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Abstract

The aim of the minimal state space realization problem is to find a state
space model of minimal size of the given system. The main subject of this
thesis is in the crucial problem of constructing state-space realizations of
2-D/3-D linear systems from proposed structures in lattice and ladder lattice
form. We use this proposed structures on lattice and ladder lattice to design
2-D digital notch filter and 3-D digital notch filter.
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Le problème de la minimalité de l’espace d’état est de trouver un modèle
d’espace d’état de taille minimale d’un système donné. Le sujet principal
de cette thèse est de résoudre le problème crucial de la construction d’une
réalisations d’état minimal d’un système linéaire 2-D / 3-D à partir de
structures proposées sous forme de treillis et de treillis en échelle. Nous
utilisons ces structures proposées en treillis et en treillis en échelle pour
concevoir un filtre numérique coupe-bande 2-D et un filtre numérique coupe-
bande 3-D.
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2 Introduction

The linear time invariant LTI systems form a very simple class of systems
that can be analyzed rather easily and for which many analytic and numeri-
cal results are available, and have been used to solve many problems that
appear in practice in a very satisfactory way. The fact that most physical sys-
tems have real inputs and by the fact that some concepts have a more natural
physical interpretation for discrete-time systems than for continuous-time
systems. Furthermore, most of the techniques for discrete-time systems
with real-valued inputs and outputs are also valid for systems with complex
inputs and outputs and for continuous-time systems.The minimal state-
space realization problem starting from impulse responses (or more general:
sequences of Markov parameters) has been studied since the early 1960s
and many algorithms have been developed to solve the problem of linear
system. The aim of the minimal state space realization problem is to find a
state space model of minimal size of the given system. Moreover, minimal
realization techniques can also be used to reduce the order of existing state
space models. In general the minimal state-space realization problem for
LTI systems can be formulated as follows: Given some data about an LTI
system, find a state-space description of minimal size that explains the given
data. The data are typically the impulse response of the system, the step
response, input output measurements, frequency response data, or more
general frequency measurements, It can encode to multi-dimensional sys-
tems. In this thesis we will give definitions of the basic minimal state-space
realization methods, and focus on the minimal state-space realization in
multidimensional systems [19, 22, 33]. The main subject of this thesis is in
the crucial problem of constructing state-space realizations of 2-D/3-D lin-
ear systems from proposed structures in lattice and ladder-lattice form. We
use this proposed structures on lattice and ladder-lattice to design 2-D/3-D
digital notch filters.
In this thesis, chapter 1 includes basic definitions, facts and examples of
multidimensional signals and systems, chapter 2 describe some methods
of the minimal realization and an example in the literature of the multidi-
mensional minimal state space realization, chapter 3 discusses the minimal
realization in multidimensional systems of proposed structures in lattice
and lattice-ladder form, chapter 4 explain the design of notch filters in 2-D
and 3-D system based on the proposed lattice and lattice-ladder structures.
In chapter 5 ,conclusion. In order to limit the already large number of refer-



3

ences in the bibliography of this these we have selected a small subset of
possible references.





Chapter 1

Multi-dimensional signals and
systems

1.1 Introduction

In signal processing (M-D) multidimensional signal processing covers all
signal processing done using M-D signals and systems. While multidimen-
sional signal processing is a subset of signal processing, it is unique in
the sense that it deals specifically with data that can only be adequately
detailed using more than one dimension. In M-D digital signal processing,
useful data is sampled in more than one dimension. Variety of examples
ranging from image processing and multi-sensor radar detection. These
examples use multiple sensors to sample signals and form images based on
the manipulation of these multiple signals. The design and implementation
in (M-D) requires more complex algorithms, compared to the 1-D case [19].
A multidimensional signal is similar to a single dimensional signal as far as
manipulations that can be performed, such as sampling, Fourier analysis,
and filtering. The actual computations of these manipulations grow with
the number of dimensions [71].

1.2 Multi-dimensional signals

Signals arise in almost every areas of science and engineering such as radar,
sonar, communication, medical signal processing, astronomy, acoustics,
biology, seismology, telemetry, and economics to name just a few. We are
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very interested in natural and man-made signals, the latter make it possible
for us to talk to one another over vast distances, enable the diffusion of huge
amounts of information over the Internet, instruct robots how to perform
very intricate tasks rapidly [19].

n2

(3)(2)
(1)

x(n1,n2)

n1

Fig. 1.1 2-D discrete time signal

Also, the market indices can help us determine whether it is the right
time to invest and, if so, what type of investment should we go for.
A N-D signal, is a physical or contrived quantity that depends on N real
independent integer variables (n1,n2, ...nN) It can be represented by a function
x(n1,n2, ...nN), where (n1,n2, ...nN), may represent time, distance,..etc. A scalar
N-D signal x(n̄) where (n̄) = (n1,n2, ...,nN), x(n̄) is mathematically a complex
N-sequence, or a mapping of the N-D integers into the complex plane. Our
convention is that the signal s is defined for all finite values of its integer
arguments (n̄) using zero padding as necessary. Occasionally we will deal
with finite-extent signals, but will clearly say so. We will adopt the simplified
term sequence over the more correct N-sequence [19, 71]. An example of
2-D signal is shown in figure 1.1.

1.2.1 Kronecker delta function

A simple example of a N-D signal is the impulse δ (n̄), it is zero everywhere
except (n̄) equals zero [71]

δ (n̄) =

1 (n̄) = (0̄),

0 otherwise.
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a portion of 2-D impulse signal is plotted in figure 1.2.

n2
n1

0

5

0.25

4
3 5

0.5

2

δ
(n

1
,
n
2
)

4
1 3

0.75

20
1-1

1

0
-2 -1

-2-3
-3-4 -4-5 -5

Fig. 1.2 2-D Kronecker delta function

1.2.2 The Heaviside step function

The unit step function, usually denoted by H or u,1 a discontinuous function,
named after Oliver Heaviside, whose value is zero for negative arguments
and one for positive arguments. u(n̄) is also an important signal which is
presented by [71]:

u(n̄) =

1 (n1 ≥ 0,n2 ≥ 0, ...,nN ≥ 0)

0 otherwise.

Figure 1.3, show a 3-D unit step function and can presented by

u(n1,n2,n3) =

1 (n1 ≥ 0,n2 ≥ 0,n3 ≥ 0)

0 otherwise.
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Fig. 1.3 3-D Heaviside step function (a) n3 < 0,(b) n3 = 0,(c) n3 > 0

1.2.3 Separable sequence

x(n̄) is a separable sequence if it can be written as

x(n̄) =
N

∏
i=1

xi(ni),

where xi(ni) are N-sequences of one variable ni respectively. Any sequence
that can be expressed as the product of 1-D sequences in this form is to be
said separable. Separable sequences can be quite valuable when used as
test inputs for evaluating and debugging experimental systems. Signals may
be combined by a variety of operations which will serve as building blocks
for the development of more complicated systems [41].
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1.2.4 Linearity

Let x1(n1,n2, ...,nN) and x2(n1,n2, ...,nN) represent N-D discrete signals, these
signals can be added to yield a new signal, the addition is performed sample
by sample.

y(n1,n2, ...,nN) = x1(n1,n2, ...,nN)+ x2(n1,n2, ...,nN)

N-D sequences may be multiplied by a constant to form a new sequence. If
we let c1 represent a constant, we can form the N-D sequence y(n1,n2, ...,nN)

from the scalar c1 and the sequence x(n1,n2, ...,nN) by multiplying each sample
value of x by c1

y(n1,n2, ...,nN) = c1x(n1,n2, ...,nN)

1.2.5 Shift invariance

[19, 71, 14] A N-D sequence x(n̄) where (n̄) = (n1,n2, ...,nN) may also be linearly
shifted to form a new sequence y(n̄). The operation of shifting simply slides
the entire sequence x(n̄) to a new position in the (n̄) plane. The sample values
of y(n̄) are related to the sample values of x(n̄) by [41]:

y(n̄) = x(n̄− m̄),

where (m̄) is the amount of the shift, and (n̄− m̄) = (n̄1− m̄1, n̄2− m̄2, ..., n̄N− m̄N).

An example of sequence shifting 2-D appears in figure 1.4

x(n1,n2) y(n1,n2) = x(n1−1,n2−1)

n2

n1

n2

n1

Fig. 1.4 2-D shift invariance example

Using the fundamental operations of addition, scalar multiplication, and
shifting, it is possible to decompose any N-D sequence into a sum of weighted
and shifted N-D unit impulses.
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1.3 Multidimensional systems

Multidimensional systems are the necessary mathematical background for
modern digital image processing with many applications in biomedicine, X-
ray technology and satellite communications [19]. Although digital filtering
in several dimensions is gaining importance in medicine, heart volume
measurements, in fire control problems, and to analyze complex electronic
circuitry, there exists no general theory concerning structures, analysis
and design. In mathematical systems theory, a m-D system is an operator
transforming an input into an output in which not only one independent
variable exists, but there are several independent variables. The operator
embodied in this system is described by T [.], as illustrated in figure 1.5, so
we can write [41]

y(n1,n2, ...,nN) = T [u(n1,n2, ...,nN)]

.

u(n1,n2, ...,nN) T
y(n1,n2, ...,nN)

Fig. 1.5 N-D discrete time system

The operator T [.] can represent a rule or a set of rules for mapping an
input signal into an output signal, or even a list of output signals that
correspond to various input signals. In this these we focus our attention
on linear shift-invariant systems and theirs characterizations. Before we
get that far, however, we shall discuss some simple operations that can be
performed on multidimensional discrete signals.

1.4 Fundamental operations on Multidimensional
system

1.4.1 Linear system

A system is said to be linear if and only if it satisfies two conditions: if the
input signal is the sum of the two sequences, the output signal is the sum
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of the output corresponding output sequences, and scaling the input signal
produces a scales output signal. Therefore, if L[.] denoted the linear operator
system and (n̄) = (n1,n2, ...,nN) [41]

y1(n̄) = L[x1(n̄)],y2(n̄) = L[x2(n̄)]

then
L[αx1(n̄)+βx2(n̄)] = αy1(n̄)+βy2(n̄)

for all input signals and all complex constants α and β , linear systems obey
the principale of superposition. The response of linear system to a weighted
sum of input signals is equal to the weighted sum of the responses to the
individual input signals.

1.4.2 Shift invariant systems

A system T [.] is shift-invariant if any shift of an arbitrary input x(n̄) produces
the identical shift in the corresponding output y(n̄) . If T [x(n̄)] = y(n̄), then for
all (integer) shifts (m̄) we have T [x(n̄− m̄)] = y(n̄− m̄) for all sequences x(n̄)

1.4.3 Convolution

A linear shift-invariant system is completely characterized by its unit sample
response h(n̄), the response to the input x(m̄) is [41]

y(n̄) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑x(m̄)h(n̄− m̄) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑h(m̄)x(n̄− m̄).

(1.1)
where

∑
m̄

(−∞≤mi≤∞)

∑ ...∑ =
∞

∑
m1=−∞

∞

∑
m2=−∞

...
∞

∑
mN=−∞

Equation (1.1) defines N-Dimensional convolution and will also be repre-
sented by

y(n) = x(n̄)∗h(n̄)

.
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1.4.4 Properties of N-D convolution

• Commutativity x∗ y = y∗ x.

• Associativity (x∗ y)∗ z = x∗ (y∗ z).

• Identity element δ (n̄) with property δ (n̄)∗ x = x.

• Zero element: 0.(n̄) = 0 with property 0∗ x = 0.

All of these properties of convolution hold for any N-D signals x, y, and z, for
which convolution is defined (i.e., for which the infinite sums exist).

1.5 N-D z-transform

Z-transform maps a function of discrete time n to a function of z. Although
motivated by system functions, we can define a Z-transform form for any
N-dimensional input sequence x(n̄) by

X(z̄) = Z(x(n̄)) = ∑
n̄

(−∞≤ni≤∞)

∑ ...∑x(n̄)z−n̄. (1.2)

where , (z̄) = (z1,z2, ....,zN), (z−n̄ = z−n1
1 .z−n2

2 ...z−nN
N ), and the zi are complex vari-

ables, which, expressed in polar form

zi = rie jωi

where ωi is the ith spatial frequency variable and can be used to rewrite (1.2)
as

X(z̄) = Z(x(n̄)) = ∑
n̄

(−∞≤ni≤∞)

∑ ...∑x(n̄)(r−n1
1 e− jn1ω1)(r−n2

2 e− jn2ω2)...(r−nN
N e− jnNωN ).

(1.3)
Similarly to the one-dimensional case, the N-Dimensional Z-transform can
be interpreted as the N-Dimensional Fourier transform of x(n̄) , whenever

ri = |zi|= 1
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For convergence of the N-Dimensional Z-transform, the sequence x(n̄)z−n̄

must be absolutely summable. This is equivalent to

∑
m̄

(−∞≤mi≤∞)

∑ ...∑
∣∣x(n̄)r−n̄∣∣< ∞. (1.4)

The set of zi, for which (1.4 ) holds, defines the region of convergence. Notice
that because of the multiplication of the sequence x(n̄) by r−n̄ , it is possible
for the Z-transform to converge, even if the Fourier transform does not.

1.5.1 Properties of N-D z-transform

The Z-transform operation has a number of properties that can be useful in
performing calculation, solving problems, and proving theorems. Below we
state several of these properties

Linearity

Z(αx(m̄)+βy(m̄))←→ αZ(x(m̄))+βZ(y(m̄)) where α and β are constants.

