الجمهورية الجزائرية الديمقراطية الشعبية

REPUBLIQUE ALGERIEENE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

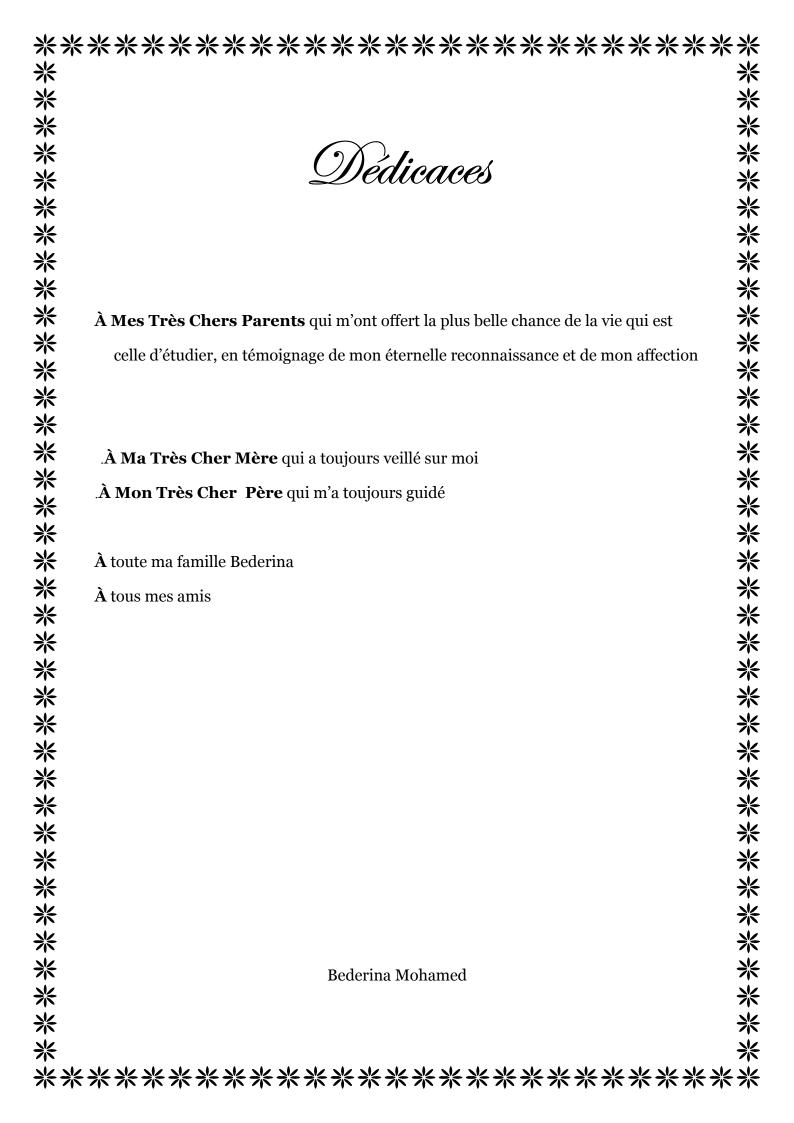
UNIVERSITE ZIANE ACHOUR DE DJELFA FACULTE DES SCIENCES ET DE LA TECHNOLOGIE

Département des Sciences de la Matière

Mémoire présenté en vu de l'obtention du diplôme de

Master professionnel

Spécialité : Chimie Organique Appliquée


Par: BEDERINA Mohamed

Synthèse des dérivés des dihydropyrimidinones DHPMs

Soutenu le : 25 Novembre 2015

Devant le jury :

Dr. N. BELKHEIRI	Maitre de conférences « B »	Université de Djelfa	Président
Mr. A. SOUADIA	Maitre assistant « A »	Université de Djelfa	Examinateur
Mr. A. DJEMOUI	Maitre assistant « A »	Université de Djelfa	Examinateur
Dr. L. SOULI	Maitre de conférences « B »	Université de Djelfa	Rapporteur

Liste de tableaux
Liste de schéma
Liste de figure
Liste des abréviation
Introduction générale01
Chapitre I : Etude Bibliographique De La Reaction De Biginell
I-1 Introduction04
I-2- Intérêts biologiques des dihydropyrimidinones (DHPMs)04
I-3- méthodes de synthèse des dérivés des DHPMS
I.3.1. La synthèse originale de Biginelli08
I.3.2 Catalyseurs de la réaction de Biginelli09
I.3.3 Utilisation d'acides de Lewis
I-4- Synthèse des DHPMs sous irradiations micro-ondes
Références Bibliographiques14
Chapitre II : Partie expérimentale
II-1 Procédure général de la synthèse des 3,4 dihydropyrimidinones
II.1.1 Mode opératoire général
II-2 Synthèse de l'ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-
carboxylate18
II-3 Synthèse de éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2
thioxo pyrimidine-5-carboxylate20
II-4 Synthèse de éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-
2-oxopyrimidine-5-carboxylate21
Chapitre III : Résultats et discussion
Conclusion générale29
Résumé

