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Nomenclature

Lettre
Ac cross-section sutface area, (m?2)
a* geometric constant in generalized Reynolds number, equation (2.7)
b* geometric constant in generalized Reynolds number, equation (2.7)
Be Bejan number
c mass specific heat, (j/Kg.K)
D deformation rate, (s 1)
Dn hydraulic diameter, (m)
H heat transfer coefficient,(W /K.m?)
Rean ~ mean heat transfer coefficient,(W /K.m?)
H Helicity
H hotizontal
k powet-law consistency index, (Pa/s )
L total length of the geometty, (m)
M, Mixing degree
n Power-law index
Ns non-dimensional entropy generation

Nuiocal local Nusselt number
Numean mean Nusselt number

B pressure, (Pa)
Pe Peclet number
Po Poiseuille number

Polocal local Poiseuille number

Pomean  mean Poiseuille number

q" wall heat flux, (W/m?)

Q heat transfer rate, (W)

R normalized ration

Ro tatio (Tmin/ Tmax) at the entry section

Re Reynolds number for Newtonian fluid

Re, generalized Reynolds number for non-Newtonian fluid

s curvilinear coordinate, m

S strain rate, (s1)

Sgen global entropy generation, (W/ K. m?)

SIII

ST” entropy generation due to heat transfer, (W/ K.m3)
P

Sinean entropy generation due to friction factot, (W / K.m3)

mean Strain rate, (s1)
Ty fluid temperature, (K)



mean bulk temperature fluid

petimeter average wall temperature, (K)
temperature at the node i, (K)

mean temperature at the cross section, (K)
minimum temperature, (K)

maximum temperature, (K)

static temperature, (K)

mean velocity at the inlet section, (m/s)
velocity vector

axial velocity, (m/s)

coordinates in Cartesian coordinate system, (m).

Grec Symbol

A
o
Bi
A

-Qmean

(*)mean

laplacian

geometric constant forgeneralized Reynolds number, Table 2.3
constant in equation (2.6) of velocity profiles

thermal conductivity, (W/K.m)

shear rate, (s71)

shear stress, (Pa)

constant viscosity for Newtonian fluid, (N s /m?)
apparent viscosity for non-Newtonian fluid, (N s /m?)
fluid density (kg m™3)

standard deviation at the entry section

total volume of the fluid

mean Deformation rate, (s)

mean vortex intensity, (s1)

mean vortex intensity at the cross section.
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General Introduction

There are many methods to enhance the thermal and hydrodynamic performances of the
system included in many industrial applications. One of these ways, the chaotic flow has
received considerable attention for many yeats. The chaotic advection regime presents a
<ub-laminar flow where the particle trajectories ate almightily erratic and chaotic. This
regime is compatable to turbulent regime in terms of performances. Thanks to Assan
Aref [1] who invented this type of flows. In his work, Aref outlined the chaotic kinematic
of fluid particle trajectoties in the two-dimensional periodic flows using Poincaré section
as one of the important tools for the analysis of dynamic systems.

One of the potential chaotic channels which can present a good way to improve the
performances of the heat transfer rates and the energetic efficiency of the systems is the
C-shaped geometry which the flow is steady and open three dimensional. Among the
authors who have used this geometry in their research, we can cite [2-8].

Robin et al [2] presented different configurations of implementing chaotic advection to
passively enhance fluid mixing. Their experimental results showed that the mixing
capability of the C-shaped geometty increases with increasing Reynolds number, and
mixing rates in the serpentine channel are consistent with the occurtence of chaotic
advection.

Beebe et al [3] investigated a general framework for improving mixing in micro fluidic
applications. The mixer design was fabricated using a compression micro-molding process
to create chaotic flow channels. Experimental analyses demonstrated the effectiveness of
the resulting design ingenerating chaos in the flow and hence improving mixing.

A numerical study of the mixing of two fluids in micro-channels has performed by Liu et
al [4]. The mixing phenomena were tested for three micro-mixers: a square-wave mixer, a
three-dimensional serpentine mixer (C-shaped channel) and a staggered herringbone
mixer. Their results shows that the C-shaped mixer and staggered hetringbone mixer mix
the fluids to a greater extent than does the square wave mixer.

Lasbet et al [5] characterized the C-shaped channel as a new design for the PEM fuel cell
cooling system where the fluid is Newtonian (water). Their heat petformance 1s
considerably improved compared to that when the flow is regular (straight channel). Their
showed that the convective heat transfer coefficient of the C-shaped channel is about SIX
times that of the straight channel. This high performance is examined because of chaotic
regions in the flow. Another numerical analyze has undertaken by Lasbet et al [0] in which
various channel geometries (straight channel, zigzag, square-wave mixer geometry, and
C-shaped, V-shaped, and B-shaped geometry) have proposed in order to generate chaotic
flows. Using CFD, such geometry was characterized in terms of both their thermal mixing
performances and their hydrodynamic performances. The square-wave mixer geometry
leads to a convective heat transfer coefficient about four times that in the straight
channel, an improvement classically attributed to the presence of the right-angle bends
that create recirculation zones and secondary flow. In the C-shaped geometry, the chaotic
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trajectory produces the greatest heat transfer intensification while the V-shaped geometty,

which was designed to reduce the pressure loss compared to the C-shaped geometry,

presents the best compromise between large convective heat transfer and reasonable
pressure losses. For the B-shaped geometty, designed to reduce machining cost, the
thermal and hydraulic performances are almost equivalent to those of the V-shaped
geometry.

Recently, an experimental study of the heat transfer and ptressute of drop Newtonian fluid
for different chaotic geometries was conducted by Cathy Castelain et al [/]. Heat
exchanges were carefully analyzed to obtain the convective heat transfer coefficient for
each channel. The results showed a compatison of the average Nusselt number, the
average Poiseuille number, and the ratio Po/Nu for all geometries considered. Thus,
lowest value of the Po/Nu ratio is obtained with the V-shaped geometry. The B-shaped,
zigzag channel and U-shaped geometties also present an interesting compromise, slightly
better than the C-shaped geometry. The highest exergy efficiency is obtained with the C-
shape, closely followed by the B-shape, zigzag channel, V-shape and U-shape geometries.

Mote recently, Lasbet et al [8] studied the influence of the geometry scale on the
kinematic behavior of the fluid flow for C-shaped channel. The fluid flow behavior was
characterized in terms of the deformation rate, rotation rate, dimensionless Helicity
contours and the pressure losses.

The most working fluid in these researches is a Newtonian fluid where the viscosity does
not affected by the deformation rate. So, our contribution in this thesis is to outline and
analyze the thermal and hydrodynamic behavior of power-law non-Newtonian fluid in C-
shaped geometry in comparison to thestraight channel. The energetic efficient of this
geometry in terms of heat transfer (Nusselt numbet), fluid flow (Poiseuille number) and
entropy generation wete calculated as function of generalized Reynolds number Reg and

power-law index n.
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CHAPTER 1
Literature Review

1.1 Introduction

In this chapter, a comprehensivesurvey is presented for the hydrodynamic, the thermal
mixing and heat transfer flow in straight and complex geometries.Analytical,
Experimental and numerical works for hydrodynamic flow are first stated. After that, the
enhancement of thermal mixing and heat transfer are reviewed for laminar flow. Then,

previous studiesare presented for entropy generation.
1.2 Rheological fluid behavior

Fluids treated in the traditional hypothesis of fluid mechanics are the Newtonian fluid.
The former is completely frictionless, so that shear stress has a linear relationship between
shear stress and shear rate. On the other hand, the behavior of many real fluids used in
the mechanical industries is not sufficiently described by these models. Most real fluids
exhibit non-Newtonian behavior, which means that the apparent viscosity (shear stress
divided by shear rate) is not constant at a given temperature and pressure but is
dependent on flow conditions such as flow geometry, shear rate,... etc.

Metzner [100] grouped fluids into three general classes:

o Purely viscous fluids: Generalized Newtonian fluids: The rate of shear at any point
of the fluid is dependent only by the current value of the shear stress. These are also

2 <<

called: “Generalized Newtonian fluids”, “time independent” or “inelastic fluids”.

o Viscoelastic fluids: more complex materials for which the shear stress and rate of
shear depends on the time for which the shear is applied. They are called: “time-
dependent fluids”.

o Time-dependent fluids: Materials exhibiting properties of both viscous fluids and
elastic solids, and showing partial elastic recovery to the original state when a deformation

or stress is applied. These materials are called “Viscoelastic fluids”

Qualitative flow curves on linear scales for these three types of fluid behavior are shown
in Figure 1.1.
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Figure 1.1: Types of time-independent flow behavior

There are also fluids which have characteristics that are a combination of the three
properties mentioned below. There are also materials that are either elastic solids or

viscous fluids depending on the current conditions.
1.2.1 Time-independent fluid behavior

This fluid can be further subdivided into three types: Shear-thinning (pseudoplastic)
fluids, viscoplastic fluids and shear-thickening (Dilatant) fluids:

1.2.1.a Shear-thinning or Pseudoplastic fluids

In Shear-thinning or pseudoplastic fluids, the viscosity decreases with increasing shear
rate. Both at very low and at very high shear rates, most pseudoplastic fluid solutions
exhibitNewtonian behavior, shear stress-shear rate plots become straight lines, as shown

in Figure 1.2.
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Figure 1.2: Schematic representation of shear-thinning behavior

e The power-law or Ostwald de Waele model

The relationship between shear stress and shear for a shear-thinning fluid can be given by

the following expression: Happ = k7" (L1)
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Where k(Pa/s) is power-law consistency index and n is the flow behavior index of the
fluid.
For n<1 the fluid exhibits pseudoplastic characteristics.

n = 1 the fluid exhibits Newtonian characteristics.

n> 1 the fluid exhibits dilatant characteristics.