Delay property

If x(n̄)←→ X(z̄) for z in ROC
then x(n̄−1)←→ z̄−1X(z̄)
We have an example of this property
δ (n̄) ←→ 1
δ (n̄−1)←→z̄−1 = z−1

1 .z−1
2 ...z−1

N

Convolution

Convolution is an important computational and conceptual tool: it provides
an important new way to think about the behaviors of system. If y(n̄) is equal
to the convolution of two N-dimensional sequences x(n̄) and h(n̄) , then the
Z-transform of y(n̄) is equal to the product of the Z-transforms of x(n̄) and
h(n̄) ,

y(n̄) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑x(n̄)h(m̄− n̄). (1.5)
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then
Y (z̄) = X(z̄)H(z̄). (1.6)

This can easily be seen by writing

Y (z̄) = ∑
n̄

(−∞≤ni≤∞)

∑ ...∑

 ∑
m̄

(−∞≤mi≤∞)

∑ ...∑x(m̄)h(n̄− m̄)

z−n̄. (1.7)

and after interchanging the order of summation ,and changing the indice of
summation this becomes

Y (z̄) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑x(n̄)

 ∑
k̄

(−∞≤ki≤∞)

∑ ...∑h(k̄).z−k̄

z−m̄. (1.8)

which is equal to
Y (z̄) = X(z̄)H(z̄). (1.9)

1.5.2 Inverse Z-Transform

The inversion formula for the above transform is given by

x(m̄) =
1

(2π j)N

∮
C̄N

...
∮

X(z̄)z(m̄−l̄)dz̄ (1.10)

where, N paths and C̄N are within the regions of convergence of (1.10) and
dz̄ = dz1.dz2...dzN. This formula follows by substituting x(z̄) in (1.8) , which
becomes [42].

x(m̄) =
1

(2π j)N

∮
C̄N

...
∮

∑
n̄

(−∞≤ni≤∞)

∑ ...∑x(n̄)z−n̄z(m̄−l̄)dz̄ (1.11)

The interchange of summations and integrations, which is justified by the
absolute convergence of the series for X(z), yields

x(m̄) =
1

(2π j)N ∑
n̄

(−∞≤ni≤∞)

∑ ...∑x(n̄)
∮

C̄N

...
∮

z(−n̄+m̄−l̄)dz̄ (1.12)
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By the Cauchy Integral Theorem of N-variables and since the paths of
integration C̄N are chosen within the region of convergence, it follows that

∮
C̄N

...
∮

z(−n̄+m̄−l̄)dz̄ =

{
(2π j)N , if (m̄+ n̄) = (0̄)
0, otherwise

(1.13)

1.6 N-D Fourier transform

The Fourier Transform is a mathematical technique that transforms a func-
tion of time, to a function of frequency [42]

X(ω̄) = ∑
n̄

(−∞≤ni≤∞)

∑ ...∑x(n̄)e− jn̄ω̄ . (1.14)

x(n̄) =
∫

π

ω1=−π

...
∫

π

ωN=−π

X(ω̄)e jω̄ n̄ dω̄ (1.15)

where, (en̄ω̄ = en1ω1.en2ω2...enNωN ), dω̄ = dω1.dω2...dωN

1.7 Stability

1.7.1 BIBO stability

Stable systems are those for which a small change in the input gives a
small change in the output [19, 71, 14]. As such, they are very useful in
applications. We can mathematically define bounded-input bounded-output
(BIBO) stability for N-D systems analogously to that in 1-D system theory. A
spatial or N-D system will be stable if every bounded (finite) input produces
a bounded (i.e., finite) output. For linear time-invariant digital filters, a
necessary and sufficient condition for stability is

S = ∑
n̄

(−∞≤ni≤∞)

∑ ...∑ |h(n̄)|< ∞. (1.16)

Theorem 1-1 A N-D LSI system is BIBO stable if and only if its impulse
response h(n̄) is absolutely summable
Proof: See Appendix A.
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1.7.2 Necessary and sufficient conditions stability in N-
Dimensions

A stability region is said to be convex if the loci of all points connecting
two stable points lies inside the stable region. It is well known that the
stability area for a second order one-dimensional transfer function satisfies
convexity, but it can be shown that the stability region of the third order
one-dimensional transfer function is not convex. It is, therefore, conjectured
that the bounding surfaces of a multi-dimensional higher order filter stability
region cannot be described in terms of plane surfaces which explains why
the following method to derive necessary and sufficient stability conditions
is rather complicated to apply. The advantage of this approach lies in the fact
that the method must be applied only once for a particular type of transfer
function, which results in a set of stability conditions. These conditions can
be easily applied by the design engineer [41].

1.7.3 Method to derive necessary and sufficient stability
conditions

The method to derive necessary and sufficient stability conditions consists
of two steps:

• Derive necessary and sufficient conditions for one variable polynomial
with complex coefficients using Rouche’s theorem.

• Apply the following theorem and corollary to state necessary and suffi-
cient conditions for N-Dimensions

Theorem 1-2: [44] Let (δ1,δ2, ...,δN) be any N-tuple of complex numbers
such that r = max|δi| ≤ 1. Then Q(z1, ...,zN) is stable if and only if for all δ̄ the
polynomial

q
δ̄
(z) = Q(z

δ1

r
, ...z

δN

r
)

is stable.
Proof: See Appendix B.
Corollary 1 :The polynomial Q(z̄) corresponds to a stable transfer function
if and only if for all complex numbers δ̄ such that
max|δi|= 1,q

δ̄
(z) = Q(zδ1, ...,zδN) is stable.

Proof: See Appendix B.
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1.8 State-space models and transfer function

As in the 1-D case, state space models are a very important class of internal
representations. In this context, the concept of the state of a system can be
defined as the memory of the system, i.e. the past and future evolutions
are independent given the current state. Furthermore, a state space is a
mathematical model of a physical system as a set of input, output and state
variables. Commonly used models for systems recursive are the Roesser
model (Roesser (1975)) and the Fomasini-Marchesini models. There are
several N-D state-space models such as Fornasini- Marchesini, Attasi and
Roesser, but in this work we focus on the Rosser’s model [22].

1.8.1 Givone–Roesse’s model

The intrinsic feature of the Givone–Roesse model is that the partial state
vector is partitioned into n sub-vectors for n-D systems. For 2-D systems
these fractions are called the vertical and the horizontal state sub-vectors. A
Roesser state-space model of N-D digital filter can be represented as [22, 56]

x(n̄) = [x1(n̄)T ,x2(n̄)T , ...,xN(n̄)T ]T
x(n1 +1,n2, ...,nN)

x(n1,n2 +1, ...,nN)

...

x(n,n2, ...,nN +1)

= Ax(n̄)+Bu(n̄), (1.17)

y(n̄) =Cx(n̄)+Du(n̄), (1.18)

x(n̄) ∈ Rn,where, (n̄) = (n1,n2, ....,nN), u(n̄) and y(n̄) are the scalar input and
output of the filter respectively (A,B,C,D) are real coefficient matrices with
suitable size. In particular, A ∈ Rn×n. The state-space (1.17,1.18) is also
conventionally denoted by (A,B,C,D). The transfer function of (1.17,1.18)
is[21]

H(z1,z2) =CZ(In−AZ)−1B+D, (1.19)

where Z = diag{z1In,z2In, ...,znIn} and In the n×n identity matrix.
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1.8.2 Recursive equation

An important subclass of linear, shift-invariant N-Dimensional filters is
constituted of those systems for which the input and output satisfy a linear,
constant coefficient difference equation of the form [41]:

y(n̄) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑a ¯(m)y(n̄− m̄)+ ∑
l̄

(−∞≤li≤∞)

∑ ...∑b ¯(l)x(n̄− l̄). (1.20)

where
N

∑
i=1

mi ̸= 0 (1.21)

with a ¯(m) = a(m1,....,mN) and b ¯(l) = b(l1,....,lN)
are the sets of constant coefficients which characterize a particular filter.
Equation (1.20) does not uniquely specify the input-output relationship of a
system. This is a consequence of the fact that as with differential equations,
a family of solutions may exist. Therefore, a set of initial conditions must
also be specified. It is assumed that if a system satisfies a linear constant
coefficient N-Dimensional difference equation, it will also be shift-invariant.
If the set of all a ¯(m) is non-empty for all mi such that

N

∑
i=1

mi ̸= 0,

then (1.20) characterizes a recursive system algorithm and may be used
as a computational realization of the system, either by programming a
general purpose digital computer or by implementation using special purpose
hardware.

1.8.3 Transfer function

Taking the Z-transform of the N-Dimensional linear difference equation,
(1.20), leads to

Y (z̄) = H(z̄) X(z̄). (1.22)

where

H(z̄) =
∑ l̄
(−∞≤li≤∞)

∑ ...∑b(l̄)z
−l̄

1−∑ m̄
(−∞≤mi≤∞)

∑ ...∑x(n̄)a(m̄)z−m̄ . (1.23)
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N

∑
i=1

mi ̸= 0,

Note
N

∑
i=1

mi = 0 implies m1 = 0 , ..., mN = 0

The order of H(z̄) is defined as the sum of all Mi

1.8.4 Differences between transfer functions and state-
space models

The authors in [60, 11] cite the important differences between the transfer
function and the state-space representation. The transfer function of an LTI
system is the relationship between input and output of the system.
• The transfer function formulation does not reveal the behavior inside the
system, such as unobservable unstable modes. Therefore, the transfer
function matrix cannot always be used to study the stability properties of
an LTI system. This problem of hidden pole-zero cancellation was not really
understood prior to the work of [24, 34], who proved that the input/output
description reveals only the controllable and observable part of a dynamical
system [19].
• In practice the state-space formulation is very important for numerical
computations and controller design, the state-space formulation stays the
most elegant way of dealing with generalizations.
• The state-space formulation can easily be extended to the time-varying
case. The extension of the transfer function to the time-varying case has
not been very successful.

1.9 N-Dimensional digital filter

A digital filter is defined to be an algorithm by which a digital signal or
equivalently a sequence of numbers acting as input, is transformed into a
second sequence of numbers or output digital signal, where, the term ’digital’
implies that both time (the independent variable) and amplitude are quan-
tized [19]. In many applications, continuous signals are encountered that
are functions of (n̄) independent variables, say (n1,n2, ...nN). N-Dimensional
signals of this type can be represented by functions of the form x(n̄). Each of
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variables can represent an arbitrary physical quantity such as time, length,
velocity, acceleration, and temperature. The well-known methods of the
synthesis of N-Dimensional filters are considered in a number of literature
[18, 19, 1] and monographs. The simplest considered method is one of a
cascading of (n̄) one-dimensional filters, for which the pass band region of
synthesized filter is an N-Dimensional parallelepiped with scaled cut-off
frequencies. The great possibilities present the synthesis method based on
using the reactance function with subsequent bilinear transformation of
variables. The method leads to the synthesis of N-Dimensional filters with
scaled cut-off frequencies and regulated convexity of the pass band region.

1.10 Realization of digital filters

Once we have obtained the transfer function of an FIR or IIR filter that
approximates the desired specifications in the frequency domain or the time
domain. A given transfer function can be realized by several structures or
what we will call (circuits), and they are all equivalent in the sense that they
realize the same transfer function under the assumption that the coefficients
of the transfer function have infinite precision. But in reality, the algorithms
for implementing the transfer function in hardware depend on the filter
structure chosen to realize the transfer function. We consider different
structures for realization of a digital filter

1.10.1 Direct form I

For convenience in showing the realization, the order of the numerator and
denominator are set to be the same. Direct form 1 uses separate delays for
both the numerator polynomial and the denominator polynomial. In certain
cases, e.g., floating-point additions, the results may depend on the exact
ordering in which the additions are performed, and shown in figure.1.6
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Fig. 1.6 Direct form I.

1.10.2 Direct form II

Direct form 2 has been called the canonic form because it has the minimum
number of multiplier, adder, and delay elements, but since other configura-
tions also have this property. Direct form 2 uses the same delays for both
the numerator polynomial and the denominator polynomial.

1.10.3 Cascade Realization

The cascade implementation of a filter is obtained by expressing the filter
transfer function H(z) in a factorized form, which is shown in figure.1.7,
where

H(z) =
k

∏
i=1

Hi(z),

H1(z) H2(z) H3(z) Hn(z)

Fig. 1.7 Block diagram representation of the cascade form.



22 Multi-dimensional signals and systems

1.10.4 Parallel Realization

To produce Parallel form of the IIR filter structure, the numerator and
denominator of the factorized system will be split into summation form such
as

H(z) =
k

∑
i=1

Hi(z)

And we can use the partial fraction method, in a parallel form as parallel
sum of a number of second order and first order terms.

1.10.5 Lattice and ladder realisation

Lattice filters are used extensively in digital speech processing and in the
implementation of adaptive filters. Lattice filter structures can be used to
implement FIR and IIR filters. Lattice coefficients can be derived from the
coefficients of the transfer functions with some algebra with a method called
lattice realization method of Gray and Markel [28]. This is based on the
configuration depicted in figure 1.8. A typical application of lattice filters is in
linear prediction for speech processing. They can be used to model the vocal
tract with an all-pole structure. A lattice filter is the most efficient structure
for generating at the same time the forward and backward prediction errors.
The networks represented by the blocks in figure 1.8 can assume a number
of distinct forms. The structure have several desirable features as follows
• The synthesis procedure is very efficient. Only on the order of M 2 opera-
tions are necessary for the synthesis. No polynomial root solvers or explicit
simultaneous equation solvers are necessary.
• A built-in stability test exists within the synthesis process. If any k-
parameter magnitude exceeds or equals unity, the filter is unstable. Other-
wise, it is stable.
• All stable recursive filters can be transformed into the forms presented.
Also, the lattice structure is modular: increasing the order of the filter re-
quires adding only one extra module, leaving all other modules the same. In
lattice filter implementations of fixed-point IIR filters, stability and frequency
responses are less sensitive to round-off errors of the coefficients compared
to classic implementations. This means that coefficients of lattice filters
require fewer bits than the coefficients of IIR filters implemented with direct
forms.
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Fig. 1.8 Lattice N-order realization.