Liste des tableaux

Liste des tableaux

Tableau II. 1 : Conditions opératoires de la synthèse des 3,4 dihydropyrimidinones	.18
Tableau II. 2 : Conditions opératoires de la synthèse des 3,4 dihydropyrimidinone	19
Tableau II. 3: Conditions opératoires de la synthèse éthyle 1,2,3,4-tetrahydro-4-(2-hydro	xy-
3- methoxphenyl)-6-methyl-2thioxo pyrimidine-5-carboxylate.	20
Tableau II. 4 : Conditions opératoires de la synthèse de l'éthyle 1,2,3,4-tetrahydro-4-(2-	
hydroxy- 3-methoxphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate	22

Liste des schémas

Schéma I. 1 Réaction simple de cycloaddition à trois composants
Schéma I. 2 Schéma de synthèse à composants multiples
Schéma I.3 Réaction de Biginelli
Schéma I.4 Réaction de Biginelli catalysée par métal oxyde nanocomposite
Schéma I.5 Réaction de Biginelli catalysée par le dihydrochlorure de pyrazolidine10
Schéma I.6 Réaction de Biginelli catalysée par le chlorure d'antimoine III
Schéma I.7 Réaction de Biginelli catalysée par Ca(NO3)2.4H2O
Schéma I. 8 Réaction de Biginelli catalysée par l'acide sulfonique sur un support de
Nanomanetique. 12
Schéma I. 9 Réaction de Biginelli catalysée par le triflate d'indium
Schéma I. 10 Réaction de Biginelli catalysée par VCl3.
Schéma I. 11 Réaction de Biginelli sans solvant et sous des radiations micro-ondes
Schéma II. 1 Synthèse de l'ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5- Carboxylate
Schéma II. 2 Synthèse de éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-
2thioxo pyrimidine-5-carboxylate
Schéma II. 3 Synthèse de l'éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-
methyl-2- oxopyrimidine-5-carboxylate.
Schéma III. 1 Schéma de la reaction multi composante
Schéma III. 2 Mécanisme réactionnel de la réaction multi composante

Liste des figures

Fig I. 1: Structure de S-DABO	5
Fig I. 2 :molécules de médicaments importants contenant DHPMet motifs structuraux	
tétrazoliques	.5
Fig I. 3: structura Nifedipine.	.6
Fig I. 4: la structura de les alcaloïdes (Batzelladine A et B)	.6
Fig I .5: Structure des Agents anti-hypertensifs.	.7
Fig I. 6: Structure de (S) Bay 41-4109 (Antiviral).	.7
Fig I. 7: Structure des agent anti-tumoral	7
Fig II. 1: (P1), éthyle 1,2,3,4-tetrahydro-6-methyl-2-thioxo- 4-phenylprimidine-5	
carboxylate	19
Fig II. 2: (P2) éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-thioxo	
pyrimidine-5-carboxylate	21
Fig II. 3: (P3) éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-	
oxopyrimidine-5-carboxylate	22
Fig III. 1: Plaque ccm de l'éthyle 1,2,3,4-tetrahydro-6-methyl-2-thioxo-4-phenylprimidine-	-5
carboxylate	25
Fig III. 2 : Plaque ccm de l éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-	
methyl-2-thioxo pyrimidine-5-carboxylate	26
Fig II. 3: Plaque ccm de l'éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-	
methyl-2-oxopyrimidine-5-carboxylate	27

Liste des Abréviations

Liste De Abréviation

DHPM Dihydropyrimidinone /thione

T_f Température de fusion

R Rendement

DMSO Diméthylsulfoxyde

CCM chromatographie sur couche mince

Introduction générale

Introduction générale

La préparation où la synthèse des composés hétérocycliques par différentes méthodes de synthèse est un axe de recherche important en chimie organique. Les réactions à multicomposantes est une voie de synthèse très favorables pour l'élaboration des produits de grande large application thérapeutique et de grande activité biologique.

Donc il faut mettre au point de nouvelles stratégies de synthèse, en changent le catalyseur ou d'autre paramètre opératoire qui nous a permet d'élaborer rapidement des molécules complexes cycliques à partir des précurseurs simples acycliques. La réaction multicomposantes de Biginelli qui fait réagir trois composant : un aldéhyde, un composé 1, 3-dicarbonylé et le thiourée dans un solvant ou sans solvant, et donne naissance à de nouvelles molécules

Nous avons consacré alors la deuxième partie de ce mémoire à la synthèse d'une série de 3,4-dihydropyrimidinones/thiones en utilisant le nitrate de cobalt Co(NO₃)₂6H₂O comme catalyseur de cette réaction.