1.2.1.bViscoplastic fluid

These types of fluids behavior resist any deformation initially and deform only when the
applied stress exceeds a critical value which is sometimes referred to as yield stress (tauo).
on the contrary, such a material will deform elastically when the externally applied stress is
smaller than the yield stress.

Various models like the Bingham plastic model, Casson and Herschel-Bulkley Model are

available for modeling such viscoplastic flows.

e The Herschel-Bulkley model

Herschel-Bulkley model is generated from the equation of the Power law model, and it is

written as:
. n
Tyx = To + m(yyx) for|ryx| > || (1.2)
Vyx = Ofor [Tyx| < |70l (1.3)

Note that for n =1 the model becomes Bingham model
1.2.2Time-dependent fluid behavior

The flow behavior of many important materials cannot be described by asimple
rheological equation like (1.1) or (1.2). Hence, apparent viscosities maydepend not only
on the rate of shear but also on the time for which the fluid has beensubjected to
shearing. Theirapparent viscosities gradually become less as the ‘internal’ structure of the
material isprogressively broken down. Time-dependent fluid behavior may be further sub-
divided into two categories: thixotropyand rheopexy or negative thixotropy.

1.3Hydrodynamic behavior in ducts
1.3.1 Straight ducts

The predictions of pressure drops forfluids flowing in ducts of various cross sections is
importantin engineering systems. Therefore, wideanalytical, experimental and numerical
studies have been carried outon such flowapplications. For laminar non-
Newtonianfluids,Wheeler et al [9] measured the Friction factor and the Poiseuille number
for sodium Carboxy-Methyl-Cellulose fluid (CMC) flowing through a rectangular duct.
Gervang and Larsen[10] studied the elastic effects of non-Newtonian fluid in straight
ducts of rectangular cross section.
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Parket al [11] investigated numerical solution of fully developed flow for a modified
power law fluid in a rectangular duct. Their solutions was applicable to pseudoplastic
fluids over a wide shear rate range from non-Newtonian behavior at low shear rates,
through a transition region, to power law behavior at higher shear rates.

Capobianchi [12] reported the pressure drop ofhydrodynamic fully developed flows of
non-Newtonian fluids in rectangular ducts. He analyzed the Poiseuille number for both
pseudoplastic and dilatant regions as function of fluid behavior index.

Tazraei and Riasi [13] analyzed the laminar flow of a Carreau fluid inside rectangular
channel. They observed that the effect of various physical parameters on velocity
distribution with different dimensional aspects.

Recently, Numerical investigation of non-Newtonian Carreau Model presented by Riasi et
al[14].They discussed that the effect of time constant magnitude on the behavior of
unsteady velocity and shear stress profiles, and pressure responses in laminar shear
thinning flows.

More recently, Devakar et al [15] numerically investigatedthe fully developed flow of non-
Newtonian fluids in a straight square channel through the porous medium.They
considered the Jeffrey fluid model as working fluid. Their numerical results observed that,
the velocity andvolume flow rate decrease with an increase in couple stress parameter,

whilethe velocity and volume flow rate increase with an increase in pressuregradient, as

shown in figure 1. 1.

(b)
Figure 1.1: Velocity profile in 3-D for various coupled stress parameters|15].

1.3.2 Complex channels
1.3.2.a Newtonian fluids

The increasing number of experimental and numerical studies interest in complex systems
like valves, pumps, mixers, reactor to achieve better and more dedicated performance
satisfyingspecific requirements in different application areas. In accordance with this
development, Fellouah, et al [16] presented the Dean instability of Newtonian fluids in

laminar secondary flow in 180 © curved channels, by using CFD code. They showed the

effects of the curvature ratio (from 5.5 to 20) and aspect ratio (from 0.5 to 12) on Dean
instability. Their results indicated that the critical value of the Dean number decreases
with the increasing duct curvature ratio.
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A numerical study of rapid chaotic mixing of two fluids flowing in a planar serpentine
convergent—divergent mini-channel (see figure 1.2) was presented by Kuo-Wei Lin and
Jing-Tang Yang [17]. Their approach is to create chaotic trajectories with flow in a planar
serpentine channel at an appropriate Dean number which determines the degree of
induced secondary flow. They tracked the trajectories of particles using visualization
methods, these are smooth, and exhibit little disturbance in the z-direction as seen in
tigure 1.3. Their results reveal that the pattern of the alternating convergent—divergent
cross sections induces corner Dean cells with much increased Dean numbers; the
stretching and folding of interfaces is hence effectively enhanced, and a superior chaotic

mixing of two fluids was consequently achieved, see figure 1.4.
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Figure 1.2: Schematic diagram of the mixing channel [17].
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Figure 1.4: Fluid distribution at six analyzed cross sections of the channel [17].
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Tet al [18] proposed a passive mixing device of two fluids in laminar regime.They
achieved better mixing performance under the effects of chaotic advection. They results
showed an enhancement of mixing by adding a periodic external force working on a
single rigid particle, which changes the trajectory of the fluid particle.

Recently,Paulo et al [19]developed a numerical simulation using finite difference
technique for solving the closure constitutive model in fully developed channel
flow. Theyillustrate the effects of varying Reynolds number and the Weissenberg number
on the resulting flow patterns.

Saatdjian el al [20] obtained numerical solutions for mixing fluids by chaotic advection in
three-dimensional complex geometry (as shown in figure 1. 5). They showed that the key
mechanism of chaotic advection isstretching and folding originating from the hyperbolic

perturbationinduced by the particles and the rotational motion of theparticles.

[ ad

Figure 1.5: Standard helical twisted tape inserts of the static mixer [20].

Mixing performance of micro-channel T-junction with wavy structure relatives to the
conventional straight micro-channel T-junction were numerically studied by Nita Solehati
et al [21].They numerical results suggest that the mixing quality (Mg4) improves
significantly for micro-channel T-junction with wavy structure, especially at higher
Reynolds number, see figure 1.6.

(@) (b)
Figure 1.6: Mixing performance of micro-mixer T-junction designs for (a) conventional

straight (Mq= 0.018) and (b) wavy structure (Ma= 0.578) at Re = 200 [21].

More recently, Lasbet et al [8] studied the influence of the geometry scale on the
kinematic behaviorof the fluid flow for C-shaped channel. The modification of the
geometric scale presented an easy and adequate solution to increase these parameters,
which examined for different values of the Reynolds number. Theirresults illustrate that
the geometry with the smallest hydraulic diameter is the more favourable to increase the
considered parameters.

1.3.2.bNon-Newtonian fluids

Many works are currently available on the laminar flow of shear-thinning and shear-
thickening fluids, which are frequently modelledby the simple power-law model [22-24]
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over a curved or coil ducts. Their results presented the velocity magnitude contours, axial
velocity profile and friction factor as function of the Reynolds number.

Castelain and Legentilhomme|[25]used Pseudoplastic fluid inside of helically coiled and
chaotic systems toshowthe evolution of the flow fraction in the two configurations as
function of generalized Reynolds number,(see figure 1.8).

(b)
Figure 1.7:Two different systems: (a) helically coiled tube; (b) chaotic configuration [25]
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. Figure 1.8: Variation of the flow fraction as function of Reynolds number: () helically
coiled configuration; (b) chaotic configuration [25].

Mohammed et al [26] numericallyinvestigated secondary motion of CMC solution induced
by curved channel. They found that two steady Dean cells which developed to four-cell

pattern when the centrifugal forces become significant,see figure 1.9.
0=70°

, Outer wall Outer wall

I

0.25 0.25 Q 0.25
Inner wall Inner wall (b) Inner wall {c)

Figure 1.9:Stream function at outlet section of curved duct for non-Newtonian fluid,
with different cross sections, (a): @ = 70°, (b): 8 = 80° and (c) 8 = 180°[26].
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Fellouah et al [27]experimentally and numerically investigated the detail motion of laminar
flow of power-law and Bingham fluids in a curved channel in order to understand the
effect of rheological fluid behavior on Dean instability. The same phenomena was
performed for a curved square duct by Ali Salehi et al [28]. The objective of their work
was to examine how a fluid’s non-Newtonian viscous behavior affects the onset of Dean

instability in a curved square duct, as shown in figure 1.10.
osf Y
y/L

04f

02

I y
02 1 0

2 J
08 08 1

@ ®)
Figurel.10:The effect of power-law index, n, on the velocity vectors of curved channel:
(@ n=0.8, (b) n =1.2]27].

HosseinHamedi et al [28] modeled a non-Newtonian fluid using Lattice Boltzmann
Method (LBM) through complex geometries. Their solutions was validated for both
Newtonian and the shear thinning fluids. Their results show the pressure drop along the
channel, axial velocity profiles and the effects of pseudo-plasticity for various power-law

index (n = 0.5 to 1), as show in figure 1.11.
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(a) (b)
Figure 1.11: (a) Non-Dimensional velocity and (b) Non-Dimensional pressure drop for
the shear-thinning fluid[29].

Lattice Boltzmann simulations for Bingham and Casson model fluids through complex
channels were investigated by Mitsuhiro et al [30].They considered the flow of
viscoplastic fluids passing through rectangular obstacle as shown in figure 1.12.
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Figure 1.12: axial-velocity profile for (a): Newtonian fluid » = 1 and (b): non-Newtonian
fluid n = 0.5 [30].

The Papanastasiou (modified Bingham) model [31] and the modified Casson model was
employed in their Lattice Boltzmann simulations. They showed numerical visualizationof
viscosity profile and velocity field depending on the fluid type for systems (a): figure 1.14,
and system (b): figure 1.15.
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Figure 1.13:Computational system for non-Newtonian fluid flows in the flow channel

including rectangular obstacles [30].
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Figure 1.14:Viscosity profile and velocity field for viscoplastic fluids flowing through the
flow channel with 3-square obstacles under the condition of Re = 1.0, Bn= 10 (left) and
Re = 100, Bn= 0.1 (right)[30].
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They results showed that the viscosity for both the viscoplastic fluids was largely
decreased around solid obstacles when the fluids flowed around solid obstacles, therefore,
the Bingham model fluid exhibited more rapid fall in the viscosity at high shear-rate
regions than the Casson model.

