857011e-05). Where, when using the SWT plus NLMS approach and reference [47] are the 

lowest one (3.54dB and 0.113611, 5.65466dB and 0.00044 respectively). 

Type of added 

noise 
MA noise BW noise EM artefact 

Input SNR (dB) 10dB 5dB 10dB 5dB 10dB 5dB 

Denoising 

methods 
MSE MSE MSE MSE MSE MSE 

Proposed method 

based on SC-

LNLMS 

5.059e-7 
1.032e-

4 

2.86755e-

06 

1.85701

1e-05 

1.5454146

e-06 

2.44956e-

05 

Proposed method 

based on SWT 

and NLMS 

1.10009e

-6 

7.3046e

-04 

0.030302

2 

0.11361

1 
0.2010796 0.2172143 

Reference [49] 0.000472 
0.0010

21 
/ / / / 

Reference [50] / / / / / / 

Reference [51] / / / / / / 

Reference [52] / 0.0625 / / / 0.0441 

Reference [47] / 
0.0027

7 
/ 0.00044 / 0.00397 
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 After filtering EM noise 

The SNR improvement and MSE on EM noise after using SC-NLMS approach is the most 

significant (17.97 dB and 1.5454146e-06) when dealing with added EM noise at 10 dB, then 

the SNR improvement and MSE achieved when using and SWT and NLMS is the lowest one 

(4.71 dB and 0.2010796). Also when dealing with added EM at 5 dB, the resulted improvement 

SNR and MSE after using SC-NLMS approach is the most significant (17.21 dB and 2.44956e-

05). Where, when using the SWT plus NLMS approach is the lowest one (3.20 dB and 

0.2172143), the references [52] and [47] gave the moderate one (0.0441, 0.00397 respectively) 

As shown in table (4.7) and table (4.8), the proposed SC-NLMS approach can successfully 

reduce various types of noise, improve the SNR and reduce the MSE, and outperforms the 

method of SWT plus NLMS, dual tree wavelet transform [47], empirical mode decomposition 

(EMD) with non-local mean (NLM) technique [49], neural networks technique [50], leaky 

normalized least mean square technique [51], and constructing a guided filter [52]. 

4.5 Conclusion 

This chapter includes presenting the results, discussing, and then comparing them. The results 

are divided into two sections, the results of the first section that we obtained by applying the 

SC-LNLMS technique that we proposed on the contaminated ECG signal with either muscle 

noise (MA), Baseline wander (BW) noise, or electro motion (EM) noise. The SC-LNLMS 

technique is based on a self-correcting leaky normalized least mean square algorithm with 

varied step size and leakage coefficient. As for the results of the second section, we obtained 

by applying the second technique, which is based on SWT and the NLMS algorithm. Finally, 

we provide a comparison with other existing techniques in the literature. The experimental 

results have shown the effectiveness of the first proposed method (SC-LNLMS) in improving 

the output SNR and reducing MSE to obtain clean ECG records that contains all its distinctive 

features without introducing distortion on the original signal compared to the method of SWT 

plus NLMS algorithm and compared with other existing techniques like dual-tree wavelet 

transform, empirical mode decomposition (EMD) with non-local mean (NLM) technique, 

neural networks technique, leaky normalized least mean square technique and, constructing a 

guided filter by exploiting the Butterworth filter for ECG signal enhancement. The success 

achieved by our method is due to relying first on leakage coefficient, which interferes with the 

difficulty of controlling the step size coefficient, and secondly on the self-correction of the filter 



Chapter 4                                                                                                                             Results and discussion 

 

88 
 

who gave interval to change both step size and leakage coefficients from one stage to a stage 

according to the abrupt changes of the signal, and on the other hand speed up the treatment 

process. The second method of SWT plus NLMS also can successfully remove major 

components of muscle noise from the ECG signal. However, it gave moderate results to 

eliminating BW noise, but it did not give sufficient and satisfactory results to eliminate EM 

noise, as it produced an ECG signal with blurred detail. 
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General conclusion 

ECG is a low-frequency variable signal, which presents a number of challenges while recording 

and processing it.  It has distinctive characteristics which include its non-stationarity, diversity 

between personals, and its high susceptibility to different types of noise. The frequency 

spectrum of the noise interferes with the frequency spectrum of the ECG signal, distorting the 

original signal, thus misleading an accurate diagnosis of a heart function. 

Noise cancellation from the ECG signal is a typical application of adaptive filtration. Adaptive 

filtering is the most appropriate solution to varying the signal voltage over time in an iterative 

manner, as the filter parameters are updated by the adaptive algorithms. For this purpose and 

as the first contribution to this thesis, we proposed an adaptive technique to remove three types 

of noise MA, BW, and EM noise(each separately) from the contaminated ECG signal, as this 

technique depends on adaptive noise canceller using the algorithm based on leaky normalized 

least means square with varied step size and leakage coefficients, the variation of these two 

coefficients from stage to stage allowed a good compromise between the amount of noise to be 

removed and the amount of ECG signal to be preserved. As a second contribution, we proposed 

another technique to remove noises from the ECG for the purpose of comparing it with the first 

method and showing the efficiency of the first method. The second method is based on the SWT 

plus NLMS algorithm. With this method; the decomposition level, wavelet function threshold 

value, and thresholding algorithm are all factors that must be carefully selected taking into 

account the nature and the amount of the noise to be removed. Finally, we added a comparative 

study with some of the techniques found in the literature. 

The experimental application of these two algorithms was carried out using a large number of 

real ECG signals contaminated with real noise that helped to give more realistic results and 

analyzes than those signals and noises that were created artificially. The results confirmed the 

efficiency and reliability of SC-LNLMS in reducing three types of noise while maintaining the 

standard shape of the ECG signal. SC-LNLMS outperforms all the methods proposed in the 

comparison section, while the SWT and NLMS method also gave the best results in removing 

MA noise and outperforming the rest of the proposed comparison technique after the SC-

LNLMS method, but it was only able to remove a little bit of the BW noise and EM noise

 and keep the ECG signal distorted. 
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