1.11 Conclusion

In this chapter definitions, the properties of N-D z-transform, stability, state-
space, transfer function of multidimensional systems was presented. The
realization of digital filters direct form, cascade and parallel realization are
defined. The lattice and ladder lattice form which combines features will
be used to develop compact realization of 2-D and 3-D notch filters. Also,
this chapter includes facts and examples of multidimensional signals and
systems.





Chapter 2

Minimal state-space realization
in linear systems

2.1 Introduction

Linear systems have been under study for a long time, and from several dif-
ferent points of vision, in physics, mathematics, engineering and many other
areas. But the subject is such a fundamental, and deep one that there is no
doubt that linear systems will continue to be an object of study for as long as
one can divine. However, a particular feature of recent engineering studies
focus on the structure of finite dimensional linear systems. While such
systems have been extensively studied, especially since 1930s, the frequency
domain techniques that were commonly used often did not specifically ex-
ploit the underlying finite dimensionality of the systems involved. Moreover,
almost all this work was for single-Input, single-output [34] systems and did
not seem to extend satisfactory to the multi-input, multi-output systems that
become increasingly important in aerospace, process control, and economet-
ric applications in the late 1950s. until 1970s Popov and Rosenbrock [57]
have shown that many of the scalar transfer function concepts developed for
SISO systems could also be extended to matrix transfer functions for MIMO
systems. Now we could say that transfer functions descriptions (which are
basically frequency domain methods) and state-space descriptions (which
are more oriented towards the time domain) are only two extremes of a whole
spectrum of possible descriptions of finite-dimensional LTI systems. We can
work exclusively with one description or the other, but we can also easily
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translate results from one framework to another, and it really depends on the
application we have in mind which method best suits our needs.The purpose
of this chapter is to describe some methods for the reduction of nonminimal
state-space realizations and for the minimal state-space realization of infinite
or finite sequences of Markov parameters of linear time-invariant systems
and minimal state-space realization of multidimensional systems.

2.2 The minimal state-space realization problem
for LTI systems

The origins of the minimal state-space realization problem lie in the early
1960s. The minimal state-space realization problem for (continuous) LTI
systems was first stated by Gilbert [24] and Kalman [34]. Gilbert gave an
algorithm for transforming a transfer function into a system of differential
equations, this approach of Gilbert was based on partial-fraction expansions.
Kalman’s algorithm was based on the theory of controllability and observ-
ability and reduced a nonminimal state-space realization until it became
minimal. Then Kalman and Ho [29, 76] solved the problem starting from
the sequence of Markov parameters of the system. All these algorithms
assume that the entire sequence of Markov parameters is available. However,
many times only a limited number of Markov parameters is available. The
corresponding minimal partial state-space realization problem for MIMO
systems was first explored by Kalman and Tether [66]. Later, Rissanen [55]
gave a recursive solution of the SISO version of this problem (which he claims
can easily be extended to the MIMO case). Nevertheless, there are several
reasons why the minimal state-space realization problem for LTI systems
deserves to be studied:
• This problem is one of the most fundamental problems in system theory
and can be considered as a simplified version of problems with noisy data,
nonlinear models, etc. that occur frequently in practice. Before we deal with
these more complex problems, it is useful to study the simplified version,
which might lead to additional insight in the original problems. As such the
solution of the minimal state-space realization problem can also be seen as
the first step towards problems such as model reduction and identification,
which are of important practical interest.
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• In order to analyze systems it is advantageous to have a compact descrip-
tion of the system. The aim of the minimal state-space realization problem
is to find a state-space model of minimal size of the given system. Moreover,
minimal realization techniques can also be used to reduce the order of exist-
ing state-space models.
• The minimal realization is both controllable and observable, it is a good
basis for designing an observer to estimate the states of the system from
measurements of the outputs, and also for subsequently designing a state
feedback controller (using e.g. pole placement).
• Furthermore, the minimal state-space realization problem can be solved
very elegantly using linear matrix algebra methods, that can be implemented
in a numerically stable way.

2.3 Linear time-invariant systems

The evolution of a discrete-time LTI system can be described by a model of
the form

x(n+1) = Ax(n)+Bu(n), (2.1)

y(n) =Cx(n)+Du(n), (2.2)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m, and where u,y and x are the
input, the output and the state respectivly. Model (2.1,2.2) are called state-
space model. The number of components of the state vector x is called the
order of the model. A state-space model will be represented by the 4-tuple
(A, B, C, D) of system matrices. The Markov parameters Gk of an LTI system
are defined by

G0 = D and Gk =CAk+1B for k = 1,2, ... (2.3)

We say that (A, B, C, D) is a realization of the sequence {Gk}∞
k=0 if (2.3) holds.

The realization is minimal if the model order is minimal. The model order of
a minimal realization is called the minimal system order or sometimes also
the McMillan degree of the system.
We can cite the minimal state-space realization methods and their related
extensions as follows:



28 Minimal state-space realization in linear systems

2.4 Minimal realization based on reduction of
nonminimal realizations

Suppose that we have a (not necessarily minimal) nth-order state-space
realization (A,B,C,D) of a given LTI system. Rosenbrock [57] has developed a
procedure to transform this realization into a minimal realization. In fact,
this algorithm is merely a small modification to the standard algorithm for
reducing matrices to echelon form [46].

2.5 Minimal realization of impulse responses

We consider the problem of constructing a minimal realization starting
from the impulse response {Gk}∞

k=0 of the system. Note that we always have
D = G0. Therefore, the problem of reconstructing D can be separated from
the construction of A,B and C. Many algorithms for minimal state-space
realization of impulse responses use the block Hankel matrix [29, 76, 59, 74].

2.6 The minimal partial realization problem

Now we assume that : the transfer function is known exactly, there are an
infinite number of Markov parameters available and the underlying system
is finite dimensional. So given a finite sequence ζN = {Gk}N

k=0 we want to find
a 4-tuple (A,B,C,D) such that D = G0 and CAk−1B = Gk for k = 1,2.....N. In that
case we say that (A,B,C,D) is a partial realization of ζN. Note that trivially we
have D = G0. The 4-tuple (A,B,C,D) is said to be a minimal partial realization
of ζN if and only if the size of A is minimal among all other partial realizations
of ζN [67].

2.7 Minimal realization based on step response
data

In many industrial processes we have step response measurements available
instead of impulse response data. A straightforward way to do the realization
then is to construct impulse response data by differencing or differentiating



2.8 Rational approximation 29

the step response data. However, this operation is not attractive since it
will introduce an amplifcation of high-frequency noise in the data. As an
alternative approach for discrete-time LTI systems, it is possible to use
the step response data directly in a realization method that is a modified
version of the Kung method. This modification is due to van Helmont et
al. In practice, the measurements that are available will not necessarily be
impulse response or step response data, but general input-output data [23].

2.8 Rational approximation

If we apply the z-transform to the discrete-time LTI state-space model (2.1,2.2)
and if we assume that the initial condition of the system is x(0) = 0, then we
obtain the following relation between the input and the output of the system:

Y (z) = G(z)U(z)

with the transfer function H(·) of the system given by

G(z) =C(zI−A)−1B+D =
∞

∑
k=0

Gkz−k (2.4)

Since
G(z) =

1
det(zI−A)

Cad j(zI−A)B+D,

where adj(M) represents the adjoint matrix of M, the transfer function will
always be a rational (matrix) function. If we have a state-space representation
of a system, then the transfer function can be computed using (2.4). On the
other hand, if we have a SISO transfer function

G(z) =

n
∑

i=0
an−izi

n
∑

i=0
bn−izi

, (2.5)
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of a discrete-time LTI system with b0 normalized to 1, then a possible state-
space representation is given by the 4-tuple (A,B,C,D) with

A =


−b1 −b2 · · · −bn−1 −bn

1 0 · · · 0
0 1 · · · 0
... ... . . . ... ...
0 0 · · · 1 0

 ,B =


1
0
...
0

 ,

C =
[
a1−b1a0 a2−b2a0 · · · an−bna0

]
,

D = a0.

Therefore, several authors have developed methods to transform transfer
function matrices into a minimal state-space realization [10, 62]. Since the
state-space representation can be converted into a transfer function and
vice versa.

2.9 Model reduction

In many area of engineering high-order LTI state-space models are derived
and it is desirable if they can be replaced by reduced-order models with-
out incurring too much errors (it is sometimes possible to simply produce
satisfactory high order filters and then save it in reduced-order filters imple-
mentation, which preserves the key properties of the initial filter of full order
,models of separate components to build the model of a large plant, and so
on). Consequently, a wide variety of model reduction methods have been
proposed. There are two methods developed of model reduction.These are the
theories of balanced realizations and optimal Hankel-norm approximations.
With these techniques it is possible to calculate the achievable error between
the frequency responses of the full order model and any reduced order model
of McMillan degree k. It is also possible to put lower bounds on the same
errors [26, 47].
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2.10 Identification

Inferring models from observations and studying their properties is re-
ally what science is about. The models (“hypotheses,” “laws of nature,”
“paradigms,” etc.) may be of more or less formal character, but they have
the basic feature that they attempt to link observations together into some
pattern. System identification deals with the problem of building mathemat-
ical models of dynamical systems based on observed data from the systems.
The given data can almost never be explained by a linear model. There
are several approaches to generate a linear model of a system. We could,
e.g., start from first principles and write down the basic physical laws that
govern the behavior of the system. If the resulting model is nonlinear, we
could linearize it in the operating point of the system in order to obtain a
linear model. This "white-box" approach works for simple examples, but its
complexity increases rapidly for real-world systems. An alternative approach
is system identification, which is also called the "black-box" approach. In
system identification we first collect measurements of the input-output be-
havior of the system and afterwards we compute a model that explains the
measured data. The field of identification has developed rapidly during the
past decades. We can now distinguish two main groups of algorithms to
identify linear LTI models on the basis of measured data: prediction error
methods and subspace methods [6, 43].

2.11 Positive linear systems

Positive systems are, for instance, networks of reservoirs, industrial pro-
cesses involving chemical reactors, heat exchangers and distillation columns,
storage systems (memories, warehouses,...), hierarchical systems, compart-
mental systems (frequently used when modeling transport and accumulation
phenomena of substances in the human bodies), water and atmospheric pol-
lution models, stochastic models where state variables must be nonnegative
since they represent probabilities, and many other models commonly used
in economy and sociology. One is tempted to assert that positive systems
are the most often encountered systems in almost all areas of science and
technology, except electro mechanics, where the variables (voltages, currents,
forces, positions, velocities) may assume either positive and negative values.
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On the other hand, even the simplest electrical circuit, namely, the R - C
circuit, is a positive system since the voltage on the capacitor remains non-
negative if initially such. Positive linear systems, as any other linear system,
satisfy the superposition principle and also a peculiar one, that of compara-
tive dynamics. Such a principle can be expressed by saying that "positive
perturbations of inputs, states, and parameters cannot produce a decrease
of the state and output at any instant of time following the perturbation".
This rule can be quite useful whenever one is interested in abqualitative
analysis of the influence of some design parameter (or input) on the system.
DEFINITION 2.1 (externally positive linear system) A linear system (A,b,cT )
is said to be externally positive if and only if its forced output (i.e., the output
corresponding to a zero initial state) is nonnegative for every nonnegative
input function.
THEOREM 2.1 (condition for external positively) A linear system is externally
positive if and only if its impulse response is nonnegative.

2.12 Max-plus-algebraic models

Max-plus algebra is a class of discrete algebraic systems, also known as
an effective tool for modeling and analyzing several types of discrete event
systems. In this algebraic system, max and plus operations in conventional
algebra are defined as addition and multiplication, respectively.Max-plus
algebra are manufacturing systems, telecommunication networks, railway
traffic networks, and multi-processor computers. An event corresponds to
the start or the end of an activity. For a manufacturing system possible
events are: the completion of a part on a machine, a machine breakdown,
or a buffer becoming empty. In general, models that describe the behavior
of discrete-event systems are nonlinear, but there exists a class of discrete-
event systems for which the model becomes linear when formulated in the
max-plus algebra, which has maximization (represented by ) and addition
(represented as ) as its basic operations. Loosely speaking, this class of
discrete-event systems can be characterized as the class of deterministic
time-invariant discrete-event systems in which only synchronization and
no concurrency occurs. If we write down a model for the behavior of such
a system, then the operations maximization and addition arise as follows.
Synchronization corresponds to maximization (a new activity can only start
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when all the preceding activities have been finished, i.e., after the maximum
of the finishing times of the preceding activities), whereas the duration of
activities corresponds to addition (the finishing time of an activity is the
starting time plus the duration of the activity) [58].

2.13 Linear time-varying models

Time-invariant linear systems no doubt form the most important class of
dynamical systems considered in practice and in the literature. lt is true
that they represent idealizations of the processes encountered in real life.
But, even so, the approximations involved are often justified, and design
considerations based on linear theory lead to good results in many cases
[27]. However, we can also consider time-varying linear systems in which
the system matrices also depend on time. Some authors even consider
models in which the dimensions of the system matrices may change over
time. Minimal state-space realizations for linear time-varying systems can
also be characterized as being both controllable and observable [17].