Notre travail se divise en trois chapitres

Le premier chapitre est consacré à l'étude bibliographique de la réaction de Biginelli.

Le deuxième chapitre, il sera question des modes opératoires de synthèse des composés multicoposants

Les résultats et discussions sont résumés dans le dernier chapitre. Et en fin une conclusion générale.

Chapitre I Etude bibliographique Etude de la réaction de Biginelli

I. 1 INTRODUCTION

La synthèse d'un nouveau produit chimique pour une application bien précise est effectuée peut être par plusieurs méthodes de synthés et sous différentes conditions opératoires. En effet, les réactions à composants multiples [1] en une seule étape ou "One Pot"

La combinaison d'un aldéhyde (Réactif 1), un β-cétoester (Réactif 2) et l'urée (ou la thiorée) (Réactif 3) sous catalyse acide a été rapportée pour la première fois en 1893. Cette procédure ayant comme appellation "Réaction de Biginelli" [2].

Schéma I. 1 : Schéma d'une réaction simple de cycloaddition à trois composants

Biginelli ^[3] a fait la réaction à composants multiples en combinant l'ensemble des réactifs de deux réactions différentes mais qui ont un élément en commun.

CHO +
$$H_2N$$
 NH_2 H_2N H_2 H_3C H_2N NH_2 H_3C H_3C H_2N NH_2 H_2N NH_2 H_2N H_2N H_2N H_3C $H_$

Schéma I. 2 : Schéma de synthèse à composants multiples

I. 2 INTERETS BIOLOGIQUES DES DIHYDROPYRIMIDINONES (DHPMS)

Les DHPMs sont des puissants inhibiteurs calciques ^[4], agents anti-hypertensifs ^[5], neuropeptides Y(NPY) ^[6]. En effet, des DHPMs intéressantes sont considérées comme une classe importante de molécules dans le traitement de diverses maladies ^[7]. Par exemple les analogues du S-DABO, ont montré une activité anti- HIV.

Fig. I. 1: Structure de S-DABO

Les molécules présentées dans la figure ci-dessous ont des activités biologiques très remarquables, comme un anti-VIH (1) [16], antitumoral (2) ^[8]. En outre, les pyrimidines de ce type sont connus agents antihypertenseurs (3) ^[9], anti-épileptique (4), et activité antituberculeux (5) ^[10,11] et des inhibiteurs de la propagation de la parasite de la malaria schéma (6) ^[12].

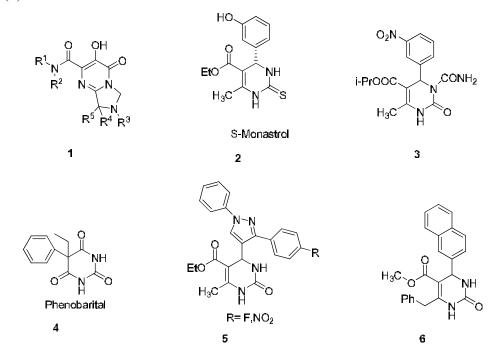


Figure I.2. Molécules de médicaments importants contenant DHPM et motifs structuraux tétrazoliques

La catégorie des 1,4-dihydropyridines telle la fameuse Nifedipine, représentent une classe importante de système hétérocyclique qui a eu un intérêt considérable dans la chimie organique et médicinale [13, 14].

Fig. I. 3: Structure de la Nifedipine

En dehors des dérivés des DHPMs synthétiques, plusieurs produits marins naturels, avec des activités biologiques intéressantes contenant les dihydropyrimidine-5-carboxylates de base ont été isolés ^[15-17], parmi les plus importants, sont les alcaloïdes de type Batzelladine A et B ^[15] (Fig. I. 4).

Fig. I. 4: Structure de des alcaloïdes (Batzeladine B et A)

Aussi, les composés, SQ 32.926 et le SQ 32.547 (Fig.I. 5) ont été également utilisés comme des gants anti hypertesitifs ^[17], Cependant cette efficacité est observée exclusivement pour les énantiomères (*R*) de ces composés.

$$F_3C$$
 F_3C
 F_3C

Fig. I. 5: Structure des Agents anti-hypertensifs

D'autre part, une bonne activité inhibitrice de l'hépatite B a été réalisée par l'emploi d'un composé de synthèse dénommé sous le code Bay 41-4109 [18].

Fig. I. 6: Structure de (S) Bay 41-4109 (Antiviral)

La figure suivante représente une molécule a été récemment découverte et que certains pyrimidinones comportant un motif arylidène sont classés comme des agents anti-tumoraux puissants [19, 20].