Inflow
Outflow
Inflow
Outflow

Newtonian Newtonian

Bingham

5.0

Casson Casson

Re=1.0 Re=100
Figure 1.15Viscosity profile and velocity field for viscoplastic fluids flowing through the

complicated flow channel under the condition of Re = 1.0, Bn= 20 (left) and Re = 100,
Bn= 0.2 (right) [30].

Ching-Chang Cho et al [32] performed numerically the flow characteristics of non-
Newtonian fluids in rough microchannels with a complex-wavy surface. They presented
the effect of flow behavior index of the non-Newtonian transported fluids on the local

velocity profiles as shown in figure 1.16, and the effects of the wave amplitude on the
flow field characteristics.
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Figure 1.16:Non-dimensional u-velocity profiles in (a) wave crest and (b) wave trough
regions of wavy-surface for various wave amplitudes and flow behavior index [32].
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Arshad Afzal et al [33] numerically analyzed the mixing flow of non-Newtonian fluids in
straight and serpentine microchannels using ANSYS CFX©software. They used the
Carreau-Yasuda and Casson non-Newtonian blood viscosity models to capture the non-

Newtonian characteristics.

10" 10° " 10' 10°
1 T T T T T
0.9 = —&—— Carreau-Yasuda
- — —A— - Water

Mixing index at exit
< =] e = =
S L a2 b @&

e

L

ke
Figure 1.17:Mixing index as function of flow rate at the outlet section of T-junction

straight channel for Newtonian fluid (water) and non-Newtonian fluid (Carreau-Yasuda
model) [33].

Their results showed that for low mass flow rate, the mixing performances of both the
fluids were found to be nearly equivalent, and decreased with flow rate, as shown in
tigure1.17. Then, they compared the mixing flow between the T-shaped channel and the
serpentine channel for blood and water fluids, as shown in figure 1.18. Moreover, they
showed a flow visualization comparison of volume fraction at the outlet section between

the straight T-junction and serpentine channels, see figure 1.19.
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Figure 1.18:Mixing index as function of flow rate at the outlet section for T-channel and
serpentine channel for non-Newtonian fluid (Carreau-Yasuda model) [34].
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o m

(b)

Figure 1.19:Volume fraction of non-Newtonian blood model for T-junction and

serpentine channels, (a): longitudinal section and (b): outlet cross-section [33].

Vinit Khandelwal et al [34] presented numerical results for laminar flow of shear-thinning
fluids in a T-channel. The flow fields have been explained by streamline contours for all

cases of shear thinking fluid, see figure 1.20.
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Figure 1.20:Stream function contours in a T-channel at different values of Reynolds
number [34].
They results showed that for a particular n, length of recirculation zone increases in the

side branch with increasing Reynolds number.
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Figure 1.21: Variation of dimensionless recirculation length (L7/ D) with Reynolds
number at different values of power-law index [34].
1.4Thermal behavior

1.4.1Straight ducts
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1.4.1.a Newtonian fluids

Many researchers have studied the heat transfer phenomena of Newtonian fluid flows in
straight ducts. Some studies reviewed by Shah and London [35] [36] and Shah and Bhatti
[37] for laminar flow. They used the finite differencemethod to obtain numerical solutions
for fullydeveloped conditions.

Sehyun et al [38] numerically studied the laminar heat transfer withtemperature dependent
fluid viscosity in a 2:1 rectangular duct. The HI1 thermal boundary condition
corresponding to axially constant heat flux was adopted for the configuration. They
proposed a new correlation for local Nusselt numbers in the straight duct, which covers
boththermally developing and thermally fully developed regions.

Effect of viscous dissipation on laminar mixed convection in a vertical channelwas
analyzedby Barletta [39]in the fully developed region. The temperature, velocity field and
the Nusselt numbers were obtained for Brinkman numbers. Then, the same work was
investigated for the reversal flow with one or more isotherm walls [40].The author
analytically discussed the velocity, temperature profiles and friction factor witch
dependent on the ratio between the Grashof number and the Reynolds number. After
that, Barletta [41] [42] obtained the Nusselt number and Poiseuille under the effect of wall
heat flux on vertical rectangular duct, while the effect of the choice of the reference fluid
temperature was considered. They found that the choice of the reference temperature
affects both the velocity profiles and the axial change of the difference between the
pressure and the hydrostatic pressure.

Muzychka and Yovanovich [43] investigated the laminar forced convection in the
combined for fully developed flow of straight ducts. They developed a new model for
predicting Nusselt numbers for both isothermal and wall flux boundary conditions. The
agreement between the proposed modeland numerical data is within 15%.

An exact analytical solution for heat transfer characteristics in straight ducts with
rectangular cross-sections wasdevelopedby Mohammad and Mahmoud [44]|, which
validated for both H1 and H2 boundary conditions. The authors obtained the local and
mean Nusselt numbers asfunctions of the aspect ratio.

Recently, Sphaier and Barletta [45] analyzed the unstablemixed convection in a horizontal
heated duct for laminar flow of Newtonian fluid. Their analysis confirmed that
longitudinal rollsindeed lead to most unstable situations, for different the Rayleigh

numbers.

1.4.1.b Non-Newtonian fluids

Non-Newtonian flows and heat transfer were studied in eatly years by Seppo[406], and Ray
and Misra [47] who showed that the effects of fluid behavior index on laminar forced
convection in straight channels. James and Milivoje [48] investigated the heat transfer of
Newtonian and non-Newtonian fluidsin rectangular ducts.
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Sayed-Ahmed and Kishk [49] used the finite differencemethod to investigate laminar flow
and heattransfer non-Newtonian fluids in a rectangular duct. They considered two
thermal boundary conditions (T and H2)and the effects of the aspect ratio, the Prandtl
number, velocity, and pressure on the temperature and the Nusselt number.
Sayed-Ahmed and Karem [50] presented a numerical solution for combined laminar fluid
flow and heat transfer of Herschel-Bulkley fluid in a rectangular duct. The authors
studied the problem in the entrance region of a rectangular duct.

Numerical investigation on performance comparison of non- Newtonian fluid flow in
vertical heat exchangers combined helical baffle with elliptic and circular tubes (figure
1.22) was performed by Zhenbin He el al [51].Their found that the thermal performance
factor enhances by 30-35%, which demonstrates that the elliptic tube can effectively
improve the heat transfer performance of non-Newtonian fluid flowing in the helical

baffle heat exchanger when compared to the circular tube.

Figure 1.22:Layout pattern of tubes: Elliptic tubes [51].
Two new correlations, for the friction factor and the Nusselt number of the heat
exchanger, were proposed:

Nug = 0.089Reg"9%2 Pry!/? (R? = 0.9993)
fo=10.5989 Reg0 157 (R? = 0.9994)

Gharraei et al [52]numerically investigated the power-law non-Newtonian flow and heat
transfer characteristics of multiple impinging square jets. Their results reveal that jet-to-
plate spacing have important effects on the flow structure and local Nusselt number
(Figures 1.23 and 1.24). The size of peripheral vortices was increased by increasing the
power-law index. By decreasing the jet-to-plate spacing, the effect of walls becomes
considerable, therefore the size of peripheral entrainment vortices decreases. On the other
hand, by increasing the power-law index, the wall Nusselt number increased which was
the result of higher inlet velocity for fluids with higher power-law indices.
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Figure 1.23:Streamlines for Reynolds number Re =100, and power-law index (a) n = 0.4,
(b) n=1and (c) n = 1.6 [52].
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Figure 1.24: Distribution of local Nusselt number for Reynolds number Re= 100, and
power-law index (a) n = 0.4, (b) n=1 and (c) n = 1.6 [52].

1.4.2 Complex channels

1.4.1.a Newtonian fluids

In complex channel structures or chaotic geometries, laminar flow of Newtonian fluids
has been the subject of many investigations for different configurations such as planar
serpentine, chaotic channels [53] [6] and zigzag channels [560] and helical ducts [54]. Their
heat performance was considerably improved compared to that when the flow is regular
(straight channel).

Convective heat transfer in chaotic configuration (coiled tube with bends) of laminar flow
regime at different values of Dean number with constant wall flux was investigated by
Vimal Kumar [53]. The effects of Dean number on the development of average friction
factor and Nusselt number were presented in figure 1.25. The results show that the
chaotic configuration shows a 25-36% enhancement in the heat transfer due to chaotic
mixing while relative pressure drop is 5-6% compared to the coiled tube.
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Figure 1.25:(a) Friction factor variation and (b) Nusselt number variation in coiled tube
and chaotic configuration [53].

Lasbet el al [5] [6] considered four chaotic geometries (square-wave mixer geometry, C-
shaped, V-shaped, and B-shaped geometries) to enhance the heat transfer and mixing
fluids in laminar Newtonian flow. They found that the C- channel geometry significantly
improves convective heat transfer over that ofregular straight or square-wave mixer
channels, see tablel.1.

Table 1.1: Comparison of the average Nusselt number, average Poiseuillenumber, and the
Po/Nu ratio for the considered geometries [6].

Average Nusselt Average Poiseuille Ratio (Po/Nu)
number number

Straight channel 3.0 62 20.7

Square wave mixer 11.0 126 11.5

C-shaped 20.0 160 8

B-shaped 13.0 93 7.2

V-shaped 13.1 89 0.8

Jung et al. [54] studied the friction factor and the heat transfer of a helical heat exchanger.
The heat exchanger is composed of a helical tube with rectangular cross section and two
cover plates. In the experiment part, the radial flow was air and the helical flow was water.
The Reynolds numbers were in the range 307— 2547. They results indicate that the Darcy
friction factor of the radial flow increases with the channel spacing and decreases with an
increase of the Re, and Nusselt number increases with the Reynolds number and the
channel spacing,.