2.14 Nonlinear models

When we use linear models to model physical systems, we are making some
assumptions that correspond to an idealization of the real world, which is in
fact nonlinear. In analogy with linear systems, some authors define a minimal
realization of a nonlinear system as a realization that is both controllable
and observable. However, where for a linear systems the dimension of the
minimal realization can easily be determined from the input-output data
of the system, the situation is far more complicated for nonlinear systems
[65, 30] .

2.15 Multi-dimensional minimal state-space re-
alization

In recent years there has been an increasing interest in the study of multi-
dimensional systems, due to a wide range of applications in image processing,
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seismological data, geophysics, computer tomography, control of multi-pass
processes, and so on. An n-dimensional state-space model has the following
form:

ẋ = Ax+bu(ī), (2.6)

y(ī) = cx+du(ī), (2.7)

with

ẋ =



x11(i1 +1, i2, ..., in)
x12(i1, i2 +1, ..., in)

...

x1n(i1, i2, ..., in +1)

x21(i1 +1, i2, ..., in)
x22(i1, i2 +1, ..., in)

...

x2n(i1, i2, ..., in +1)
...

xmn(i1, i2, ..., in +1)



, x =



x11(ī)
x12(ī)
...

x1n(ī)

x21(ī)
x22(ī)
...

x2n(ī)
...

xmn(ī)



(2.8)

where (ī) = (i1, i2, ..., in)
The minimal state-space realization problem and the model reduction prob-
lem play an important role in the analysis and design of multi-dimensional
systems because of the large amount of data involved in multi-dimensional
signal processing. However, the general problem of minimal state-space
realization of multidimensional systems has not been solved even for two-
dimensional systems. Nevertheless, for some special cases minimal state-
space realization methods have been derived. However, minimal state-space
realizations have been determined for the following special cases as all-
pole systems, all-zero systems, systems that can be expanded to continued
fraction, systems with separable numerator, systems with separable denom-
inator [69, 45, 3]. At the end of this chapter, we expose an example which
discuss the minimal state-space realization in M-D system of a factorable
2-D transfer functions by Antoniou and al [2].
Consider the linear time invariant 2-D system as in figure 2.1 and described
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by the spatial transfer function

H(z1,z2) =

N
∑

i=0

M
∑
j=0

gi, jz−i
1 z− j

2

N
∑

i=0

M
∑
j=0

hi, jz−i
1 z− j

2

, (2.9)

The problem considered is to determine a minimal state-space model of
system (2.9) for the following case.
The denominator coefficients of (2.9) can be arbitrary, while the numerator
coefficients satisfy the following relationship:

gi, j = gi,0g0, j (2.10)

z−1
1

z−1
1

z−1
2

z−1
2

z−1
1 z−1

2

y(i, j)
g02

g01

1

g0n

u(i, j)

−hmn

g20

g10

1

gm0

−h22

−h11

1
h00

−hm2

−hm1
−hm0

−h2n

−h21
−h20

−h1n

−h12

−h10

−h0m
−h02

−h01

Fig. 2.1 Block diagram of a 2-D transfer function with factorable numerator.
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where gi, j assumed, for simplicity, one.
The state-space model sought is of the Givone-Roesser described as follows:[

xh(n1 +1,n2)

xv(n1,n2 +1)

]
=

[
A1 A2

A3 A4

][
xh(n1,n2)

xv(n1,n2)

]
+

[
B1

B2

]
u(n1,n2), (2.11)

y(n1,n2) =
[
C1 C2

][xh(n1,n2)

xv(n1,n2)

]
+Du(n1,n2), (2.12)

where xh(n1,n2)∈Rnh and xv(n1,n2)∈Rnv,u(i, j)∈R1 is the input vector, and y(i,j)
∈ R1 is the output vector. A 2-D minimal state-space realization having the
form (2.11,2.12) where

A1 =



−h10
h00

1 0 · · · 0

. 0 . . . . . . .

... ... . . . . . . ...

. .
. . . . . . 0

. 0 . . . 1
−hm0

h00
0 . · · · 0


,

A2 =


h10h01

h00
−h11 · · · h10h0n

h00
−h1n

... ... ...
hm0h01

h00
−hm1 · · · hm0h0n

h00
−hmn

 ,

A3 =



− 1
h00

0 · · · · · · 0

0 0 . . . .
... . . . . . . . . . ...

. .
. . . . . . 0

. 0 . . . 0
0 · · · · · · 0 0


,

A4 =



−h01
h00

· · · · · · . . −h0n
h00

1 0 · · · . 0

0 . . . . . . .
... . . . . . . . . . . . . ...
0 · · · · · · 0 1 0


,
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b1 =


g10− h10

h00...
gm0− hm0

h00

 ,

b2 =


1

h00...
0

 ,

c1 =
[

1
h00

0 · · · 0
]
,

c2 =
[
g01− h01

h00
· · · g0n− h0n

h00

]
,

D =
1

h00
.

See Appendix C

2.16 Conclusion

In this chapter, we have cited some problem of realizing minimal state
space. The most of problem has been satisfactorily solved. But the research
has been renewed in various fields such as reduction, approximation and
pattern identification. In particular, for general nonlinear systems and
multidimensional systems, there is still a lot of active research going on.





Chapter 3

Minimal state-space realizations
of proposed structures in lattice
and ladder-lattice form

3.1 Introduction

Realizing a system with a multidimensional state space model having min-
imal dimensionality is a significant and non-trivial problem. The need to
provide minimal realization arises out of several requirements [45, 22]. To
begin with, in general, non-minimal realizations often cause theoretical
and/or computational difficulties. In the N-D systems area, the problem of
constructing state-space realizations is of fundamental importance. Also,
it is important to keep in mind that the amount of data handled by 2-D or
more systems is often very large. Thus, there are pressing needs to reduce
the hardware requirements as much as possible. Furthermore, various prob-
lems such as round-off error analysis, coefficient sensitivity, optimization,
etc., can be studied much more effectively using the state space approach.
These reasons, among others, conspire to characterize the task of minimal
realization as one of great utility. The problem of transforming a transfer
function into a differential equation (a state-space form) is important in
system theory and because of the inherent absence of the non-applicability
of the fundamental theorem of algebra to multidimensional polynomials.
Example, we cannot factored multi-variable polynomials in general ( Ap-
pendix D ) then, we have a crucial problem for multidimensional filters and
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systems. So, we require to have multidimensional systems with a minimal
delay elements. This requirement can be explained not only by the hard-
ware specifications, but also gives no advantage and may cause numerical
difficulties. Since the general problem of minimal state-space realization
of multidimensional systems has not been solved even for two-dimensional
systems. Nevertheless, for some special cases, like all-pole filters, discrete
time lossless bounded real functions,separable and factorable systems and
lattice filters [16, 3, 37, 69, 5, 4], etc.

3.2 Proposed lattice structure and realization

The lattice-ladder realization is the most important among the circuit struc-
tures proposed for implementation of digital filters, because of its robustness
and modularity, and has many applications in digital filtering and adaptive
signal processing. We propose a new lattice-ladder structure of 2-D discrete
filter, composed of a delay unit z−1

1 and a basic lattice section z1z−1
2 . Using a

matrix representation of the elementary lattice sections, we derived a 2-D
transfer functions of the generalized circuit. The generalized realization
with the minimal delay elements utilizes the minimal number of basic lat-
tice sections. Besides, the state space equations for the 2-D digital filter
are presented where the dimension of the matrix–vectors of the proposed
ladder-lattice verifies the minimal state space realization.

3.2.1 Proposed ladder lattice 2-d digital filter

Figure 3.1 shows the proposed lattice–ladder structure for constructing a
discrete 2-D filter. This structure has two basic lattice sections z−1

1 and z1z−1
2 .

The input-output relationship of the proposed lattice structure shown in
figure 3.1 is given by the following matrix representation
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u2(m,n)

−k2

+

+

k2

u1(m,n)

−k1

+

+

k1

u0(m,n)

z−1
1

x1(m,n)
z1z−1

2
x2(m,n)

y(m,n)

∨0∨1∨2

Fig. 3.1 The proposed lattice- ladder 2-D digital filter with two basic lattice
sections.

[
X2(z1,z2)

U2(z1,z2)

]
=

[
1 k2z1z−1

2

k2 z1z−1
2

][
1 k1z−1

1

k1 z−1
1

]
U0(z1,z2) (3.1)

Y (z1,z2) = X2(z1,z2)∨2 +X1(z1,z2)∨1 +X0(z1,z2)∨0 (3.2)

U0(z1,z2) = X0(z1,z2) (3.3)

From ((3.1),(3.2),(3.3)) and after rearrangement, one can construct the trans-
fer function of a 2-D recursive digital filter with order 1×1 as follows

H2(z1,z2) =
Y (z1,z2)

U2(z1,z2)

Thus,

H2(z1,z2) =
∨0 +∨1k1 +∨2k2 +(∨1 +∨2k1k2)z−1

1 +∨2z−1
2 +∨2k1z1z−1

2

1+ k1z−1
1 + k2z−1

2 + k1k2z1z−1
2

(3.4)

3.2.2 Realization

To generalize the structure lattice-ladder of figure 3.1 with two basic lattice
sections z−1

1 and z1z−1
2 , we should cascade Nz−1

1 and Mz1z−1
2 delay units



42
Minimal state-space realizations of proposed structures in lattice and

ladder-lattice form

u(m,n)
+

+

+

+

+

+

+

+

+

+

+

+
x1(m,n)xN+M(m,n)

−kN+M

kN+M

−kN+M− j

kN+M− j

−kN+1

kN+1

−kN

kN

−kN−1

kN−1

−k1
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1z−1
1z−1

1z1z−1
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2

xN+M− j(i−1, j+1)
xN+M− j(i, j)

xN−1(i+1, j)
xN−1(i, j)

∨0∨1∨N−1∨N∨N+1∨N+M− j∨N+M

y(m,n)

Fig. 3.2 The proposed lattice- ladder 2-D digital filter with NxM basic lattice
sections.

as depicted in figure 3.2. Thus, the generalized lattice realization can be
transformed into the following 2-D state-space model

ẋ(i, j) = Ax(i, j)+bu(i, j),
y(i, j) = cx(i, j)+du(i, j),

(3.5)

where

x(i, j) =



xM+N(i, j)
xM+N−1(i, j)

...

xN+1(i, j)

xN(i, j))
...

x1(i, j)


, ẋ(i, j) =



xM+N(i−1, j+1)
xM+N−1(i−1, j+1)

...

xN+1(i−1, j+1)

xN(i+1, j)
...

x1(i+1, j)


(3.6)

where u(i, j) , y(i, j) and x(i, j) are the input , the output and the state, re-
spectively, and A is the state transition matrix. The dimensions of the
matrix–vectors A, b and c are (M+N)×(M+N), (M+N)×1 and 1×(M+N), respec-
tively. The minimal state space model is to transform a transfer function
matrices into a minimal state space realization and and vice versa the state
space representation can be converted into a transfer function. It can be
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shown that the proposed circuit block diagram in figure 3.2 composed of
(M+N) elementary lattice sections generate the minimal dimensions of the
matrices A, b, and c. Applying the 2-D z-transform on (3.6), we obtain the
transfer function which takes the following form

HM+N(z1,z2) =
Y (z1,z2)

UM+N(z1,z2)
= d + c(Z−A)−1b. (3.7)

where
Z = z2z−1

1 IM+N
⊕

...z2z−1
1 IM+N

⊕
z1IM+N

⊕
...z1IM+N

with
⊕

denoting the direct sum.

3.2.3 State space realization

The new 2-D ladder-lattice circuit is generated as depicted in the figure 3.2,
and in order to derive the state-space model (3.6). First, label the outputs of
the delay elements that correspond to the states of the model. Next, write by
inspection one-state equation for every delay element and then, rearrange
the equations to have blocks of every state variables. Finally generalize the
results. We can conclude that the matrix–vectors A, b, c, and the scalar d of
the state space model, are derived. The new 2-D structure has a minimal
number of basics lattice section elements z−1

1 and z1z−1
2 . It is noted that the

cascaded circuit implementation with the minimal delay elements utilizes
the minimal number of basic lattice sections (M+N). The matrices A, b, c,
and the scalar d of the derived 2-D state space model Roesser type [56] have
the following form

A =



−kM+N−1kM+N 1− k2
M+N−1 ... 0 0 0

−kM+N−2kM+N −kM+N−2kM+N−1 1− k2
M+N−2 ... ... 0

... ... ... ...
... ...

... ... . . . . . . ... ...

−k1kM+N
... . . . . . . −k1k2 1− k2

1

−kM+N −kM+N−1 · · · · · · −k2 −k1


,

b =
[
kM+N−1 kM+N−2 0 . . . k1 1

]
T ,

c =
[
c1 c2 . . . . . . cM+N−1 cM+N

]
,
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c j =(1−k2
M+N−L)∨M+N−L−∑

M+N− j
i=1 kikM+N−L∨i−kM+N−L∨0, j = 1, . . . ,N+M−2, L=

j−1,

cM+N−1 = (1− k2
2)∨2−k1k2∨1−k2∨0,

cM+N = (1− k2
1)∨1−k1∨0,

d = ∑
M+N
i=1 ki∨i +∨0.