Fig. I. 7: Structure des agent anti-tumoral

I. 3 METHODES DE SYNTHESE DES DERIVES DES DHPMS

I. 3.1 La synthèse originale de Biginelli

En 1893, le chimiste Italien "Pietro Biginelli" ^[2] a rapporté pour la première fois la synthèse de la 3,4-dihydropyrimidin-2(1*H*)-one suivant une réaction de cyclocondensation à composants multiples, et ce en faisant réagir à la fois un aldéhyde aromatique, l'acétoacétate d'éthyle et l'urée. La réaction a été effectuée à reflux dans l'éthanol et sous catalyse de HCl concentré pendant un temps approprié.

Schéma I. 3 : Réaction de Biginelli

Il est bien établi que l'étape clé de cette séquence implique la formation de l'ion intermédiaire N-acyliminium du type 6 à partir de l'aldéhyde 2 et l'urée 3 précurseurs [21]

L'interception de l'ion iminium 6 par l'acétoacétate d'éthyle 1, présumablement à travers son tautomère énol, produit une chaine ouverte uréide 8, qui se cyclise par la suite en hexahydropyrimidine 11. L'élimination de l'eau de 11 conduit finalement au produit DHPM 4.

Schéma I. 1 : Réaction de Biginelli

Malheureusement ce protocole dit " One pot "ou " One step ", (dénommé aujourd'hui condensation de Biginelli) avait des inconvénients tel que les rendements faibles à modérés de la molécule cible souhaitée, en particulier quand l'aldéhyde aromatique ou lorsque la thiourée sont employés [22].

I. 3.2 Catalyseurs de la réaction de Biginelli

Dans ce qui suit nous allons rapporter les méthodes les plus significatives de synthèse des DHPMs en utilisant de différents types de catalyse.

Javad Safari et coll ^[23], ont fait un nouveau protocole pour la synthèse des 4,6-diaryl-3, 4-dihydropyrimidine-2(1H)-ones en utilisant un catalyseur de type nanocomposite. La reaction est effectuée sans solvant.

Schéma I. 2: Réaction de Biginelli catalysée par métal oxyde nanocomposite.

Une méthode économique et efficace a été décrite, pour la réaction de condensation de Biginelli en employant le nitrate de bismuth Bi(NO₃)₃ comme catalyseur ^[24]

Schéma I. 3: Réaction de Biginelli catalysée parle bismuth Bi(NO₃)₃.

Le dihydrochlorure de pyrazolidine est un catalyseur meilleur que les amines secondaires pour accomplir la réaction énantioséléctive de Biginelli, avec de bons rendements des DHPMs attendues [25].

Schéma I. 5: Réaction de Biginelli catalysée par le dihydrochlorure de pyrazolidine.

Par ailleurs, le chlorure d'antimoine III, agit sur la cyclocondensation de Biginelli entre l'urée, les aldéhydes et l'acétoacétate d'éthyle, comme un bon catalyseur [26].

$$H_2N$$
 NH_2 + $COOR^1$ R^2 $20\%mol SBCl3$ HN R^2 R^2 $MeCN/reflux$ R^2

Schéma I. 6: Réaction de Biginelli catalysée par le chlorure d'antimoine III.

Malgré que le SbCl₃ ne soit pas un catalyseur idéal, il permet néanmoins la préparation des DHPMs satiriquement encombrés avec de bons rendements.

Schéma I. 6: Réaction de Biginelli catalysée par SbCl3.

Dans une autre application, A. Debache et Coll. ^[27] ont mis en évidence la réaction de condensation de Biginelli en utilisant le Ca(NO₃)₂.4H²O comme un nouveau catalyseur.

Schéma I. 7: Réaction de Biginelli catalysée par Ca(NO₃)₂.4H₂O.

I 3. 3 Utilisation d'acides de Lewis

les acides de Lewis engagés dans la réaction de Biginelli sont en général en quantités catalytiques (1-20 mol%), mais certains donnent de meilleurs résultats en quantités stœchiométriques tels que : BF₃OEt₂/CuCl ^[28], Mn(OAc)₃. 2H₂O ^[29]. Par ailleurs, avec quelques acides de Lewis comme (BF₃OEt₂/CuCl ^[28] et FeCl₃ ^[30].

Eskandar Kolvari et coll. [31] ont fait une condensation de divers aldéhydes aromatiques avec l'urée et quelques dérivés de 1,3- dicarbonyle, en présence d'une quantité catalytique

de l'acide sulfonique sur un support de nanomanetique, thermique ou sous radiations micro-ondes, cette réaction a été représenté dans le schéma ci dessous.

R : (a = -Et. b = -Me)

Schéma I. 8: Réaction de Biginelli catalysée par l'acide sulfonique sur un support de nanomanetique.