Charbel Habchi et al [55] carried out the influence of several arrays of vortex generators
mounted inside a complex geometry on mixing flow of two fluids which heated by
different temperature (300 and 320). Two flow configurations are considered in which the
arrays are in-line and rotated periodically by an angle of 90°see figure 1.26. Each vortex
generator creates a pair of stream-wise vortices, which enhances the mixing performance
in the flow cross section.
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Figure 1.26: Isometric views of the (a) in-line and (b) alternate configurations and (c) of
one tab with the main rotation angles. The flow is in the g axisdirection [55].

Their results showed that the alternate configuration, in which the vortex generators are
rotated periodically by an angle of 90°, enhances the mixing process relative to the in-line
one due to the generation of chaotic advection flow, while in the in-line configuration the
flow is regular and the mixing process is only caused by the convective motion of the
longitudinal vortices. By exploring the Poincaré sections and the Lagrangian trajectories
projections of different passive tracers, it is found that chaotic advection takes place in
the alternated configuration while the flow in the in-line configuration stays regular, as
shown in figure 1.27 and figurel.28, respectevley. Then, the authors found that the
thermal mixing flow clearly enhanced by the fact that the chaotic advection is better

distributed at the flow cross section, as shown in figure 1.29.

Figure 1.27:Poincaré section for (left) in-line and (right) alternate configurations for
initial 5000 particles injected at (xo= 5 mm, yo= 0 mm)[55].
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Figure 1.28: Projections of the Lagrangian trajectories for different initial positions for
the (left) in-line and (right) alternate configurations [55]
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z =400 mm

Figure 1.29: Scalar T contours on different cross sections for (top) in-line and (bottom)

alternate configurations [55].

ZhanyingZheng et al [50] studied the laminar flow and heat transfer for Periodic Zigzag
channel with square cross-sections, considering the effect of chaotic advection. They used

the Poincare section, for Re = 150, to present the stretching and folding of the tracer
particle. Then, they showed, for Re = 400 (Figure 1.30), the tracer particles witch almost

covered the entire area of the cross-section. Also, They presented a streaklines, and

z =240 mm

z= 80 mm

z=0mm

secondary flow vectors, axial velocity fields (d and e), see figure 1.31.

(a)

(b)

L, downstream

Figure 1.30: Poincaré sections at locations Lz(half unit), 2L.z and 6L.z downstream of the
initial plane for Reynolds numbers of 150 (a—c), 200 (d—f) and 400 (g—i) [50].
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\>(b) @ (®)

Figure 1.31:Streaklines (a), secondary flow vectors (b and c), axial velocity fields (d and e)
and non-dimensional temperature fields (f and g) in a fully-developed periodic flow unit
at Re = 200 [50].

The red color indicates regions of high velocity or non-dimensional temperature and the
blue color indicates regions of low velocity or non-dimensional temperature. The yellow

dotted line demarcates the region of reverse flow [56].
Tohidi et al [57] have numerically investigated the effects of chaotic mixing on heat
transfer through modifications in the geometry of helical heat exchangers, see figure 1.32.

(a) (b)

Inlet (d)
Figure 1.32:(a) Coil with clockwise orientation; (b) coil with counterclockwise

otientation; (c) one period of the chaotic configuration; (d) 10 periods of the chaotic
configuration [57].
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They presented the Heat transfer performance by isotherms contours in different cross-
sections, see figure 1.33. Their numerical solutions revealed that the chaotic coil
configuration displayed heat transfer enhancement of 4-26% relative to the fully
developed Nusselt numbers in the regular coil with only 5-8% change in the pressure

drop.

Outer wall

= N

(@) |
\
@=90° @=180° @=270° @=360"

®) | X

Inner wall
Figure 1.33:Velocity contours at different cross-sections in (a) normal coil and (b) chaotic

coil at first pitch of coil with Re =200 [57].

Tian and Mostafa[58] used the chaotic advection to enhance the continuous heat-hold-
cool sterilisation process. They geometry was meshed with hexahedral cells using CFX
14.5, as shown in Figure 1.34. The authors compared the physical model with the results
of a numerical study of EesaandBarigou, [59].Their results indicated that the chaotic flow
process leads to faster nearly-uniform heating and cooling.

Figure 1.34: Computational mesh: [58]
1.4.1.b Non-Newtonian fluids

Several works can be found regarding the coupling between chaotic mixing for
rheologically complex fluids and heat transfer (El Omari et al [61] and Lester et al [60],
Ping Li et al [62] and Waleed et al [64]. Since most fluids involved in industrial processes
are non-Newtonian (e.g., food or chemical products), there is a crucial need to focus on

the application and study of chaotic advection for mixing and heat transfer for these
fluids.
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El Omari et al. [61] investigated numerically the enhancement of both mixing and heat
transfer in a two-rod mixer for highly viscous non-Newtonian fluids (shear-thinning,
shear-thickening and Newtonian fluids). Chaotic flows were obtained by imposing the
temporal modulations of the rotational velocities of the walls. The authors confirmed that
chaotic mixing is suitable for shear thickening fluids for which it is observed a clear
enhancement of the thermal mixing (heat extraction and homogenization), see figure 1.36.

t=120s=4 1

Figure 1.36: Temperature fields and streamlines at instants t = 120 s [61].

Lester et al [60] studied the asymptotic scalar transport (temperature or concentration)
within both Newtonian and non-Newtonian fluids over the control parameter space of a
chaotic flow, the Rotated Arc Mixer (RAM). The goal of their analyses was to utilize the
composite spectral method to quantify and optimize heat or mass transfer within a
chaotic configuration.

Shear-thinning fluid and heat transfer effects for laminar flow in heat sinks with dimples
and protrusions were numerically investigated by Ping Li et al [62]. They showed that the
heat and mass transfer enhancement due to the behavior of non-Newtonian fluids is
mainly because of the variation of dynamic viscosity of working substances and the
secondary flow in the dimpled/protruded passage with flow separation.

More Recently, Waleed et al [63] experimentallystudied the characteristics of convective
heat transfer and fluid flow within a square cross-section serpentine channel for two types
of polymeric fluids, shear-thinning and constant-viscosity Boger solutions. They found
that the normalized values of non-dimensional pressure drop increase monotonically with
increasing Weissenberg number.

1.5 Entropy generation
1.5.1 Straight ducts

=37 -



CHAPTER 1: Literature Review

1.5.1.a Newtonian fluids

Recently, entropy generation has been used as an index for evaluating the significance of
irreversibility related to heat transfer and fluid friction in a thermal engineering. Based on
the concept of efficient exergy use and minimal entropy generation principal, optimal
designs of thermodynamic systems have been widely proposed from the viewpoint of
thermodynamic second law [64].To enhance the heat transfer efficiency of Newtonian
fluid in ducts, the rate of entropy generation must be effectively controlled. Bejan [64]
presented a method for calculating the entropy generation in a flow field and proposed a
minimum entropy generation principle.

Entropy generation and second law analysis for the laminar flow passing through straight
duct was studied by Yilbas et al [65]. They developed the dimensionless quantities for the
entropy generation, heat transfer and irreversibility. They found that the irreversibility
increases with increasing Prandtl number.

Extended performance criteria based on the augmentation entropy generation numbers
for enhanced heat transfer surfaces for ducts with constant wall temperature was
developed by Zimparov [66].

Abbassi et al. [67] reported the entropy generation in straight channel flow. They found
that the maximum entropy generation is localized at areaswhere heat exchanged between
the walls. In the similar manner, Nourullahi et al. [68] analyzed the entropy generation and
Nusselt number in Poiseuille-Benard channel flow. Their result showed that the Nusselt
number changes very slightly and it is almost constant for low values of inclination angle.
The heat transfer entropy generation is localized at areas where heat exchanged between
the walls and the flow has a maximum value.

Chen et al [69] performed a numerical study of entropy production of mixed convection
flow in a vertical channel. Their numerical results showed that the entropy generation rate
had a minimal value near the centerline of the channel.

Chen et al [70] studied a the heat transfer and entropy generation within a fully developed
flow in a vertical duct. Their simulations focus specifically on the effects of the mixed
convection dimensionless parameter, Brinkman number on the velocity distribution,
temperature distribution, Nusselt number and entropy generation through the channel.
Yang, and Wu [71] numerically investigated the mixed convection flow and heat transfer
in a vertical rectangular duct under the effect of assisted buoyancy at a constant Prandtl
number. They found that the reversal flow to occur in the entrance region when
buoyancy parameter exceeds a certain critical value, which strongly affects the
temperature field. Then, they presented the effect of the opposed buoyancy force on the
global entropy generation due to heat fluid friction.

Chen [72] studied the heat transfer performance and entropy generation characteristics of
a mixed convection in a vertical subject to viscous dissipation effects. Their results
showed that the presence of the magnetic field increases the Nusselt number. Moreover,
the average entropy generation number also reduces when a magnetic field is applied.
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1.5.1.b Non-Newtonian fluids

Since there are many applied applications related to non-Newtonianfluids, the valuation
of their heat transfer characteristics isvital for accomplishing successful thermal system
designs. Mahmud and Fraser [73] [76] carried out the second-law analysis of heat transfer
inducts for non-Newtonian fluids. They neglected the viscous dissipation term in the
energy equation. The rationale of neglectingviscous dissipation effect in the energy
equation (first-lawanalysis) isdubious as the fluid friction irreversibility due to frictional
heating ofviscous dissipation plays a vital role in the second-law analysis.

Luna et al. [74] reported a steady stateanalysis of a power law fluid in the entrance region
of a thermallydeveloped flow with uniform heat flux.