(3.8)

It is noted that the dimension of the state space x(i,j) is 1× (N +M) and
the matrix A has minimal dimension (N +M)× (N +M), resulting from the
corresponding minimal circuit realization.
ki, i = 1, . . . ,N +M. are reflection coefficients.
∨i, i = 1, . . . ,N +M. are ladder network.

3.2.4 Example

First order 2-D ladder-lattice digital filter

For simplicity consider the first order 2-D ladder-lattice filter, by substituting
N=M=1 into (3.6) and (3.8). In this case, the corresponding state space
realization takes the form

ẋ(i, j) = Ax(i, j)+bu(i, j),
y(i, j) = cx(i, j)+du(i, j),

where

x(i, j) =

[
x2(i, j))
x1(i, j)

]
, ẋ(i, j) =

[
x2(i−1, j+1)

x1(i+1, j)

]
(3.9)

The matrix A, the vectors b, c and the scalar d have the following quadruple
state–space form

[
−k1k2 1− k2

1

−k2 −k1

] [
k1

1

]
[
(1− k2

2)∨2−k1k2∨1−k2∨0 (1− k2
1)∨1−k1∨0

]
∨0 + k1∨1 +k2∨2

 (3.10)
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The dimension of the state space x(i,j) is 1× 2, the number of basics lat-
tice section elements, namely z−1

1 and z1z−1
2 are 2. The dimensions of the

matrix–vectors A, b, c are 2×2, 2×1, 1×2, respectively. The state space is
minimal. The 2-D transfer function of the state space by using (3.7) is

H(z1,z2) = ∨0 + k1∨1 +k2∨2 +
[
(1− k2)

2∨2−k1k2∨1−k2∨0 (1− k1)
2∨1−k1∨0

]
.

.

[[
z2z−1

1 0
0 z1

]
−

[
−k1k2 1− k2

1

−k2 −k1

]]−1[
k1

1

]
,

H2(z1,z2) =
∨0 +∨1k1 +∨2k2 +(∨1 +∨2k1k2)z−1

1 +∨2z−1
2 +∨2k1z1z−1

2

1+ k1z−1
1 + k2z−1

2 + k1k2z1z−1
2

. (3.11)

We can see that the transfer function (3.11) is the same as (3.4).
For ∨2 = 1 and ∨1 = ∨0 = 0. The above transfer function (3.4) takes the form

H2(z1,z2) =
k2 + k1k2z−1

1 + z−1
2 + k1z1z−1

2

1+ k1z−1
1 + k2z−1

2 + k1k2z1z−1
2

(3.12)

It is obvious that the above transfer function (3.12) can provide filters having
all–pass and all–pole characteristics as in [40].

H2(z1,z2) = z−1
2

D2(z−1
1 ,z−1

2 )

D2(z1,z2)

Notice in particular that, for the ladder network ∨M+N = 1 and ∨i = 0, i =
0,1, ..M+N−1 , we find the proposed structure in [40].

2-D ladder-lattice filter with order 2×1

In this example we consider a low dimension filter N = 2 and M = 1, the 2×1
2-D ladder-lattice filter is shown in figure 3.3, the corresponding state space
realization takes the form,

x(i, j) =

x3(i, j)
x2(i, j)
x1(i, j)

 , ẋ(i, j) =

x3(i−1, j+1)
x2(i+1, j)
x1(i+1, j)

 (3.13)
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u2(m,n)

−k2

+

+

k2

u1(m,n, l)

−k1−k3

+

+

k1k3

u0(m,n)

z−1
1

x1(m,n)
z1z−1

2 z−1
1

x2(m,n)x3(m,n)

u3(m,n)

y(m,n)

∨0∨1∨2∨3

+

+

Fig. 3.3 Lattice- ladder 2-D digital filter with N=2 and M=1.

The quadruple matrix–vectors form for this example is
−k2k3 1− k2

2 0
−k1k3 −k1k2 1− k2

1

−k3 −k2 −k1


k2

k1

1


[
(1− k2

3)∨3−k1k3∨1−k2k3∨2−k3∨0 (1− k2
2)∨2−k1k2∨1−k2∨0 (1− k2

1)∨1−k1∨0

]
∨0 + k1∨1 +k2∨2 +k3∨3


(3.14)

The dimension of the state space x(i, j) is 1× 3. The dimensions of the
matrix–vectors A, b, c are 3×3, 3×1 and 1×3, respectively. That proves the
implementation is minimal.

3.3 Interpretation

In this section we propose a new ladder-lattice circuit realization of 2-D
IIR digital filters. The transfer function is calculated by using the matrix
representations and derived the corresponding state-space realizations of a
cascaded lattice-ladder 2-D digital structured filter. The minimal of delay
elements is equal to the minimal number of 2-D elementary lattice sections.
The configuration of the implementation of 2-D recursive discrete filter is
verified by the vector Givone-Roesser state-space form. This generalized
lattice realizations is characterized by a minimal realization. In future work
we use the low dimension filter example to design two specific filter 2-D
notch filters.
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3.4 Proposed 3-D Lattice Structure

In this section we propose a new lattice structure of 3-D digital filter as in
figure 4.11, composed of two delay units z−1

1 , z−1
2 and basic lattice section

z1z−1
3 . From this structure and using a matrix representation of the basic

lattice sections, we derived transfer functions of the proposed 3-D digital
lattice filters, 3-D FIR, and 3-D all-pass filters. The proposed structure is
composed by a minimal number of delays and a minimal number of basic
lattice sections. Furthermore, we have considered the description of the
proposed lattice structure by using a state-space n-D (n > 2) Roesser form
description presented in [25]. and the implementations suggested by the
authors in [40, 5, 39] Besides, the state space equations for 3-D digital filter
are presented where the dimension of the matrices of the proposed lattice
structure verify the minimal state space realization. With the characteristics
of unit magnitude and prescribed phase, specifications can be preserved at
all frequencies. These properties enable all-pass filters to play a vital role in
various signal processing applications [36, 20, 40].

3.4.1 Proposed FIR Lattice Structure

We propose a lattice structure with two delay units z−1
1 , z−1

2 and basic lattice
section z1z−1

3 to constructing a first order 3-D Finite Impulse Response (FIR)
digital filter illustrated in figure 3.4. The 3-D forward transfer function can
be computed using the following matrix:[

Y (z1,z2,z3)

U3(z1,z2,z3)

]
=

[
1 k2z1z−1

3

k2 z1z−1
3

][
1 k1z−1

2

k1 z−1
2

][
1 k0z−1

1

k0 z−1
1

]
X3(z1,z2,z3) (3.15)

x(m,n, l)

−k0

+

+

k0

−k1

+

+

k1

−k2

+

+

k2

y(m,n, l)

z−1
1

u(m,n, l)
z−1

2 z1z−1
3

Fig. 3.4 3-D first order FIR lattice structure.
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From (3.15), one can get the expressions of the transfer function of a 3-D
FIR digital filter in the order 1×1×1 is given by

T (z1,z2,z3) =
Y (z1,z2,z3)

X(z1,z2,z3)
(3.16)

where

T (z1,z2,z3) = 1+ k0k1z−1
2 + k0z−1

1 + k1z−1
1 z−1

2 + k1k2z1z−1
3 + k0k2z1z−1

2 z−1
3 + k2z−1

2 z−1
3 + k0k1k2z−1

3

(3.17)

3.4.2 Proposed Recursive Lattice Structure

Based on the above 3-D FIR lattice structures in figure 3.4.We propose a
3-D lattice structure with three basic lattice sections for constructing a 3-D
recursive digital filter figure 3.5. From figure 3.5, we have the following
matrix representations[

X3(z1,z2,z3)

U3(z1,z2,z3)

]
=

[
1 k2z1z−1

3

k2 z1z−1
3

][
1 k1z−1

2

k1 z−1
2

][
1 k0z−1

1

k0 z−1
1

]
Y (z1,z2,z3)(3.17)

From (??), one can get the expressions

X3(z1,z2,z3) = T (z1,z2,z3)Y (z1,z2,z3) (3.18)

U3(z1,z2,z3) = S(z1,z2,z3)Y (z1,z2,z3) (3.19)

where

T (z1,z2,z3)= 1+k0k1z−1
2 +k0z−1

1 +k1z−1
1 z−1

2 +k1k2z1z−1
3 +k0k2z1z−1

2 z−1
3 +k2z−1

2 z−1
3 +k0k1k2z−1

3

(3.20)
S(z1,z2,z3) = k2+k2k0k1z1z−1

2 +k1z2z−1
3 +k0z1z−1

3 +k2k0z−1
1 +k2k1z−1

2 +k0z2z−1
3 z−1

1 +z−1
3

(3.21)
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x3(m,n, l)

−k2

+

+

k2

x2(m,n, l)

−k1

+

+

k1

x1(m,n, l)

−k0

+

+

k0

y(m,n, l)

z−1
1

u1(m,n, l)
z−1

2
u2(m,n, l)

z1z−1
3

u3(m,n, l)

Fig. 3.5 The proposed 3-D recursive lattice structure.

Based on (3.18), we obtain the transfer function of a 3-D digital all-pole
filter

Y (z1,z2,z3)

X3(z1,z2,z3)
=

1
T (z1,z2,z3)

After rearrangement, one can get the following relationship

S(z1,z2,z3) = z−1
2 z−1

3 T (z−1
1 ,z−1

2 ,z−1
3 ) (3.23)

From (3.18),(3.19) and (3.23), one can construct the forward transfer function
of 3-D recursive digital all-pass filter of order 1×1×1 as follows

HA(z1,z2,z3) =
U3(z1,z2,z3)

X3(z1,z2,z3)
= z−1

2 z−1
3

T (z−1
1 ,z−1

2 ,z−1
3 )

T (z1,z2,z3)
(3.24)

It should be noted that the numerator and denominator polynomials of
HA(z1,z2,z3) are mirror images of each other, which is a general property of
all-pass system [54].

3.4.3 State Space Realization

To construct a general 3-D recursive digital all-pass filter with order N×N×N
, we generalize the structure of figure 3.5 by cascading N z−1

1 , N z−1
2 delay

units and N z1z−1
3 basics lattice section as shown in figure 3.6. The related

state space 3-D model have the following structure
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u(m,n, l)
+

+

+

+

+

+

+

+

+

+

+

+
x0(m,n, l)xN−1(m,n, l)xN(m,n, l)x2N−1(m,n, l)x2N(m,n, l)x3N−1(m,n, l)

−k3N−1

k3N−1

−k2N

k2N

−k2N−1

k2N−1

−kN

kN

−kN−1

kN−1

−k0

k0

z−1
1z−1

1z−1
2z−1

2z1z−1
3z1z−1

3
y(m,n, l)

Fig. 3.6 The proposed generalized 3-D recursive digital all-pass filter with
order N×N×N.

ẋ(i, j, l) = Ax(i, j, l)+bu(i, j, l),
y(i, j, l) = cx(i, j, l)+du(i, j, l),

(3.25)

where:

x( i, j, l ) =



x3N−1( i, j, l )
x3N−2( i, j, l )

...

x2N( i, j, l )
x2N−1( i, j, l )

...

xN( i, j, l )

xN−1( i, j, l )
...

x0( i, j, l )



, ẋ( i, j, l ) =



x3N−1( i−1, j , l +1 )
x3N−2( i−1, j , l +1 )

...

x2N( i−1, j , l +1 )
x2N−1( i, j+1 , l )

...

xN( i, j+1 , l )

xN−1( i+1, j , l )
...

x0( i+1, j , l )


and u(i, j, l) , y(i, j, l) is respectively the input and the output, A is the transi-
tion matrix. A, b, c, and d are given by

A =



−k3N−1k3N−2 k3N−1k3N−3 ... ... k3N−1k0 −k3N−1

k2
3N−2−1 −k3N−2k3N−3 ... ... −k3N−2k0 k3N−2

0 k2
3N−3−1 ... ... k3N−3k0 −k3N−3

0 0 . . . . . . ... ...
... ... . . . . . . ... ...
0 · · · · · · 0 k2

0−1 −k0


,
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b =
[
k3N−2 (1− k2

3N−2)/k3N−1 0 . . . . . . 0
]

T, k3N−1 ̸= 0,

c =
[
1− k2

3N−1 0 . . . . . . 0
]
,

d = k3N−1.
(3.26)

The matrices A, b and c of the above 3-D state space model, having the
following dimensions respectively: 3N× 3N, 3N× 1 and 1× 3N. It is noted
that the generalized circuit and state space realizations of the proposed
lattice structure composed of 3N basic lattice sections produces the minimal
dimensions of the matrices A, b and c.
Applying the z-transform for both sides of (3.25), we obtain the 3-D transfer
function which takes the following form:

H(z1,z2,z3) =
Y (z1,z2,z3)

U(z1,z2,z3)
= d + c(Z−A)−1b. (3.27)

where
Z = z3z−1

1 In
⊕

...z3z−1
1 In

⊕
z2In

⊕
...z2In

⊕
z1In

⊕
...z1In

with
⊕

denoting the direct sum.
We can obtain the transfer function HA(z1,z2,z3) of (3.24) from (3.27) by
substituting N = 1 into (3.26) and (3.27)

HA(z1,z2,z3)= k2+
[
1− k2

2 0 0
]

z3z−1
1 0 0

0 z2 0
0 0 z1

−
−k2k1 k2k0 −k2

k2
1−1 −k1k0 k1

0 k2
0−1 −k0



−1 k1

(1− k2
1)/k2

0

 ,

HA(z1,z2,z3) = z−1
2 z−1

3
T (z−1

1 ,z−1
2 ,z−1

3 )

T (z1,z2,z3)
. (3.28)

3.4.4 Interpretation

In this section, we have proposed a new lattice structure of a 3-D digital filter,
we calculate the transfer function by using the matrix representations. 3-D
all pass lattice filters can be constructed. It is noted the transfer function
all pass lattice digital filter derived has the mirror-image symmetry relation
between the numerator and denominator polynomials as in the all-pass
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systems. We calculate the state-space realizations of a 3-D lattice all pass
digital structured filter and using the Roesser 3-D state-space model to verify
the characteristics of the constructed 3-D recursive digital lattice filter. This
circuit configuration is characterized by a minimal realization.