Un autre acide de Lewis efficace, le triflate d'indium In(OTf)₃, a été également mis en œuvre [32].

Schéma I. 9: Réaction de Biginelli catalysée par le triflate d'indium.

Cepanec et coll ^[33] ont proposé un mécanisme réactionnel diffèrent de celui de Kappe. En effet, le premier intermédiaire a été obtenu par la condensation de l'urée avec la 2,4-dicétone, lequel ensuite réagit avec l'aldéhyde.

$$\begin{array}{c} \text{MeO} \\ \text{OMe} \\ \text{OMe} \\ \text{OMe} \\ \text{H}_2\text{N} \\ \end{array} \begin{array}{c} \text{Acide de lewis} \\ \text{MeCN, reflux} \\ \text{MeCN, reflux} \\ \end{array}$$

Schéma I. 10: Réaction de Biginelli catalysée par VCl₃.

I. 3 Synthèse des DHPMs sous irradiations micro-ondes

Les réactions sous irradiations micro-ondes, sans solvant et/ou en utilisant un support solide tel que l'argile, l'alumine, la silice ou le graphite résultent en des temps de réaction plus court et produisent des rendements plus élevés que ceux obtenus par l'utilisation de chauffage conventionnel.

La préparation et la manipulation faciles du catalyseur hétérogène sont les principaux avantages de ce protocole.

$$H_3C$$
 H_2N
 NH_2
 H_2N
 NH_2
 $Sans solvant/micro-ondes$
 H_3C
 NH
 H_3C
 NH
 $R^1 = OEt.Me$
 $X = 0.X$

Schéma I. 11: Réaction de Biginelli sans solvant et sous des radiations micro-ondes.

REFERENCES BIBLIOGRAPHIQUES

- [1] (a) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. *Chem.-Eur. J.* **2000**, *6*, 3321. (b) Domling, A.; Ugi, I. *Angew. Chem.Int. Ed.* **2000**, *39*, 3168.
- [2] Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
- [3] Biginelli a rapporté que ses recherches ont été inspirées des travaux antérieurs de R. Behrend et de U. Schiff sur les couplages urée-cétoester et urée-aldéhyde respectivement.
- [22] Kappe, C. O.; Kumar, D.; Varma, R. S. synthesis. 1999, 10, 1799.
- [4] (a) Cho, H.; Ueda, M.; Shima, K.; Mizuno, A.; Hayashimatsu, M.; Ohnaka, Y.; Takeuchi, Y.; Hamaguchi, M.; Aisaka, K.; Hidaka, T.; Kawai, M.; Takeda, M.; Ishihara, T.; Funahashi, K.; Satah, F.; Morita, M.; Noguchi, T. *J. Med. Chem.* 1989, *32*, 2399. (b) Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.; Moreland, S.; Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.; Malley, M. F. *J. Med. Chem.* 1990, *33*, 2629. (c) Rovnyak, G. C., Kimball, S. D., Beyer B., Cucinotta G., DiMaroc J. D., Gougoutas J. Z., Hedberg A., Malley M. F., McCarthy J. P. Zhang R., Moreland S. *J. Med. Chem.*; 1995, *38*, 119.
- [5] (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O'Reilly, B. C. *J. Med. Chem.* 1991, 34, 806. (b) Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O'Reilly, B. C.; Schwartz, J.; Malley, M. F. *J. Med. Chem.* 1992, 35, 3254. (c) Grover, G. J.; Dzwonczyk, S.; McMullen, D. M.; Normandin, D. E.; Parham, C. S.; Sleph, P. G.; Moreland, S. *J. Cardiovasc. Pharm.* 1995, 26, 289.
- [6] Bruce, M. A.; Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO, 1998, 33,791.
- [7] Singh, B. K.; Mishra, M.; Saxena, N.; Yadav, G. P.; Maulik, P. R.; Sahoo, M. K.; Gaur, R. L.; Murthy, P. K.; Triphati, R. P. Eur. J. Med. Chem. 2008, 43, 2717.
- [8] Naidu, B. N.; Sorenson, M. E.; Ueda, Y.; Matiskella, J. D.; Walker, M. A. U.S. Patent US-20,070,111,985-A1, 2007.
- [9] Yadlapalli, R. K.; Chourasia, O. P.; Vemuri, K.; Sritharan, M.; Perali, R. S. Bioorg. Med. Chem. Lett. 2012, 22, 2708.
- [10] Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645.
- [11] Lewis, R. W.; Mabry, J.; Polisar, J. G.; Eagen, K. P.; Ganem, B.; Hess, G. P. Biochemistry2010, 49, 4841.
- [12] Virsodia, V.; Pissurlenkar, R. R. S.; Manvar, D.; Dholakia, C.; Adlakha, P.; Shah, A.;