Entropy production due to the flowof a non-Newtonian fluid withvariable viscosity in a
straight pipe carried out by Yilbas and Pakdemirli [75]. They presented analytical solutions
tfor velocity and temperature distributions. Then, theycomputed the entropy generation
number for different non-Newtonian parameters, viscosity parameters, and Brinkman
numbers.

Numerical simulations to examine wall slip effects on Newtonianand non-Newtonian
fluid flows in microchannelswere performed by Sunarso et al [77]. They showed that the
different vortex growth could be observed in micro scale due to theinclusion of wall slip,
which qualitatively matched with experimentalresults. Barkhordari and Etemad [78]
analyzed a numericalstudy on convective heat transfer in microchannels at both constant
wall temperature and constant wall heatflux boundary conditions. Their computational
results showed thata change in the slip coefficient decreased Poiseuille number
whileincreasing local Nusselt number.

Second low analyses of non-Newtonian fluids for laminar and fully developedflow in
straight channel with viscous dissipation effects provided by Saouli and Aiboud [79].
Effect of Brinkman number and flow behavior index on velocity, temperature and
entropy generation rate were discussed. They found that the entropy generation
irreversibility dominated in Pseudoplastic fluid by the heat transfer, whereas, for dilatant
fluid irreversibility due to fluid friction is more dominated.

An analytical study of entropy generation for fully developed non-Newtonian flow
through microchannels, in which the effects of viscous dissipation on the entropy
production were investigated by Hung [80]. Their results indicated that under
certainconditions the viscous dissipation effect on entropy generation in microchannels is
significant and should notbe neglected.

Ragueband Mansouri[81] proposed a numerical analysis to study the heattransfer
characteristics of a laminar flow of a power law fluidwith viscous dissipation. They found
that in the fully developedregion, Nusselt number increases with increase in aspect ratio.
Chen et al. [82] studied heat transfer characteristics of non-Newtonian powerlawfluid
flow in a straight channel and reported dimensionless temperaturedistributions and fully
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developed Nusselt numbers for differentparameters such as flow behavior index, ratio of
Joule heating to surface heatflux, and Brinkman number.

Vishal [83] investigated the viscous dissipation effect on entropy generation for non-
Newtonian fluids in laminar fluid flow through a microchannels subjected to constant
heat flux. He investigate the effect of various friction coefficients of the slip laws on

entropy generation rate and Bejan number.

1.5.2 Complex channels

1.5.2.a Newtonian fluids

As a good heat-exchanger passage, the chaotic channels should provide the most effective
heat transfer performance so that the available energy can be utilized efficiently. However,
the heat transfer enhancement in a thermal system is always achieved at the expense of
the increase of friction loss. Some typical examples include: the irreversibility analysis in
various irregular geometries for Newtonian fluids with constant wall heat flux and laminar
flow performed by Sahin [84] [85]; the optimizing work for the helical coils or double-sine
duct by Ko and Ting [87] [88].

Second law of thermodynamics for laminar convection inside an inclined wavy enclosure
was numerically performed by Shohel [86]. They presented the contours of Bejan to
understand the development of entropy generation under the effects of inclination angle,
see figure 1.37.

(2)

(d) (e)

Figure 1.37:Contours of Bejan numberatdifferent angles of inclination (a) 0 = 45°, Bemax=

1, Bemin= 0.82; (b) 0 = 90°, Bemax= 1, Bemin= 0.97; (c) 6 = 135°, Bemax= 1, Bemin= 0.82; (d) 0

= 2550, Bemax= 1, Bemin= 0.19; () 6 = 2700, Bemax= 1, Bemin= 0.21; (f) 0 = 315°, Bemax= 1,
Bemin=0.19. [80]

Computational Fluid Dynamics simulation of entropy generation were investigated by Ko
and Ting [89] for incompressible laminar shear flows in heated curved rectangular duct.
They present the effects of three important factors, including Dean number, external wall
heat flux and cross-sectional aspect ratio, on entropy generated from frictional
irreversibility and heat transfer irreversibility. They compared various rib arrangements
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and discovered that mounting a single rib on the heated wall could reduce the entropy
generation most effectively. They results reveal that the major source of entropy
generation in the flow fields with larger Dean number and smaller wall heat flux comes
from frictional irreversibility; whereas for the flow fields with smaller Dean number and
larger wall heat flux the entropy generation is dominated by heat transfer irreversibility, as
shown in figure 1.38.

Zimparovet al [90] optimized the performance of several classes of assumed laminar and
tully developedflow, consisting of T- and Y-shaped ducts. Maximum thermodynamic

performance is acieved by minimization of the entropy production for each geometry.
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Figure 1.38:The effects of De on entropy generation induced from heat transfer (S*r) and
fluid friction (S"p) [89].

Yonghua et al [91] studied the second low thermodynamics for laminar thermal
augmentation with conical strip inserts in horizontal circular tubes. They use horizontal
circular tubes fitted with non-staggered and staggered conical strip inserts as physical
model, see figure 1.39. Comparisons of local entropy generation rates between non-
staggered alignments and staggered ones were conducted, see figure 1.40. They found that
the tubes with non-staggered strips behave better than those with staggered ones.
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Figure 1.39:Schematics of enhanced tubes with conical strip inserts. (a) Non-staggered
alignment; (b) staggered alignment [91].
Mohammad et al [92] investigate the entropy generation in a helically coiled tube in
laminar flow under a constant heat flux. Their results showed that the effect of different
flow conditions such as mass velocity, saturation temperature, and heat flux on

contributions of pressure drop and heat transfer in entropy generation.
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Figure 1.40: Contours of local entropy generation rate induced by viscous flow at

longitudinal plane and cross sections for enhanced tubes with (a): staggered strips and (b):
non-staggered strips of different geometry angles [92].

Recently, Jundika et al [93] numerically investigated the heat transfer and entropy
generation of laminar flow in helical tubes with various cross sections, see figure 1.41..
They summarized the advantages and disadvantages of straight and coiled tubes for
various cross-sectio8n channels, as shown in table 1.2.

-4D -



CHAPTER 1: Literature Review

Table 1.2: Advantages and disadvantages of straight and coiled tubes heat exchanger [93].

Straight tube Coiled tube
Lower heat transfer performance Higher heat transfer performance
Circular < ellipse < square Circular < ellipse < square
Lower pressure drop (pumping power) Higher pressure drop (pumping power)
Circular < ellipse < square Circular < ellipse < square
Higher total entropy generation Lower total entropy generation
Circular < ellipse < square Circular < ellipse < square
Higher entropy generation due to heat transfer ~ Lower entropy generation due to heat transfer
Circular < ellipse < square Circular < ellipse < square
Lower entropy generation due to viscous Higher entropy generation due to viscous
dissipation dissipation
Circular < ellipse < square Circular < ellipse < square

® ©

,
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outlet |

outlet L -
—

outlet ( E :

Figure 1.41: Schematic representation of (a) helical circle, (b) helical ellipse, (c) helical
square tubes [93].

1.5.2.b Non-Newtonian fluids

Effects of temperature-dependent viscosity on entropy generation in curved square
micro-channel for laminar flow were numerically investigated by Jiangfeng [94]. They
demonstrated the variations of heat transfer entropy generation number with the mass
flow rate for the cases of aniline heated and cooled, see figure 1.42. They found that

entropy generation number due to heat transfer decreases as the mass flow rate increases.
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Figure 1.42: The relations of heat transfer entropy generation number with the mass flow
rate in the cases: (a) aniline is heated and (b) aniline is cooled [94].

-43 -



CHAPTER 1: Literature Review

1.6 Conclusion

In conclusion, this literature review has illustrated some analytical, numerical and
experimental works for laminar flow of non-Newtonian fluids as working fluids in strait,
curved and complex geometries. Most experimental and numerical studies regards the
effect of fluid behavior on the flow control, thermal mixing by chaotic advection, and the
effect of external flow on the enhancement of heat transfer and second law analyses have
been also outlined.We see that the literature is very in rich with the papers that dealing the
behavior of the Newtonian fluids in straight and complex geometries while the papers
which treat the behavior of the non-Newtonian fluids in complex geometry are very few.
So our contribution in this thesis is to outline the behavior of the non-Newtonian fluids

in complex geometry called here C-shaped geometry.
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CHAPTER 2
Geometries Description and Numerical

Methodology

2.1 Introduction

In this chapter, theoretical bases and numerical methodology are introduced. First, the
considered geometries and the governing equations are discussed. Then, numerical

methodology is described and mesh methodology is investigated.
2.2 Description of the geometry

Three dimensional chaotic geometry and straight channel are considered for laminar non-
Newtonianfluid. Each geometry is characterized by a square cross-section, and the
hydraulic diameter Dy, is 1.5 cm. The unfolded length of one period C-shaped geometry is
equal to 13.5 cm.Figure 1 presents the basic elements of the two considered geometries
called period(C-shaped and the straight channels).

Figure 2.1: Schematic representation of the studied geometries: (a) straight channel, (b)
C-shaped geometry.
2.3 Governing equations

The mass conservation and Navier—Stokes equations were numerically solved using the
commercial CFD code Fluent© and are given by the following equations respectively
[95]:

divv=0 (2.2)

Where Vis the velocity vector.
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VVV=— l?P +divr

P (2.3)
Where p is fluid density, T(Pa) is the shear stress and P is the pressure.
peV . VT = JAT 24

The constitutive relation between the shear stress, 7, (Pa) and the shear rate,y, (s™!) can be
described by a simple power-lawexpression [90]:
T=ky" (2.5)
Where, K (Pa.s) is the power-law consistency index (k=0.1Pa.s!) and n is the power-law
index which varies between 0.3 to 1 (Carboxymethyl cellulose (CMC) 7TH4C at a mass
concentration of 1%) [25].
The apparent viscosity of the work fluid is given by:
Happ = kYn_l (2.6)
The applied boundary conditions are:
* at the inlet section, uniform velocity profile equal to the mean velocity and the
temperature equal to T's = 300 k.
* at solid walls, no—slip conditions and a uniform wall heat flux (q” = 100 k/m?).

e at the outlet section, the pressure outlet condition is considered.
2.4 Generalized Reynolds number

For the case of laminar non-Newtonian power-law flow, Kozicki et al [98] has proposed a
parametric method to generalize the Reynolds number for complex section flow. This
method based on the generalization of Rabionwich-Mooney equation with two
parameters geometric, including the special case of power-law fluids in arbitrary ducts
having a constant cross section. For rectangular section, they introduced a new
generalized Reynolds number as flow:

pUZ"D} )

e (D)

Where, a* and b* equal 0.2121and 0.6771 respectively, for square channel, p is thedensity

Re

of fluid (kg m~3), n is the power-law index, kis the power-law consistency index and U;
(m/s) is the inlet velocity. Table 2.1 presents these values for a rectangular channel as a
function of the aspect ratio o*.