Chapter 4

Application of the proposed
realization two and
Three-Dimensional IIR Notch
Filter Design:simulation and
interpretation

4.1 Introduction

Multidimensional digital filters have maintained tremendous vitality over
the last three decades for numerous applications in diverse areas such
as image processing, geophysics, radar, bio-medical engineering, digital
control systems and many more. Digital filters are mainly used to change
the characteristics of an input digital signal into an output digital signal
with desirable properties. Two classes of digital filters can be distinguished:
infinite-impulse response (IIR) or finite-impulse response (FIR) with recursive
or non-recursive operations. Digital notch filters have the property of remov-
ing a single non-desired frequency component or a narrow band sinusoidal
interference from an input signal. Notch filters can be FIR or IIR filters.
The latter are preferred in practice when transition zone bandwidth is very
narrow because it requires less arithmetic operations compared to FIR notch
filter. Different approaches are proposed for the design of IIR notch filters.
One of these approaches uses all pass filters, which is considered as an
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effective analytic method. However, to eliminate unknown or time-varying
narrow-band components from observed time series, it is preferred to use
adaptive notch filter. There are other techniques based on: wavelet transform
and statistical curve fitting and feedback structure. The purpose of this
chapter is to present a design procedure for 2-D and 3-D IIR notch filter.

4.2 Notch filter characteristics

In signal processing, a band-stop filter or band-rejection filter known also as
a notch filter, blocks and rejects frequencies that lie between its two cut-off
frequency points passes all those frequencies either side of this range. It is
the opposite of a band-pass filter. A notch filter is a band-stop filter with a
very narrow stopband. The amplitude response ∥H(e jω)∥ of a typical notch
filter designated as shown in figure 4.1, characterized by the notch frequency
ωn, and 3-dB rejection bandwidth BW. For an ideal notch filter, BW should
be zero,the passband magnitude should be unity (zero dB) everywhere either
side of the notch and the attenuation at the notch frequency should be ifinite
Unfortunately, the ideal notch filter is not physically realizable and must be
approximated in practice.The important characteristics of a notch filter are:
a. The amount of insertion loss in its pass region.
b. The flatness of the amplitude response in the bandpass region.
c. The depth of the rejection notch.
d. The width of the rejection notch at its ultimate rejection level.
e. The width of the rejection notch measured down from the band pass
region of the notch.
Typically it is desired to have the lowest possible loss and no ripple in the
pass region, as much depth at the ultimate point in the notch as possible,
good width at the bottom of the notch and very narrow width at the 3-db
points on the notch.

4.3 Applications of notch filters

Notch filter circuits are widely used in television receivers in the IF section to
eliminate discrete frequency regions where unwanted carriers appear from
adjacent channels. Notch filters are also used widely in cable television
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systems to deny access to certain signals or alternatively to remove interfer-
ence in other signals. Also notch filters are used at different technologies as
follows
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Fig. 4.1 The magnitude response of 1D notch filter ∥H(e jω)∥.

1. In signal and image processing Notch filters are highly preferred to
remove the contamination on an image and reject noise.

2. Notch filter are used as noise reducers in ( telephone line and DSL
internet services)

3. Notch filters are generally used to cancel 50/60 Hz power line interfer-
ence in the recording of electrocardiograms (ECGs).

4. Notch filters help to remove the interference on the line which will
reduce the DSL performance.

5. These are used in music and some acoustic applications.

6. Notch filters are used to eliminate the unwanted harmonics in commu-
nication electronics .
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7. These are used to reduce the static on radio, which are commonly used
in our daily life.

8. These are used to reduce blocking artifact from DCT coded image .

4.4 Digital notch filter design techniques

A notch filter is a device which is generally presumed to pass all frequencies
except for a very narrow band which is ’notched out’. This type of filter is
sometimes called a band elimination filter as well. In practice, the notch
filter may have only a limited band for passing signals but typically this
band width is several octaves wide. Digital Notch filters may be designed as
finite impulse response (FIR) or infinite impulse response (IIR) structures
by using standard design techniques. A number of design approaches
are available in the literature for IIR as well as for FIR filters [52, 75, 70,
32]. These FIR and IIR digital notch filters have their own specific features.
Based upon the requirements for the specific application one of the above
digital filter is chosen.The IIR notch filters are preferred in practice when
transition zone bandwidth is very narrow because it requires less arithmetic
operations compared to FIR notch filter. It can be designed for lower orders
to approximate a given set of specifications designs. This implies that the
signal processing by IIR filters is faster than that by the FIR ones. However,
the implementation complexity of an FIR filter is not of much concern as
tremendous advancement in DSP has taken place due to FFT techniques and
field programmable gate array (FPGA) technology. The major problems with
IIR filters are that they are essentially unstable and can not provide linear
phase response.There are different approaches proposed for the design of
IIR notch filters.

1. Approaches uses all pass filters, which is considered as an effective
analytic method [49, 64] and exhibits low sensitivity to coefficient quan-
tization and allows standard low-pass, high-pass and band-pass (band-
stop) filters to be realized as well as with arbitrary number of bands.
Such approach can be modified and applied on design of IIR notch
filters.
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2. Approaches transforming an analog notch filter into digital IIR filter.
However this method preserve only magnitude characteristic and it is
not convenient for transformation of analogue filters with linear phase.

3. Approach is pole-zero placements in the z plane [49] with effort to
control size of the pass-band width and to solve problem of asymmetric
pass-band boundaries according to notch frequency position.

4. Adaptive notch filter are used to eliminate unknown or slowly time-
varying narrow-band components from observed time series (Digital
linear phase notch filter design based on llR all-pass filter application)
[35].

5. There are other techniques based on: wavelet transform and statistical
curve fitting [31] and feedback structure [48]

4.5 Notch filter based on all-pass filter

The authors in [54] have developed an interesting design approach of a notch
filter based on all-pass filter. The all-pass filter is implemented in a lattice
structure, consider the all-pass lattice topology shown in figure 4.2. It has
the all-pass transfer function

u(n)

−k2

+

+

k2

−k1

+

+

k1

z−1z−1

y(n)

Fig. 4.2 Lattice second-order all-pass filter.

A(z) =
Y (z)
U(z)

=
k2 + k1(1+ k2)z−1 + z−2

1+ k1(1+ k2)z−1 + k2z−2 . (4.1)

Hn(z) =
1+A(z)

2
(4.2)
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Hr(z) =
1−A(z)

2
(4.3)

We can derive (4.2) and (4.3) from (4.1) this means that we can construct
notch and perfect resonant filters from an all-pass filter [15] as in figure 4.3.
The critical frequency ωc and the 3-dB bandwidth are defined as function of
lattice coefficients k1 and k2

ωc = arccos(−k1) (4.4)

k2 =
1− tan(BW/2)
1+ tan(BW/2)

. (4.5)
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Fig. 4.3 The magnitude response of notch filter (∥Hn(e jω∥) and perfect resonant
filter (∥Hr(e jω∥).

4.6 Two-Dimensional IIR Notch Filter Design

There are various methods available in the literature for the design and
performance analysis of two IIR and FIR notch/multi-notch filters [49, 35,
73, 61, 12, 68, 72, 63]. In this section we present a design procedure for
a 2-D IIR notch filter using a 2-D all-pole digital filter. The 2-D all-pole is
based on a lattice-ladder structure which is often wont to derive digital filter
structures with modular circuitry that is suitable for implementation. Also,
from the circuit point of view, we present an implementation of 2-D transfer
functions where it is characterized by two lattice coefficients which are
expressed in terms of the notch frequency and the 3-dB rejection bandwidth.
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The increase of the coefficient k3 makes the notch filter have a narrower stop
bandwidth. The coefficient k1 can effectively tunes the notch frequency. The
advantage of this design is to concept the desired notch filter directly without
using any realization approaches which may cost greater computational
complexity.

4.6.1 Proposed lattice ladder structure

In this section, we propose a discrete 2-D filter by employing a lattice-type
IIR filter [39], which has two delay units z−1

1 , z−1
1 and an elementary lattice

section z1z−1
2 as shown in figure 4.4. According to figure 4.4 the relationship

between input-output is given by X3(z1,z2)

U3(z1,z2)

=

 1 k3z1z−1
2

k3 z1z−1
2


 1 k2z−1

1

k2 z−1
1


 1 k1z−1

1

k1 z−1
1

U0(z1,z2) (4.6)

Y (z1,z2)=X3(z1,z2)∨3 +X2(z1,z2)∨2 +X1(z1,z2)∨1 +X0(z1,z2)∨0 (4.7)

U0(z1,z2) = X0(z1,z2) (4.8)

u2(m,n)

−k2

+

+

k2

u1(m,n)

−k1−k3

+

+

k1k3

u0(m,n)

z−1
1

x1(m,n)
z1z−1

2 z−1
1

x2(m,n)

u3(m,n)

y(m,n)

∨0∨1∨2∨3

+

+

Fig. 4.4 The proposed Lattice-ladder 2-D digital filter.
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Using Equations (4.6),(4.7) and (4.8) and figure 4.4, the above transfer
function can be computed as follows

H3(z1,z2) =
Y (z1,z2)

U3(z1,z2)
,

H3(z1,z2)=
a1 +(∨1 +∨2k1(1+ k2)+∨3k1k3(1+ k2))z−1

1 + k1(1+ k2)∨3 z−1
2 +∨3k2z1z−1

2 +(∨2 + k2k3∨3)z−2
1 +∨3z−1

1 z−1
2

1+ k1(1+ k2)z−1
1 + k3k1(1+ k2)z−1

2 + k2k3z1z−1
2 + k2z−2

1 + k3z−1
1 z−1

2
,

(4.9)

where, a1 = ∨0 +∨1k1 +∨2k2 +∨3k3.

ki, i = 1, . . . ,3. are reflection coefficients.
∨i, i = 1, . . . ,3. are ladder network.
If ∨i = 0, i = 0, . . . ,2 and ∨3 = 1, (4.25) can provide filters having all–pass and
all–pole characteristics [40]. The 2-D lattice all-pass structure keeps stable
if and only if all reflection coefficients satisfy ∥ki∥< 1 [39].
From (4.9) and figure 4.5, the transfer function of an all-pole is as follows

H3(z1,z2) =
∨0

1+ k1(1+ k2)z−1
1 + k3k1(1+ k2)z−1

2 + k2k3z1z−1
2 + k2z−2

1 + k3z−1
1 z−1

2
,

(4.10)
where the ladder network are ∨1 = ∨2 = ∨3 = 0, and ∨0 = 1. The poles of
HAP(e jω1,e jω2) do not depend on the gain factor ∨0 and any variations in ∨0

can not change the response.

4.6.2 Two-Dimensional IIR Notch Filter Design

Generally, The ideal 2-D IIR notch filter HIn(e jω1,e jω2) obeys the frequency
response

HIn(e jω1 ,e jω2)

{
0, if (ω1,ω2) = (±ω1N ,±ω2N)

1, otherwise
(4.11)

where (ω1N ,ω2N) is the notch frequency.

4.6.3 Design Two-Dimensional IIR Notch Filter using an
all-pole filter

In this section, 2-D IIR notch filter design using an all pole filter will be
investigated. Based on the 2-D all pole filter (4.10), the block diagram of the
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2-D IIR notch filter is presented in figure 4.5 and the transfer function can
be written as

Hn1(e jω1,e jω2) =
Y1(z1,z2)

U3(z1,z2)
= ∨0−HAP(e jω1,e jω2) (4.12)

Hn1(z1,z2) =
(k1(1+ k2)z−1

1 + k3k1(1+ k2)z−1
2 + k2k3z1z−1

2 + k2z−2
1 + k3z−1

1 z−1
2 )∨0

1+ k1(1+ k2)z−1
1 + k3k1(1+ k2)z−1

2 + k2k3z1z−1
2 + k2z−2

1 + k3z−1
1 z−1

2
.

(4.13)
The transfer function (4.13) may be realized where k1 , k2 and k3 denote the
lattice coefficients. The filters to be chosen are IIR notch filter for which
there are results about how to avoid distortions. Thus, if BW denote the
3-dB notch band-width obtained [53], ω0 the center frequency, and (ω1n,ω2n)

the notch frequency, the design equations of the notch filter are

u2(m,n)

−k2

+

+

k2

u1(m,n)

−k1−k3

+

+

k1k3

u0(m,n)

z−1
1

x1(m,n)
z1z−1

2 z−1
1

x2(m,n)

u3(m,n)

−+
y1(m,n)

∨0

+

+

Fig. 4.5 The proposed 2-D IIR Notch Filter structure.

• The coefficient that determines the notch frequency

k1 =−cosω0, (4.14)

• The notch frequency ω2n = ω0

• If the frequency ω0 is positive

ω1n =−π +ω0. (4.15)
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If the frequency ω0 is negative

ω1n = π +ω0. (4.16)

• We take the value of k2 is more than 0.9997.