- Coutinho, E. C. Eur. J. Med. Chem. 2008, 43, 2103.
- [13] Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
- [14] Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
- [15] Hurst, E.W.; Hull, R.I. J. Med. Pharm. Chem. 1961, 3, 215.
- [16] Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T.J. *Science* 1999, 286, 971.
- [17] Snider, B. B.; Shi, Z. J. Org. Chem. 1993, 58, 3828.
- [18] Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M. F.; Freyer, A. J.; Debrosse, C.; Mai, S.; Truneh, A.; Faulkner, D. J.; Carte, B.; Breen, A, L. Hertzberg, R. P.; Johnson, R. K.; Westly, J. W.; Ports, B. C. M. *J. Org. Chem.* 1995, 60, 1182.
- [19] (a) Kashman, Y.; Hirsh, S.; Mc Connel, O. J.; Ohtani, J.; Takenori, I.; Kakisawa, H. *J. Am. Chem. Soc.* 1989, *111*, 8925; (b) Ohtani, K.; Kusumi, T.; Kakisawa. H.; Kashman, Y.; Hirsh, S. *J. Am, Chem. Soc.* 1992, *114*, 8472.
- [20] Deres, K.; Schroeder, C. H.; Paessens, A.; Goldmann, S.; Hacker, H. J.; Weber, O.; Kraemer, T.; Niewoehner, U.; Pleiss, U.; Stoltefuss, J.; Graef, E.; Koletzki, D.; Masantschek, R. N. A.; Reimann, A.; Jaeger, R.; Gro, R.; Beckermann, B.; Schlemmer, K.-H.; Haebich, D.; Ruebsamen-Waigmann, H. *Science*, 2003, 299, 893.
- [21] Sweet, F.S.; Fissekis, J.D.J. am. Chem.Soc. 1973, 95, 8741.
- [22] Kappe, C. O.; Kumar, D.; Varma, R. S. synthesis. 1999, 10, 1799.
- [23] Javad Safari, Soheila Gandomi-Ravandi, A novel protocol for solvent-free synthesis of 4,6-diaryl-3, 4-dihydropyrimidine-2(1H)-ones catalyzed by metal oxide–MWCNTs nanocomposites, Journal of Molecular Structure 1074 (2014) 71–78
- [24] Ramalingan, C.; Kwak, Y-W., Tetrahydron Lett. 2008, 64, 5023.
- [25] Banik, B. K.; Reddy, A. T.; Dattab, A.; Mukhopadhyayb, C. *Tetrahedron Lett.* 2007, 48, 7392.
- [26] Suzuki, I.; Iwata, Y.; Takeda, K.; Tetrahedron Lett. 2008, 49, 3238.
- [27] Ahn, B. J.; Gang, M. S.; Chae, K.; Oh, Y.; Shin, J.; Chang, W. J. Industrial Eng. Chem. 2008, 14, 401.
- [28] E.H. Hu; D.R. Sidler; U.H. Dolling, J. Org. Chem., 1998, 63, 3454.
- [29] K.A.Kumar; M.Kasthuraiah; C.S.Reddy; C.D.Reddy, Tetrahedron Lett., 2001, 42,7873.
- [30] J. Lu; R.H. Ma, Synlett., 2000,63.
- [31] Eskandar Kolvari, Nadiya Koukabi, Ozra Armandpour, A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid, Tetrahedron 70 (2014) 1383 et 1386.

[32] P. Shanmugam; G. Annie; P.T. Perumal, J. eterocycl. Chem, 2003, 40, 879.

[33] I. Cepace; M. Litvic; M. Filipan-Titvic; I. rungold,

Tetrahydron, 2007, 63, 11822;

Chapitre II Partie expérimentale

II.1 Procédure général de la synthèse des 3,4 dihydropyrimidinones

II.1.1 Mode opératoire général

Dans un ballon de 50 ml, on mélange d'aldéhyde (4 mmol), β-cétoester (6 mmol), thiourée (8 mmol) et une quantité de 20 % du catalyseur e(Co(NO₂)₂6.H₂O). le mélange est chauffé a 80°C, sans solvant et sous agitation pendant 4h. Le mélange réactionnel est versé sur l'eau glacée (précipitation) et puis filtré.

Les mêmes réactions sont effectuées en utilisant des aldéhydes aromatiques différemment substitués et hétéro aromatiques ont été conduites dans la présence d'une quantité catalytique en l'occurrence 20 mol % de Co(NO₃)₂.6H₂O sous des conditions similaires.

Note:

Dans ce travail, nous devons prendre les mêmes valeurs de masse

Avec le changement le composé urée par thiourée.(mémoire de BEN GHOUINI OUMELKHEIR).