Table 2.1:Geometric constants a* and b* for rectangular ducts [99]:

ok a* b* ok a* b*

1.00 0.2121 0.6771 0.45 0.2538 0.7414
0.90 0.2129 0.6785 0.35 0.2809 0.7750
0.80 0.2155 0.6831 0.25 0.3212 0.8183
0.75 0.2178 0.6870 0.20 0.3475 0.8444
0.70 0.2208 0.6921 0.15 0.3781 0.8745
0.65 0.2248 0.6985 0.10 0.4132 0.9098
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2.5Pressure losses characteristics

The pressure losses of both straight and C-shaped channels are characterized by the
evolution of the friction coefficient. The hydrodynamic performance of all geometries is

characterized by the evolution along the curvilinear coordinate s of the local friction

coefficient £, defined as [99]:
oo, 28)
fo S

ds

pU?
Whete dp/ds is the local pressure gradient along the curvilinear coordinate of the channel.
Because this parameter depends on the generalized Reynolds number, it is preferable to
follow the evolution of the local Poiseuille number:

PO, =f.Re, (2.9)

The mean Poiseuille number is calculated as:

Po

mean

1 j
=—| FOyuca ds
L) P (2.10)

Where L is the total length of the geometry and s is the axial coordinate.

On the other hand, Wheeler and Wissler [9] investigated an analytical expression of
Poiseuille number for the fully developed laminar flow of a non-Newtonian power-law
fluid (0.4 < n < 1.) through a square straight duct:

(1.7330
n

Po, ..., =1.873

mean

+ 5.8606) 2.11)

2.6 Convective heat transfer characteristics

Heat transfer coefficient,h, for wall heat flux boundary condition is given as:

q (2.12)
h=—

Ty — W)
Where, ¢~ (w/m?) is the wall heat flux, T(k) is the mean bulk temperature fluid over the
cross-sectional area and Ty(k) is perimeter average wall temperature.

These two temperatures are defined as:

T —1J T, d 213

W(S)_F , w ap ( )

T,(s) = Az j f V.AT.dA (214
lA

The mean heat transfer coefficient,hy,0qn, defined as:
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1 L (2.15)
hmean = Zf h(s)ds
0
The local Nusselt number given by the following equation:
D 2.16
Nuyoeqr = h(s) Th 210
Where, Ais the thermal conductivity of the fluid(1 = 0.614W.s™ 1. K1),
And the mean Nusselt number is defined by:
(2.17)

mean

1 L
Nu =—j NU, .., dS
L 0

2.7 Thermal Mixing efficiency

2.7.1 Probability density function PDF (T)

The probability density function PDF (T) is the probability (in %) of the scalar
temperature T to be present between two values; the PDF (T) in an interval [T, Tp] at the
outlet is equal to the number of mesh cells in which T values are within [T,, Tp] divided

by the total number of cells on the outlet cross section.
2.7.2 Mixing degree (Ma)

Mixing degree (Mg)of two fluids (hot and cold), given in the following equation is an
efficient parameter for quantifying scalar mixing:

fEE -1y
=1—

Op

(2.18)

Mg

Where N is thenumberofpointsontheplane, Tjis temperature at the node i, T is the mean
temperature at the cross section and dgyis the standard deviation at the inlet section. The

values of Myrange from zero for the no mixture case, to 1for fully mixed flows.

2.7.3 Ratio of mixing

A second criterion to quantify the thermal mixing by the calculation of the ratio over flow
cross-section (and calculated from the entry section). Therefore, we proposed the

Tmin
R = (o™ 219
“\ 1-r (2.19)

WhereR is the ration at the inlet section.For a fully mixed flow, R = 1. The uniformity of

normalized ration (R):

mixing in flow cross-sections is qualified by examining of the temperature contours.
2.8 Numerical methodology

The conservation equations for mass, momentum and energy were solved by using
computational fluid dynamics (CEFD) code, ANSYS Fluent®. The standard scheme is
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used for pressure discretization, and the SIMPLE scheme is employed for pressure-
velocity coupling. The momentum and energy equations are solved with second-order up-
wind scheme. The computations were considered to be converged once all the scaled
residuals are less than 107 and the global imbalances, representing overall conservation
don’t exceed 10->.

2.8.1 Grid mesh sensibility

To perform grid independence studies, four grids were used for simulations of non-
Newtonian fluid flow in the C-shaped geometry considering a steady laminar flow and
forced convection, at a given generalized Reynolds number Re, = 200and power-law

index n = 0.5. All the structured elements used were quadrilateral for a three-dimensional

Figure 2.2a:Inside view of the grid on the Figure 2.2b: Grid of the model
wall chaotic geometry. geometry cross-section.

The grids are ranging from 30 to 60 nodes in the x and y direction, and from 30 to 60in
the z direction. The Nusselt number, the Poiseuille number, velocity and temperature
profiles were assessed for increasing mesh densities.

Figures 2.3 and 2.4 show the evolutions of static temperature and the axial velocity versus
x and y coordinates for various grids at the center line of the outflow section. It can be
seen that the temperature profiles in both x and y directions are superimposed for all
mesh densities. This illustrates that the temperature profiles are not affected by the grid
mesh. However, it can be observed that the velocity profiles are sensitive to the grid mesh
except for the mesh densities (50x50x50) and (60x60x60) where no significant difference
is seen. As consequence, the (50x50x50) grid is chosen as the optimal grid mesh for the

computation.

Table 2.2 presents the mean values of the Poiseuille number between inlet and outlet
sections of the C-shaped geometry and the values of the local Nusselt number at the
outlet section for all grid densities. It shows that the differences between the two grids
mesh (50*50*50) and (60*60*60) of the Poiseuille and the Nusselt numbers change by
less than 0.24% and 1.4% respectively. This presents another argument to select the
(50*50*50) grid mesh as the optimal mesh density for the rest of the computations.
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Figure 2.3: Temperature profiles for different mesh densities for n = 0.5 and Re, = 200 at
the outlet section of the C-shaped channel, (a) X-Coordinate (b) Y-coordinate.
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Figure 2.4: Axial velocity profiles for different mesh densities for n = 0.5 and Reg =
200 at the outlet section of the C-shaped channel, (a) X-Coordinate (b) Y-coordinate.

Table 2.2:Mean Poiseuille number and local Nusselt number for different mesh densities
for n = 0.5 and Reg = 200 in the C-shaped channel.

Mesh PO mean Error/ 60 NU local Error/ 60
30x30x30 218.270 0.13% 41.741 13.56%
40*%40*40 219.270 - 0.32% 45.8307 5.09%
50%50%50 219.099 - 0.24% 47.6098 1.41%
60*60*60 218.561 0.00% 48.2904 0.00%

2.9 Conclusion

In this chapter, geometrical description and the governing equations are presented. Then,
numerical methodology and the gridmesh sensibility are discussed for hydrodynamic and
the heat transfer characteristics of C-shaped channel for non-Newtonian laminar flow.
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CHAPTER 3
Hydrodynamic, heat transfer,

and thermal mixing performances

3.1 Introduction

In this chapter, flow and thermal performances for power-law non-Newtonian fluid are
studiedin detail for the straight and the C-shaped geometries. These performances are
investigated as function of generalized Reynolds number ranging from 50 to 200 and
different power-law index (n = 1).

3.2 Validation

In order to check the reliability and the precision of the CFD computation, a comparison
with other results provided in the literature is carried out for hydrodynamic and thermal

flow cases.
3.2.1 Hydrodynamic flow problem

Fully developing laminar steady flow of shear thinning fluid in straight channel is
considered. Figure 3.1 presentsanumerical profiles of laminar flow in straight circular tube
witch compared with the analytical profile for different power-law index (n = 1 and 1/3).
The numerical profile tends towards a theoretical value. The comparison is quite good for

both cases of power-law index.

O Analytical profilen =1
204 T 8 émﬂ O Numerical profile n = 1/3
ﬂt.lp' Sl UDD #  Analytical profilen =1
UE_!D DDU A Numerieal profile n = 1/3
1.5 LR baad b baihy, T
W e,
£104 & &
N !‘ﬁu-a B\-_li;*
> Py &
0.0 1 T T T 1
-1.0 -0.5 0.0 0.5 1.0

r/R
Figure 3.1: Axial velocity profiles forn = 1 and 1/3.

Moreover, another numerical study for validation of results have been performed for the
case of fully developed laminar flow in straight square channel, and found to agree quite
well number, as shown in Table 3.1.

Tables 4.1 presents a comparison of the values of the Poiseuille number obtained in the

present study and those provided in the literature for large range of a power-law index
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(n= 0.3-1).The numerical values barely differ from the case of the theoretical values
where the maximum difference is less than 0.5%. These values are in fair agreement and
the comparison is satisfactory and reveals a very good concordance.