• The coefficient that determines the bandwidth of the notch filter

k3 =
1− tan(BW/12)
1+ tan(BW/12)

. (4.17)

In order to keep the magnitude response between one and zero, ∨0 must be
one divided by the maximum value of the magnitude response.
After developing the equations calculating the parameters of the lattice ladder,
the design of notch filter is done by knowing 3-dB bandwidth and the center
frequency ω0.

4.6.4 Parallel of Two-Dimensional IIR Notch Filter

The structure of 2-D notch filter is consisted of two structures of notch filter
figure 4.5 in two parallel branches Hn1(z1,z2) and Hn1(z2,z1) as in figure 4.6,
and the design equations become

• The equations (4.14), (4.15), (4.16) and (4.17) remain the same

• The coefficient that determines the notch frequency k̂1 = cosω0

• We take the value of k̂2 is more than 0.9997.

• The coefficient that determines the bandwidth of the notch filter k̂3 = k3



4.6 Two-Dimensional IIR Notch Filter Design 63
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Fig. 4.6 The parallel 2-D IIR Notch Filter structure.

4.6.5 simulation examples

Simulation results are presented as comparisons with the two designs. We
choose the ω0 = 0.4π and a 3-dB notch bandwidth BW = 0.02π.

• The design of the 2-D IIR notch filter using an all-pole filter

k1 =−cos(0.4π) =−0.3090,(ω1n,ω2n) = (−0.6π,0.4π),

k3 =
1− tan(0.02π/12)
1+ tan(0.02π/12)

= 0.9896,we take k2 = 0.99979.

Therefore, the 2-D magnitude response ∥Hn1(e jω1,e jω2)∥ is presented in
figure 4.7 .Figure 4.7 shows a 2-D notch filter where the cutoff frequency
is localized at (ω1n,ω2n)=(−0.6π,0.4π)
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(a) (b)

Fig. 4.7 The magnitude response of 2D notch filter ∥Hn1(e jω1,e jω2)∥).

We remark that the 3-dB bandwidth vicinity about the notch frequency
ω1N and ω2N is not uniform figure 4.7 (a,b).

• The design of the 2-D IIR notch filter using the Parallel Two-Dimensional
IIR Notch Filter.

k1 =−cos(0.4π) =−0.3090, k̂1 = cos(0.4π) = 0.3090,

ω1n =−0.6π, k̂3 = k3 =
1− tan(0.02π/12)
1+ tan(0.02π/12)

= 0.9896,

we take k̂2 = k2 = 0.99979.
Therefore, the magnitude response ∥HN(e jω1,e jω2)∥ is depicted in figure
4.8. Figure 4.8 shows a magnitude response of 2-D notch filter where the
cutoff frequency is localized at (ω1n,ω2n)=(−0.6π,0.4π). We have compared
the 3-dB vicinity of ω1 and ω2 about the notch frequency for these
structures figure 4.5 and figure 4.6 where there magnitudes response
are shown in figure 4.7 (a,b) and figure 4.8 (a,b). It has been observed
that the realized 3-dB band width succeeds much better in the stopband
figure 4.8 (a,b).
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(a) (b)

Fig. 4.8 The magnitude response of 2D notch filter ∥HN(e jω1,e jω2)∥).

4.6.6 2-D IIR notch filter design

The following example is presented to design a 2-D IIR notch filter with
the specification as (ω1N ,ω2N) = (−0.5π,0.5π) and BW= 0.02π. We used the
derived equations presented in the subsection (4.6.4) to synthesis the 2-D
notch filter magnitude (∥HN(e jω1,e jω2)∥). Figure 4.9 (a) show the resultant
magnitude response, the resulting design satisfies the specification where,
the magnitude response (∥HN(e jω1,e jω2)∥) has flat response over the usable
range (ω1,ω2) with the exception of notch frequency (ω1N ,ω2N) = (−0.5π,0.5π).
To achieve a better efficiency of the proposed notch filter, we should illus-
trate the loss (1−∥HN(e jω1 ,e jω2)∥), the loss is presented in figure 4.9 (b), the
frequency response has no ripple in the pass region even in the area of the
notch frequencies, which is more noticeable in figure 4.9 (b).
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(a)

(b)

Fig. 4.9 (a) The magnitude response of 2-D notch filter ∥HN(e jω1,e jω2)∥), (b)
The loss (1−∥HN(e jω1,e jω2)∥) of the designed notch filter ,with (ω1N ,ω2N) =
(−0.5π,0.5π).

4.6.7 Removing interference of an image

Consider the test image I in figure 4.10 (a), I is the “Lena” (512 by 512) black
and white. The degraded image In in figure 4.10 (b) is generated by (4.18).

In = I +80cos(−0.5πn+0.5πm) (4.18)

Due to the sinusoidal interference, we see a clear pair of symmetric peak
impulses in the Fourier spectrum of the degraded image In positioned at
(−0.5π,0.5π) and (0.5π,−0.5π) in figure 4.10 (c). We processed the corrupted



4.6 Two-Dimensional IIR Notch Filter Design 67

image by the proposed 2-D notch filter (∥HN(e jω1,e jω2)∥), the output image is
seen clearly, which is shown in figure 4.10 (d), and we can observe that the
interference has been removed.

(a) (b)

(c) (d)

Fig. 4.10 Example of single sinusoidal interference removal. (a) Original
image (b) Corrupted image (c) Image with interference DFT magnitude (d)
Image restored by using 2-D IIR notch filter ∥HN(e jω1,e jω2)∥.

4.6.8 Interpretation

This section has suggested a new design procedure of 2-D IIR notch filters
with relatively low ladder-lattice structural complexity. The digital notch
filter is implemented as two all-pole parallel system. The frequency response
has a uniformly flat passband gain and zero gains at the notch frequencies.
Besides, there are no ripples appears in the passband. Finally, the design of
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the proposed 2-D notch filter is presented, and an application example to
remove the contamination on an image.

4.7 3-D IIR Notch Filter Design

Digital notch filters are designed to reject a particular frequency highly while
leaving other frequency unaffected [13, 38, 48, 50, 64, 31, 51]. This section
addresses the design problem of a 3-D IIR notch filter [8, 7]. The proposed
filter is realized using two filters. The first one is an IIR filter based on
all-pass filter which can be designed and implemented via lattice structure.
It allows us to adjust the 3-dB rejection bandwidth of the notch filter with
the lattice coefficient independently of the second filter design. The second
one is a 3-D spatial straight line filter [9] and it is designed to localize the
notch frequency. In addition, a 3-D analogue Prototype filter is designed
using frequency transformation.

4.7.1 3-D IIR All-pass Filter Design

Figure 4.11 shows the proposed lattice structure for constructing a 3-D
IIR all-pass digital filter with order 1×1×1. This structure has three basic
lattice sections z−1

1 , z−1
2 and z1z−1

3 . The input-output relationship of the
proposed lattice structure shown in figure 4.11 is given by the following
matrix representation[

X3(z1,z2,z3)

U3(z1,z2,z3)

]
=

[
1 k2z1z−1

3

k2 z1z−1
3

][
1 k1z−1

2

k1 z−1
2

][
1 k0z−1

1

k0 z−1
1

]
Y (z1,z2,z3) (4.19)

From (4.19), one can get the expressions

X3(z1,z2,z3) = T (z1,z2,z3)Y (z1,z2,z3) (4.20)

U3(z1,z2,z3) = S(z1,z2,z3)Y (z1,z2,z3) (4.21)

where

T (z1,z2,z3) = 1+ k0k1z−1
2 + k0z−1

1 + k1z−1
1 z−1

2 + k1k2z1z−1
3 + k0k2z1z−1

2 z−1
3 + k2z−1

2 z−1
3 + k0k1k2z−1

3

S(z1,z2,z3) = k2 + k2k0k1z1z−1
2 + k1z2z−1

3 + k0z1z−1
3 + k2k0z−1

1 + k2k1z−1
2 + k0z2z−1

3 z−1
1 + z−1

3
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After rearrangement, one can get the following relationship

S(z1,z2,z3) = z−1
2 z−1

3 T (z−1
1 ,z−1

2 ,z−1
3 ) (4.22)
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Fig. 4.11 Proposed 3-D recursive digital all-pass filter with order 1×1×1.

From (4.20) and (4.21), one can construct the forward transfer function
of 3-D recursive digital all-pass filter of order 1×1×1 as follows

HA(z1,z2,z3) =
U3(z1,z2,z3)

X3(z1,z2,z3)
= z−1

2 z−1
3

T (z1,z2,z3)

T (z−1
1 ,z−1

2 ,z−1
3 )

(4.23)

It should be noted that the numerator and denominator polynomials of
HA(z1,z2,z3) are mirror images of each other, which is a general property of
all-pass system.

4.7.2 3-D IIR filter design

Based on the transfer function of the all-pass filter given by 4.23, we have
proposed an IIR filter shown in figure 4.12 and given by the following transfer
function

Hp(z1,z2,z3) =
1
2
(1−HA(z1,z2,z3)) (4.24)

This filter is the key of our design and has the advantages of an all-pass
filter with computationally coefficient lattice filter realization and very low
sensitivity.
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Fig. 4.12 Implementation of Hp(z1,z2,z3).

Besides, the rejection bandwidth can be adjusted by the lattice coefficient
k2 where the coefficients k0 and k1 are kept as small as possible. Figure 4.13
illustrates the 2-D magnitude response of Hp(z1,z2,z3) for different values
of k2 where ω3 is chosen to be fixed. It can be remarked that the rejection
bandwidth progressively decreases as k2 increases. The next subsection
presents the straight line filter.

Fig. 4.13 The rejection bandwidth can be adjusted by varying the coefficient
k2.

4.7.3 3-D IIR spatial straight line filter design

Figure 4.14 illustrates a first-order continuous-domain 3-D inductance-
resistance system [9]. The voltage transfer function of this system is given



4.7 3-D IIR Notch Filter Design 71

by

T1(s1,s2,s3) =
U(s1,s2,s3)

V (s1,s2,s3)
=

R
R+ s1L1 + s2L2 + s3L3

(4.25)

V (s1,s2,s3)

s1L1 s2L2 s3L3

R U(s1,s2,s3)

Fig. 4.14 First order 3-D inductance resistance system.

The frequency response of (4.25) is given by

T1( jω1, jω2, jω3) =
R

R+ j (ω1L1 +ω2L2 +ω3L3)
(4.26)

The magnitude response of T1( jω1, jω2, jω3) has a maximum value of unity
where

ω1L1 +ω2L2 +ω3L3 = 0 (Resonant plane) (4.27)

and T1( jω1, jω2, jω3) =
1√
2

ω1L1 +ω2L2 +ω3L3 =±R (-3dB planes) (4.28)

Discrete version of the planar-resonant filters are obtained by subjecting the
analogue 3-D transfer function T1(s1,s2,s3) to the triple bilinear transforma-
tion

si =
zi−1
zi +1

, i = 1,2,3 (4.29)

The resulting discrete transfer function

Hs(z1,z2,z3) = ∥T1(s1,s2,s3)∥si=
zi−1
zi+1

(4.30)

where we replace si by (zi−1)
(zi+1) , giving for the discrete planar resonant filters,

after multiplying the numerator and denominator of the above transfer
function by (z1 +1)(z2 +1)(z3 +1), one can get

Hs(z1,z2,z3) =
R(z1 +1)(z2 +1)(z3 +1)

Ds(z1,z2,z3)
(4.31)
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where Ds(z1,z2,z3) = (R(z1 + 1) + L1(z1 − 1))(z2 + 1)(z3 + 1) + (L2(z2 − 1)(z3 + 1) +
L3(z2 +1)(z3−1))(z1 +1).

4.7.4 Implementation and design 3-D IIR Notch filter

3-D IIR Notch Filter Design

In this section, a new method for the design of notch filter is presented. The
ideal 3-D IIR notch filter is characterized by a unit gain at all frequencies
except at the sinusoidal frequencies in which their gain is zero

Hd(e jω1,e jω2,e jω3) =

{
0, if (ω1,ω2,ω3) = (ω1N ,ω2N ,ω3N)

1, otherwise
(4.32)

where (ω1N ,ω2N ,ω3N) is the notch frequency.

Input
Hp(z1,z2,z3) Hs(z1,z2,z3)

+− Output

HN(z1,z2,z3)

Fig. 4.15 The 3-D IIR notch filter design.

Figure 4.15 shows the proposed scheme of 3-D IIR notch filter, which
includes two filters: one is 3-D spatial straight line filter Hs(z1,z2,z3) and the
other is based on all-pass filter Hp(z1,z2,z3). From the block diagram shown
in figure 4.15, [63] the transfer function of the 3-D IIR notch filter is given by

HN(z1,z2,z3) = 1−Hp(z1,z2,z3)Hs(z1,z2,z2) (4.33)

For a given notch frequency (ω1N ,ω2N), one can distinguish two cases as
follows:

• If the frequency (ω1N) is positive:

ω3N = π−ω1N (4.34)
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• If the frequency (ω1N) is negative:

ω3N =−(π +ω1N) (4.35)

Hence, if we properly choose the parameters as

L1 = −tan(
ω1N

2
) (4.36)

L2 = tan(
ω2N

2
) (4.37)

and L3 is as small as possible, then Hs(z1,z2,z3) will be a spatial straight line fil-
ter whose resonant line pass through the notch frequency point (ω1N ,ω2N ,ω3N)

exactly although there exists bending effect due to the triple bilinear trans-
formation [63]. This parameter choice and the equations (4.34) and (4.35)
are the key step of this design procedure. In order to achieve bounded-input
bounded-output (BIBO) stability of the system [9], the parameters L1, L2 and
L3 have to be nonnegative. The design and implementation of 3-D IIR notch
filter can be summarized as follows:

1. Specify the notch frequency (ω1N ,ω2N) and compute ω3N.

2. choose the coefficients k0, k1 as small as possible and k2 between 0.85
and 0.95 to have a very narrow 3-dB rejection bandwidth of the notch
filter.