Tableau II.1 : Conditions opératoires de la synthèse des 3,4 dihydropyrimidinones

Entée	DHPM	R1	Temp (h)	Rdt %	$T_{f}.C^{o}$
1	P1	C_6H_5	04	80	188
2	P2	4-(Br)-C ₆ H ₅	02	75	182
3	Р3	3-(CH ₃ O)4(OH)- C ₆ H ₅	1	51	218

II. 2 Synthèse de l'ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate

A partir de 608.56 mg de benzaldéhyde (4 mmol),780.84 mg d'acétoacétate d'éthyle (6 mmol),480.48 mg thiourée (8 mmol).et une quantité de 20 % de nitrate de cobalt. Le mélange est chauffé pendant 2h.

ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

P1

Schéma II. 1 : Synthèse de ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Les conditions opératoires appliquées pour la synthèse de l'ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate sont résumées dans le tableau cidessous.

Tableau II. 2: Conditions opératoires de la synthèse des 3,4 dihydropyrimidinone

	M (mg/mmol)	m (mg)	n(mmol)
1	106	424.48	4
2	60	480.48	8
3	130.14	780.84	6

Fig II. 1: (P1), éthyle 1,2,3,4-tetrahydro-6-methyl-2-thioxo- 4-phenylprimidine-5 carboxylate

II. 3 Synthèse de éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-thioxo pyrimidine-5-carboxylate

A partir de 740.096 mg de 4-bromobenzaldéhyde (4 mmol)),780.84 mg d'acétoacétate d'éthyle (6 mmol),480.48 mg thiourée (8 mmol).et une quantité de 20 % de nitrate de cobalt . Le mélange est chauffé pendant 1h.

Schéma II. 3: Synthèse de éthyle 4-(4-bromophenyl)-6-methyl-2thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Les conditions opératoires appliquées pour la synthèse de éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2.-thioxo pyrimidine-5-carboxylate sont résumées dans le tableau ci-dessous.

Tableau II.3 : Conditions opératoires de la Synthèse de éthyle 4-(4-bromophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

	M (mg/mmol)	m (mg)	n(mmol)
1	130	780.84	6
2	60	480.48	8
3	185	740.096	4

Fig II. 2: (P2): éthyle 4-(4-bromophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

II. 4 Synthèse de éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate

A partir de 608.56 mg de vanilline (4 mmol),780.84 mg d'acétoacétate d'éthyle (6 mmol),480.48 mg thiourée (8 mmol).et une quantité de 20 % de nitrate de cobalt avec un rendement \mathbf{R} = 51% $\mathbf{T_f}$ = 218° C.

éthyle 4-(2-hydroxy-3-methoxyphenyl) -6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

РЗ

Schéma II. 3 : Synthèse del' éthyle 4-(2-hydroxy-3-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Les conditions opératoires appliquées pour la synthèse de l'éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate sont résumées dans le tableau ci-dessous.

Tableau II. 4 : Conditions opératoires de la synthèse de l'éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate

	M (mg/mmol)	m (mg)	n(mmol)
1	130	780.84	6
2	60	480.48	8
3	152	608.56	4

Fig II. 3: (P3) éthyle 1,2,3,4-tetrahydro-4-(2-hydroxy-3-methoxphenyl)-6-methyl-2-oxopyrimidine-5-carboxylate

Chapitre III Résultats et discussion

Les dérivés 3,4-dihydropyridiminones/thiones ont été préparées suivant la réaction de condensation à composants multiples de Biginelli, entre un aldéhyde 1, un d'acétoacétate 2 et thiorée 3 (ou la urée), en présence d'une quantité catalytique de nitrate de cobalt CO(NO₃)₂ 6H₂O sans solvants. Cette réaction a mené à la formation des dérivés DHPMs avec des rendements allant de 51 à 80 % avec des temps de réaction acceptables. La réaction est résumée dans le schéma III. 1.

Schéma III. 1 : Schéma de la réaction multi composante

Le mécanisme réactionnel proposé est détaillé est le suivant

Schéma III. 1 : Mécanisme réactionnel de la réaction multi composante.

Le composé synthétisé a la formule suivante :

éthyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

$$R = 80 \%$$

$$T_f = 188^{\circ} C$$

Le produit ci-dessus est synthétisé avec succès, est un solide vert, sa température de fusion est en bon accord.