Table 3.1: Poiscuille number, Po, of fully developed laminar flow in square straight
channel for different power-law index (n = 0.3-1).

n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
Present work 56.90 47.47 39.32 33.00 27.52 2290 1899 15.66
Wheeler and Wissler [9]  56.92 47.53 39.67 33.07 27.54 22.89 1897 15.65
Seppo [40] 56.90 47.52 39.65 33.06 27.53 22.88 1896 15.64
Simsoo et al [11] 56.90 47.89 40.29 33.89 28.49 2391 20.01 -
Kozicki et al [9§] 56.91 47.88 40.26 33.82 28.37 23775 19.82 -
Sayed-Ahmed [50] 56.90 - - - - 22.88 - -
Ray [47] 56.90 - - - - - - -
Shah [30] 56.90 - - - - - - -
Error (%)/ [9] 0.007 0.09 082 017 005 -0.06 -0.14 -0.14
3.2.2 Thermal flow problem

The numerical solution procedure of heat transfer characteristics has been reported
andvalidated thoroughly by comparing the present results with the results of Cotta [103]
and Wheeler and Wissler [9], for fully developed laminar flow of Newtonian and non-
Newtonian fluids in straight square ducts, subjected to wall heat flux. Where the
comparison regarding the local Nusselt number (Nu) for straight circular duct, as shown
in figure 4.2 and mean Nusselt number for straight square duct, as shown in table 4.2 for
different power-law index with the corresponding results available in the literature.

An excellent agreement is seen to exist between the present numerical values and the
literature values of Nusseltnumber. Based on these comparisons, it is perhaps reasonable
to conclude that the present results are reliable to within £0.4%. Deviations of this order
are not at all uncommon in numerical studies and arise due to the differences in the flow
schematics, problem formulations, grid and/or domain sizes, discretization schemes,

numerical methods, etc.

20. ! Asymptotic Nusselt
: - - - Cotta Nusselt
i O  Numerical Nusselt
15+
= ]
:§ !
9
< 104%
(o]
b
51 Elnm O—O—6-6 ©

00 01 02 03 04 05 06 0.7
Z*
Figure 3.2: Local Nusselt number of fully developed laminar flow in circular straight
channel forn = 1/3.

-52 -



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances

Table 3.2: Mean Nusselt number of fully developed laminar flow in square straight
channel for different power-law degree (n = 0.5-1).

N 1 0.9 0.8 0.7 0.6 0.5
Present work 3.0704 3.1140 3.1463 3.1832 3.228 3.2818
Wheeler and Wissler [9] 3.0950 3.106 3.135 3.171 3.216 3.274
Error (%)/[9] 0.2407 -0.258 - 0.360 -0.386  -0.373  -0.238

3.3 Behavior of the Local Physical Process of the velocity field

The velocity field depends greatly to the velocity gradient components (0Uj)/(0x;j ).
Consequently, these components contribute to the fluid kinematic flow such as vorticity
rate, deformation rate, rotation rate and stretching/compression of the vorticity. It should
be noted that these parameters either they do not exist or they are very small in the
straight channel because the flow is laminar and establishment. The main phenomena that
can occur in the Straight channel, where the regime is established and laminar, are the
shear stress and/or rotation of the particle around itself. This weakens the level of heat
transfer in the fluid because the transfer mode is limited to the heat conduction way.

3.3.1 Stretching /compression of the vorticity

The transport equation of the vorticity is given by:

00/0t + V.VQ = Q.VV +vAQ 3.1)
The term (L. VV induces formation of vortex structures in the flow with different sizes by
generating the stretching and compression (folding) vortex in the flow [100], see figure
3.3. The stretching and compression phenomena act simultaneously on the vortex
dimensions. At a given time, the stretching operation, increases the vortex length and
decreases its cross section, while the compression decreases the vortex length and
increases its cross section. These phenomena are generated as a consequence of the

conservations of the mass and angular momentum.

Compress1on

Stretching

—

Figure 3.3: Illustration of the stretching and compression operations

The appearance of the stretching and folding in the flow often gives rise to chaotic
behavior. Stretching results in nearby points diverging, folding results in distant points
being mixed together. These operations in the flow destroy the thermal and dynamic

-53_



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances

boundary layers and prevent its reformation. The boundary layer being a barrier against
the parietal thermal transfer, its destruction enhances considerably the heat transfer [61].
On the other hand, these operations increase the contact area between fluids to be mixed
even in the existence of the interfacial barrier as surface tension [55]. To characterize this
behavior in the flow, the stretching and compression coefficients of the vortex a@was
estimated. It is defined by the following expression:

- = =

0.D.N (3.2)
_QZ

Where D is the deformation tensor and £2 is the vorticity vector. At any location where

a =

a@ > 0, the vortex stretching prevails on vortex compression [100].a@* presents the
arithmetic average of the positive values of the stretching coefficient and a@™~ presents the
arithmetic average of the negative values of the compression coefficient.

Figures 3.4 and 3.5, present respectively the evolutions of vortex stretching coefficient
(at) and compression coefficient (@~) as function of generalized Reynolds number Re,
for different power-law index n ranging from 0.5 to 1.

60 T T T T
. . . ; —3—n=1
504 - 1| —=—n=09
. . . . —0—n=0.8
wl ez
! ! ! ! —%—n=0.6
o ' ' ' —&—n=05
@,30 T T ] !
S0l i
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0 :
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Re,

Figure 3.4: Evolutions of the vortex stretching in the fluid flow with generalized

Reynolds number in the C-shaped channel for varying n.
0 . . .

——n=1
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Figure 3.5: Evolution of the vortex compression in the fluid flow with generalized
Reynolds number in the C-shaped channel for varying n values.
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These coefficients increase constantly with the increase of the generalized Reynolds
number. While going towards the great values of n, the stretching and folding processes
become very important. Because when the n values are small the fluid is more viscous and
the fluid needs an additional energy to create a significant agitation in the fluid. At low
generalized Reynolds number values, the chaotic behavior is not yet active and so these

phenomena are identical for all values of n.

3.3.2 Deformation (Strain rate) and rotation

Both mechanisms (deformation and rotation) are complementary in the mixing
operations. The rotation process gives rise to three-dimensional movements of the fluid
particles and it can transport the fluid particles to regions of high shear rates. The rotation
process realizes a good macroscopic mixing while the deformation process achieves a
good quality of mixing by molecular diffusion. For this aim, the chaotic geometry can be a
potential solution for increasing the deformation and rotation rates at once. An
examination of the fluid behavior index effect on the deformation and rotation rates is
petformed. Evolutions of the mean deformation and rotation rates (Dpean and Qmean)
in the C-shaped channel as function of the generalized Reynolds number ranging from 50
to 200 are presented in figure 3.6 and 3.7. The two parameters, rotation and deformation,
are defined by the following equations [101]:

1

p=[o() +2(3) +2(3) + G + G+ + G 09

Drmean = 3 J SAU (3.4

1

1| /0w v\ 2 ou w2 v au\2 ]2
9=5[(g‘5) +(5-5) +(a‘5)] (:5)
Oimean = 3 [ 24U (3.6)

Where U represents the total volume of the fluid in the channel.

Figure 3.6 shows the evolutions of the deformation rate for different generalized
Reynolds number (Reg = 200 to 50) in C-shaped channels. As can be seen from this
figure, the deformation increases by an increase in generalized Reynolds number, where
the deformation rate is maximum for the Newtonian case (n = 1). This explains that this
behavior is kinematic and is accentuated by the fluid behavior index.

As the power-law index increases, the deformation rate becomes larger inside the
geometry. Therefore, the deformation rate is higher for the Newtonian case (n = 1).
Evolutions of the mean rotation rate (2jean) in the C-shaped channel as function of the
generalized Reynolds number ranging from 50 to 200 are presented in figure 3.7.

As it can be observed, when the power-law index increases, these parameters are more
vigorous, and the flow becomes more agitated and sheared. Besides, the flow in the
Newtonian case (n = 1) exhibits very high rates of rotation compared to the other non-
Newtonian cases (n = 0.5 to 0.9). At high values of generalized Reynolds number, the
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rotation rates are more important in Newtonian case compared to the other fluid. The
cases of low values of Rey; and n have qualitatively the same behavior in terms of
deformation and rotation rates. The difference becomes noticeable when the Reynolds
number exceeds the value of 50.

600

................................

0 ;

0 50 100 150 200
Re,

Figure 3.6: Evolution of the deformation rate with different generalized Reynolds
number in C-shaped channel.
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—e—n= 0.8
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71| —M—n= 0.6
--A-n=05

50 100 150 200
Re
Figure 3.7: Evolution of the rotation rate in the fluid flow with generalized Reynolds
number for different power-law index.
3.3.3 Vortex intensity

When the fluid passes through the geometrical perturbation in the considered channel, a
secondary flow is created by the presence of a centrifugal force. The secondary flow is
more intense for the disturbance having a complex shape. In order to estimate the
secondary flow, the vortex intensity was calculated at the exits of the C-shaped channel as

defined by [101]:
1
‘Qaverage = Eflﬂzlds (3.7)

S is the cross section area and (), is the vorticity at the flow cross section. Due to the
secondary flow effect, the transversal movements of the particles increases and the axial
dispersion decreases, which consequently enhanced the heat transfer [101].
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In order to show the effect of power-law index and generalized Reynolds number Reg (n)
on the vortex intensity, the figure 3.6 presents the evolutions of the vortex intensity for
different generalized Reynolds numbers with power-law index ranging from 0.5 to 1. It is
noticed that the vortex intensity increases with the growth of the generalized Reynolds
number. For the cases of n = 0.5 and n = 0.6, the change of the maximum absolute of
vortex intensity is changed with generalized Reynolds number by about 23%. Therefore,
the maximum vorticity are given at high power-law index (Newtonian case). However, the
existence of much great secondary flows in Newtonian fluid case compared to those
exhibited in the cases of non-Newtonian fluid. For low generalized Reynolds number and
low power-law index, the evolutions are very close to each other. Therefore, the
magnitude of the vortex intensity has less effects of secondary flow, and the fluid can

easily flow inside the geometry and thus a vortex is not created.
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Figure 3.8 :Variations of the vortex intensity with generalized Reynolds number for the

different power-law index at the outlet section.
3.3.4 Helicity

The Helicity, defined as the inner product of velocity and vorticity, characterizes the
helical motions. Non zero-Helicity declares that the fluid particles move along their axis
of rotation and the flow might be expected to be less complex than flows withzero
Helicity.