3. choose the parameter of the spatial straight line filter L1, L2 and L3 as
small as possible. The appropriate value of R is less or equal to 0.01.

4. Construct the transfer function from equations (4.24) and (4.30).

5. The transfer function of the 3-D IIR notch filter can be obtained using
(4.33).

Numerical Example

Once the transfer function of the 3-D IIR notch filter has been designed,
the magnitude response is consequently obtained. Since it is difficult to
illustrate all 3-D magnitude responses in one figure, the 2-D magnitude
response will be presented instead by fixing one dimension. In this case,
ω3N is chosen to be fixed. As a result, the magnitude response of HN(z1,z2,z3)
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can be presented, we show the 2-D slice for various frequencies ω3 The
magnitude gain is obviously unity for all ω3, except ω3 = ω3N. At ω3 = ω3N,
the notch frequency operates at (ω1,ω2) = (ω1N ,ω2N). In this example, the
design steps described above are used to define the 3-D IIR notch filter for
the notch frequency (ω1N ,ω2N) = (−0.6π,0.5π), ω3N =−0.4π.
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Fig. 4.16 Three-dimensional magnitude response with the notch frequency
is (-0.6π, 0.5π, -0.4π). (a) ω3= -0.8π. (b) ω3= -0.6π. (c) ω3= -0.4π. (d) ω3=
-0.2π.

The filter parameters are chosen as k0 = 0.001, k1 = 0.005 ,k2 = 0.95, R = 0.03,
L3 = 0.0005. Figure 4.16 shows the magnitude of the notch filter. One can
remark that ∥HN(e jω1,e jω2,e− j0.4π)∥ has a unit gain at all frequencies (ω1,ω2)

figure 4.16 (a),(b) and (d), except at (−0.6π,0.5π) where gain is zero, figure
4.16 (c). The notch filter operates at (ω1N ,ω2N ,ω3N) = (−0.6π,0.5π,−0.4π).
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Interpretation

In this section, a new design procedure of 3-D IIR notch filter has been
presented based on a circuit of 3-D IIR all-pass filter with order 1× 1× 1.
We have developed a new algebraic method for this design. The proposed
solution is in closed-form, and it does not require any iterative procedure or
optimization techniques. It has been shown, by an example the notch filters
can be easily designed.





Chapter 5

Conclusions

In the introductory chapter 1, the definition of some N-D signals and systems
with a variety of operations which will serve as building blocks for the
development of more complicated signals and systems. Other definitions of
the stability, the Roesser’s state space and the realization of digital filters
is presented. In chapter 2, review of the minimal state-space realization
problem. There are pressing needs to reduce the hardware requirements
as much as possible because, various problems such as round-off error
analysis, coefficient sensitivity, optimization, ...etc., can be studied much
more effectively using the state space approach. The aim of the minimal
state-space realization problem is to find a state-space model of minimal
size of the given system.
In chapter 3, we propose two structures in lattice and ladder-lattice form and
find the minimal state-space realization of those structures. The lattice filter
is classified as an important structure in digital signal processing. In fact, it
minimizes the computation complexity, reduces the finite word length, and
requires less hardware compared to the direct form digital filter with similar
design specifications.
In chapter 4, the structures of the latter chapter is considered to realize
notch filters type. First, characteristics and applications of notch filter
are presented. Then, the 2-D IIR digital notch filter is implemented, a 2-
D transfer functions is characterized by two lattice coefficients which are
expressed in terms of the notch frequency and the 3-dB rejection bandwidth.
The increase of the coefficient k3 makes the notch filter have a narrower
stop bandwidth. The coefficient k1 can effectively tunes the notch frequency.
The frequency response has an uniformly flat passband gain and zero gains
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at the notch frequencies. Besides, there are no ripples appears in the
passband. An application example to remove the contamination on an image
is presented which improve the effectiveness of the proposed procedure. In
the last section of chapter 4 a new design procedure of 3-D IIR notch filter
has been presented based on two filters design i) An 3-D IIR filter based on
circuit of 3-D IIR all-pass filter with order 1×1×1, and ii) A straight line filter
designed by frequency transformation of 3-D analogue prototype filter. The
proposed solution is in closed-form, and it does not require any iterative
procedure or optimization techniques.
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Appendix A

Proof of conditions for BIBO stability

Prove that,
S = ∑

n̄
(−∞≤ni≤∞)

∑ ...∑ |h(n̄)|< ∞. (A.1)

is a necessary and sufficient condition for BIBO stability. If (A.1) is true and
if for a bounded input x(n̄), i.e.,|x(n̄)|< M for all (n̄), then

|y(n̄)|=

∣∣∣∣∣∣∣ ∑
m̄

(−∞≤mi≤∞)

∑ ...∑h(m̄)x(n̄− m̄)

∣∣∣∣∣∣∣≤M ∑
m̄

(−∞≤mi≤∞)

∑ ...∑ |h(m̄)|< ∞. (A.2)

Thus the output sequence is bounded. The converse is proved by show-
ing that if S = ∞, then a bounded input can be found that will cause an
unbounded output. Such an input is the sequence:

x(m̄) =

{
1, if h(−m̄)⩾ 0
−1, if h(−m̄)≤ 0

(A.3)

From (A.1), the output at (n̄) = (0̄) is

y(0) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑x(m̄)h(−m̄) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑ |h(−m̄)|. (A.4)

which is equal to

y(0) = ∑
m̄

(−∞≤mi≤∞)

∑ ...∑ |h(m̄)|= S (A.5)
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Therefore, if S = ∞, it follows that the output sequence is unbounded.
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proof theorem 7

Assume q
δ̄
(zo) is unstable, i.e. ,q

δ̄
(zo) = 0 and |z0| ≤ 1. If Q(z̄) is stable, then

Q(z0
δ1

r
,z0

δ2

r
...z0

δN

r
) = 0

where ,
∣∣∣z0

δi
r

∣∣∣ > 1 for some i, then |zo| >
∣∣∣ r

δi

∣∣∣ > 1
which is a contradiction.
If Q(z̄) is unstable it follows that there is a (δ1,δ2, ...,δN) where, max|δi| ≤ 1
and Q(δ1,δ2, ...,δN) = 0.
If q

δ̄
(z) is stable, i.e.

q
δ̄
(z) = Q(z

δ1

r
,z

δ2

r
, ...z

δN

r
)

where, r = max|δi|.
then q

δ̄
(r) = 0.

But, r ≤ 1 which is a contradiction.

Proof of corollary 7

Assume as in the previous proof that qδ (zo) is unstable, i.e. qδ (zo) = 0 for
|z0| ≤ 1
If Q(z̄) is stable, then

Q(z0δ1,z0δ2, ...z0δN) = 0

where,

|z0δi|> 1 for some i,



88

or

|z0|> 1
|δi| > 1

which is a contradiction.
If Q(z) is unstable there exists a (δ1,δ2, ...,δN) such that max|δi| ≤
1.
Let (δ ′1,δ

′
2, ...,δ

′
N)=(

δ1
r ,

δ2
r , ...,

δN
r )

where r = max|δi|.

Let

q
δ̄ ′(z)=Q(zδ ′1,zδ ′2,...zδ ′N)

Then

q
δ̄ ′(z)=Q(δ1,δ2,...δN)=0

but r ≤ 1 which is a contradiction.



Appendix C

Example of Minimal state-space realization of fac-
torable 2-D transfer functions

C.0.1 problem statement

Consider the linear time invariant 2-D system, described by the spatial
transfer function

H(z1,z2) =

N
∑

i=0

M
∑
j=0

gi, jz−i
1 z− j

2

N
∑

i=0

M
∑
j=0

hi, jz−i
1 z− j

2

, (C.1)

The problem considered in this paper is to determine a minimal state-space
model of system (C.1) for the following two cases.
Case I:
The denominator coefficients of (C.1) can be arbitrary, while the numerator
coefficients satisfy the following relationship:

gi, j = gi,0g0, j (C.2)

where gi, j assumed„for simplicity, one
Case 2:
In the present case the numerator coefficients of (C.1) can be arbitrary, while
the denominator coefficients satisfy the following relationship:

hi, j = hi,0h0, j (C.3)
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where hi, j assumed,for simplicity, one
The state-space model sought is of the Givone-Roesser type [l] described as
follows: [

xh(n1 +1,n2)

xv(n1,n2 +1)

]
=

[
A1 A2

A3 A4

][
xh(n1,n2)

xv(n1,n2)

]
+

[
B1

B2

]
u(n1,n2), (C.4)

y(n1,n2) =
[
C1 C2

][xh(n1,n2)

xv(n1,n2)

]
+Du(n1,n2), (C.5)

where xh(n1,n2)∈Rnh and xv(n1,n2)∈Rnv,u(i, j)∈R1 is the input vector, and y(i,j)
∈ R1 is the output vector.

C.0.2 State-space realization

Case I
The spatial transfer function (C.1), when gi, j = gi,0g0, j (and g0,0 = 1), may
be presented in a block diagram as in Fig. 1.A 2-D minimal state-space
realization may be written by the inspection,from Fig. 1, having the form
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(C.4) where

A1 =



−h10
h00

1 0 · · · 0

. 0 . . . . . . .

... ... . . . . . . ...

. .
. . . . . . 0

. 0 . . . 1
−hm0

h00
0 . · · · 0


,

A2 =


h10h01

h00
−h11 · · · h10h0n

h00
−h1n

... ... ...
hm0h01

h00
−hm1 · · · hm0h0n

h00
−hmn

 ,

A3 =



− 1
h00

0 · · · · · · 0

0 0 . . . .
... . . . . . . . . . ...

. .
. . . . . . 0

. 0 . . . 0
0 · · · · · · 0 0


,

A4 =



−h01
h00

· · · · · · . . −h0n
h00

1 0 · · · . 0

0 . . . . . . .
... . . . . . . . . . . . . ...
0 · · · · · · 0 1 0


,
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b1 =


g10− h10

h00... ...
gm0− hm0

h00

 ,

b2 =


1

h00...
0

 ,

c1 =
[

1
h00

0 · · · 0
]
,

c2 =
[
g01− h01

h00
· · · g0n− h0n

h00

]
,

D =
1

h00
.

Case 2
The 2-D transfer function (C.1), where hi j = hi0h0 j , may be presented in a
block diagram form as in Fig. 3. A state-space realization may be written by
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inspection from Fig. 3, using the Givone-Roesser form (C.4), where

A1 =



−h10 . · · · · · · . −h1n

1 0 · · · · · · · · · 0

0 . . . . . . .
... . . . . . . . . . ...
0 . · · · 0 1 0


,

A2 =


0 · · · 0
... ...
0 · · · 0

 ,

A3 =


a11 · · · am1
... ... ...

a1n · · · amn

 ,

A4 =



−h01 1 0 · · · 0

. 0 . . . . . . .

... ... . . . ...

. .
. . . 0

. .
. . . 1

−h0n 0 . · · · 0


,

b1 =


1
0
...
0

 ,

b2 =


g01−h01g00

...
g0n−h0ng00

 ,

c1 =
[
g10−h10g00, · · · , gm0−hm0g00

]
,

c2 =
[
1, 0, · · · , 0

]
,

D = g00.





Appendix D

Proof that multi-variable polynomials cannot be factored
in general

To establish that multi-variable polynomials cannot be factored in general, it
is sufficient to show the insolvability of the problem in one particular case.
If we assume z2

1 + z2
2 +1 = 0 can be solved into a product of factors which are

integral in z1 and z2, i.e.,

z2
1 + z2

2 +1 = (pz1 +qz2 + r)(p′z1 +q′z2 + r′)

= pp′z2
1 +qq′z2

2 + rr′

+(pq′+ p′q)z1z2

+(pr′+ p′r)z1

+(qr′+q′r)z2

Since this is by hypothesis an identity, we can equate coefficients and obtain:

pp′ = 1 (D.1)

qq′ = 1 (D.2)

rr′ = 1 (D.3)

pq′+ p′q = 0 (D.4)

pr′+ p′r = 0 (D.5)

qr′+q′r = 0 (D.6)
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First we observe that, on account of equations (D.1), (D.2), and (D.3), none
of the six quantities, p, q, r, p’ , q’ , r’ can be zero and also p’= 1

p , q’ =1
q , r’ =1

r .
Thus, as a logical consequence of our hypothesis, we have, from (D.4), (D.5),
and (D.6):

p
q
+

q
p
= 0 (D.7)

p
r
+

r
p
= 0 (D.8)

q
r
+

r
q
= 0 (D.9)

and, from these again, if we multiply by pq, rp , and qr, respectively, we get

p2 +q2 = 0 (D.10)

p2 + r2 = 0 (D.11)

q2 + r2 = 0 (D.12)

Subtracting eq (D.12) from eq (D.11), we derive

p2−q2 = 0 (D.13)

And from addition of eqs (D.10) and (D.13),

2p2 = 0

From this it follows that p = 0, which is in contradiction with eq (D.1).
Therefore, the solution in this case is impossible. q.e.d.
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