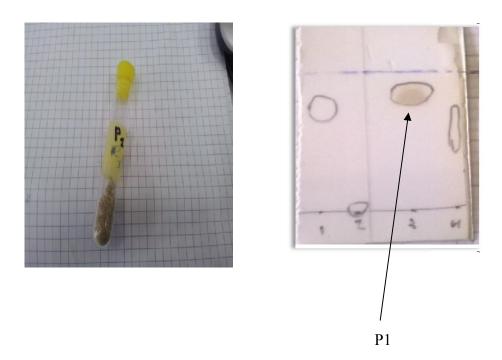


Fig III. 1: Plaque ccm de l'éthyle 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5carboxylate

Le composé synthétisé a la formule suivante :

éthyle 4-(4-bromophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

$$R = 75\%$$

$$T_{\rm f} = 182 \, {\rm ^{o}C}$$

Le produit ci-dessus est synthétisé avec succès, est un solide noire, sa température de fusion est en bon accord.

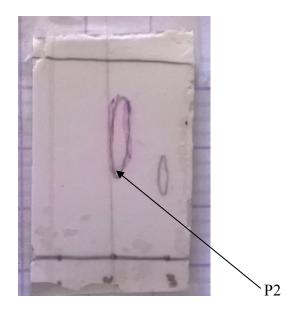


Fig. III. 2: Plaque ccm de L'éthyle 4-(4-bromophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate.

Le composé synthétisé a la formule suivante :

éthyle 4-(2-hydroxy-3-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

$$R = 51 \%$$

$$T_f = 218 \, {}^{\circ}\text{C}$$

Le produit ci-dessus est synthétisé avec succès, est un solide vert, sa température de fusion est en bon accord.

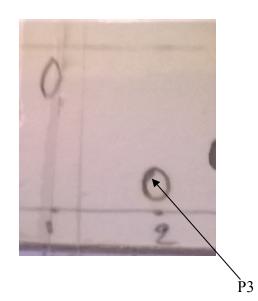


Fig. II. 3: Plaque ccm de l'éthyle 4-(2-hydroxy-3-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate

Conclusion générale

CONCLUSION

Dans ce premier chapitre, nous avons donné un rappel bibliographique englobant l'intérêt biologique des 3,4-dihydropyrimidinones en tant qu'agents bloqueurs de canaux calcium, et comme agents anti-hypertensifs, antagonistes des α1a et antagonistes neuropeptidiques de type Y (NPY). Autres effets biologiques des DHPMs qui sont les activités antivirales, anti-tumorales, antibactériennes et anti-inflammatoires ont été décrites.

Les méthodes de synthèses des DHPMs ont été également rapportées, et la réaction multicomposant de Biginelli est cependant la méthode la plus significative car elle donne accès à ces molécules avec des rendements acceptables, tandis que les versions améliorées de cette condensation en utilisant plusieurs catalyseurs sous des conditions réactionnelles optimisées l'ont rendue plus efficace.

Pour notre part, nous avons présenté nos résultats concernant la synthèse des DHPMs suivant la réaction de cyclocondensation de Biginelli par l'utilisation un catalyseur nitrate de cobalt et montré efficace et donne les produits souhaités avec de très bons rendements.

Abstract:

The Biginelli reaction are two major reactions among the largest multi-component reactions. Therefore the main objective of this work was the development of new dihydropyrimidinones driveways. according to the Biginelli reaction.

The first chapter of this thesis is based on the synthesis des3,4dihydropyrimidinones (DHPMs) according to general reaction Biginelli, which began in aldehyde game, ethyl acetoacetate and urea (or thiourea).

The second chapter is devoted to the synthesis of DHPMs by use of non-polluting cobalt nitrate catalyst and is given good yield.

Résumé:

La réaction de Biginelli sont deux grandes réactions parmi les plus importantes des réactions multi-composantes. donc l'objectif principal de ce travail était la mise au point de nouvelles voies d'accès dihydropyrimidinones. selon la réaction de Biginelli.

Le premier chapitre de ce mémoire repose sur la synthèse des3,4dihydropyrimidinones (DHPMs) selon la réaction générale de Biginelli, qui mit en jeu d'aldéhyde, d'acétoacétate d'éthyle et d'urée (ou la thiourée).

Le deuxième chapitre, est consacré à la synthèse de DHPMs par utilisation de catalyseur de nitrate de cobalt non polluant et avec est donné bon rendement.

الملخص:

يعتبر تفاعل بيجينيلي ضمن أهم التفاعلات متعددة المركبات حيت كان الهدف الرئيسي لهذا العمل هو تطوير طرق جديدة للتحصل على الديهير وبيريميدين dihydropyrimidinones

- الجزء الأول لهذه المذكرة يرتكز على اصطناع الديهيروبيريميدينون تبعا لتفاعل بيجينيلي العام و الذي يضم الدهيد. أسيتوأسيتات الإثيل ،و اليوريا او (الثيويوريا).
 - في حين تم تكريس الجزء الثاني لهذه المذكرة في اصطناع dihydropyrimidinones حيث تعتمد هذه الطريقة استعمال محفز جديد نيترات الكوبالت غير ملوث مع إعطاء مردود جيد