- —

V.0

H=<> (3.8)
Dimensionless Helicity is used in the present work to describe the nature of the
secondary flows (chaotic or regular), which occur at the exit of each perturbation area
(middle and outflow sections). The dimensionless Helicity value is bounded between -1
and +1. For both limit values -1 and +1, the fluid flow is considered fully chaotic. Figures
3.9 shows the dimensionless Helicity contours of the C—shaped channel, for various
generalized Reynolds numbers with different values of power-law index (n = 0.5 and 1).
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Figure 3.9: Helicity contours, (a) middle cross section (b) outlet section.

3.4 Flow characteristics

In this section, the effects of power-law index (n) and generalized Reynolds number (Reg)
on velocity field for each cross section within straight and C-shaped channels are
investigated.

3.4.1 Influence of power-law index on axial velocity

To discuss the velocity field, contour maps of the axial velocity distributions of different
cross sections are presented, for given generalized Reynolds number Re;, = 100 and
power-law index (n = 0.5 to 1) is increases as fluid behavior index.

Figure 3.10 presents the axial velocity contours for generalized Reynolds number Re, =
100 and power-law index ranging from 0.5 to 1, in outlet cross section of the straight
duct.
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It can be seen clearly that, there is no secondary flows appeared in the outlet cross
section. So, the momentum transfer is limited only to the molecular diffusion mode for all
cases of the power-law index (n).

n=1 n=209

Figure 3.10: Axial velocity contours at the outlet section of the straight channel for
generalized Reynolds number Reg = 100, with n = 0.5 to 1.

Figure 3.11 shows the axial velocity contours of C-shaped channel for generalized
Reynolds number Re; = 100 and power-law index ranging from 0.5 to 1, in three different
cross sections (S1: inlet, S2: middle and S3: out flow sections). For all cases of different
power-law index, the bulk induced fluid flow throughout the middle sections and two
small cells is formed at the top wall and the opposite one, where the flow pattern is
changed drastically in out flow section.

The fluid particles in outlet section have larger centrifugal force than other regions due to
the chaotic advection. The intensity of secondary flow increases with increase in the value
of n. It is evident from the figure that as the secondary flow becomes more skewed
toward the wall of the geometry. These changes in pattern for different power-law index
and their physical implications are discussed in the next section.

Figure 3.11 shows the secondary flow vectors of fluid particles from central to near wall
regions in the outflow section for the straight andthe C-shaped channels at given
generalized Reynolds number (Re; = 100) with diffferent power-law index (n = 0.5 and
1). Figure 3.12 displays that there is no secondary flows appeared in the outlet cross
section. So, the momentum transfer is limited only to the molecular diffusion. The
recirculation observed in C-shaped geometry is related to the sudden change of the
direction due to the specific geometrical feature of the chaotic channel. Hence, the
principal direction of the vectors is transformed through 90° in a short distance.
Meanwhile, the vectors are seen to cross over each other, indicating the fluid particles are
being mixed in the tangential direction and a significant secondary flow is formed, which
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is able to provide an extra advantage to heat transfer perfarmance and mixing flow
compared with flow in a straight channel, as shown in the next parts.

=0.5

n=0.6

n=0.7

n=20.8

n=09

S1

Figure 3.11 : Axial velocity countours of C-shaped channel for generalized Reynolds
number Re, = 100 with power-law index n = 0.5 to 1.
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Figure 3.12 :Secondary flow vectorsat a cross section of the C-shaped channel for Re,
=200 with n = 0.5 and 1.

Figure 3.13 and figure 3.14 show the evolutions of the axial velocity profiles with x and y
coordinates at the center line of the straight channel outlet section for power-law non-
Newtonian fluid for two generalized Reynolds number 50 and 150, respectively. The
power-law-index varies from 0.5 to 1. The profiles of the velocity are symmetric and
parabolic. The maximum velocity is located in the center of the cross section and it
increases considerably with the increase of the power-law index. It can be seen clearly
that, with this type of flows, particles trajectories are parallel resulting in no motion of the
fluid particles in the transverse direction of the flow. So, the momentum transfer is
limited only to the molecular diffusion mode.

Figure 3.15 and figure 3.16 show the evolutions of the axial velocity with x and y
coordinate at the center line of the outlet section in the C-shaped geometry for power-law
non-Newtonian fluid for two generalized Reynolds number 50 and 150.The velocity
distributions within the channel highlight the flow complexity where the symmetric nature
of the velocity profile is disrupted under the effect of the secondary flows. The velocity
profiles in the central core region are more latter compared to that in the straight channel.
The location of the maximum velocity point in this type of geometry is of interest. One
can gain the general idea about the secondary flow pattern and the intensity of secondary

flow.
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Figure 3.13: Axial velocity profiles at the outlet section of the straight channel for Re,=50,
with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate.
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Figure 3.14: Axial velocity profiles at the outlet section of the straight channel for Re, =
150, Wlth n = 0.5 to 1, (a) X-Coordinate and (b) Y- Coordlnate
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Figure 3.15: Axial velocity profiles at the outlet section of the C-shaped channel for Re,
= 50, with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate.

-62 -



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances

The results show cleatly that the effect of the secondary flows is to shift the location of
the maximum value toward the walls. In addition, the maximum value increases as the

value of the power-law index increases.
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Figure 3.16: Axial velocity profiles at the outlet section of the C-shaped channel for Re,
= 150, with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate.

3.4.2 Influence of generalized Reynolds number on axial velocity

In this section, a different power-law index is considered and generalized Reynolds
number is changed to plot the flow velocity profiles for each cross sectional geometry.
Figure 3.17 present axial velocity profiles for different generalized Reynolds numbers Reg
= 50 to 200 and power-law index n = 0.5 and 1, corresponding to pseudoplastic and
Newtonian fluid behaviors, respectively. As can be seen in this figure, the generalized
Reynolds number strongly affects the velocity profiles in the C-shaped channel.

The stream lines in the case of Newtonian fluid were much more twisted compared to the
non-Newtonian fluid, thereby indicating the development of stronger secondary motion
in the Newtonian fluid. For high generalized Reynolds number Reg; = 200, the vortex
structure switches from a two-cell structure to a three-cell structure. The new vortex
rotates in a direction opposite to that of their corresponding main vortices. The cells
become larger in size by an increase in the generalized Reynolds number, Reg. This
suggests that the level of mixing in C-shaped channel is strongly affected by the
extensional-flow behavior of non-Newtonian fluids.

Figure 3.18 and figure 3.19 show the axial-velocity profiles for horizontal and vertical
centerlines at the outlet section of C-shaped channel for Newtonian and non-Newtonian
fluids, respectively, with various values of generalized Reynolds number (Re; = 50 to
200). The velocity profile value steadily decreases due to decreased values of generalized
Reynolds number for both Newtonian and non-Newtonian fluids, the flow field is a bit
unstable for Re; = 50. The velocity profiles for non-Newtonian fluid show a marked
decrease with decreasing of generalized Reynolds number in centerline axial velocities in
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comparison to the Newtonian fluid, due to the increasing effect of the centrifugal force in
the flow pattern.
n=0.5

Re, = 50

Re, = 100

Re, = 150

Re, = 200

a2

Figure 3.17 : Axial velocity countours of C-shaped channel for power-law index n = 0.5

and 1 with generalized Reynolds number Reg = 50 to 200.
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3.4.3 Periodic flow
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Figure 3.18: Axial velocity profiles at the outlet section of the C-shaped channel for Re,
= 50 to 200, with n = 1, (a) X-Coordinate and (b) Y-Coordinate.
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Figure 3.19: Axial velocity profiles at the outlet section of the C-shaped channel for Reg
= 50 to 200, with n = 0.5, (a) X-Coordinate and (b) Y-Coordinate.

Axial Velocity profiles of in three periods of C-shaped channel are presented in figure
3.20 and figure 3.21, respectively. For both Newtonian and non-Newtonian cases, the
same velocity profiles are taken in the second and the third period. Therefore, the
pressure loss is even more important that the axial velocity of the flow is low. By
conservation of volume flow, the maximum of axial velocity profiles are reduced due to

the formation of fluid cells, which generate an increase in the secondary flow.
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Figure 3.20: Axial-Velocity profiles of the C-shaped channel at the middle
section of each period, as function of (left) X-coordinate and (right) Y-coordinate
for: (a) n = land (b) n = 0.5.
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Figure 3.21: Axial-Velocity profiles in the C-shaped channel at the outlet section
of each period, as function of (left) X-coordinate and (right) Y-coordinate for: (a)
n = land (b) n = 0.5.

3.5 Poiseuille number

Figure 3.22 presents the evolutions of the local Poiseuille number with the curvilinear
coordinate for a generalized Reynolds number equal to 100 and for two values of the
power-law index 0.5 and 1 in three periods of the straight and C-shaped channels.
Because the flow is regular in the straight channel, the local Poiseuille number decreases
rapidly at the entrance of the channel as function of the curvilinear coordinate and it
tends towards an asymptotic value once the flow is established. This value increases with
the power-law index n. In the C-shaped geometry and from the second period, the
variation of the local Poiseuille number is periodic. This is explained by the fact that the
velocity field is itself periodic (figure 3.23). The flow is enough disrupted due to the
existence of the geometrical perturbations, which prevents the establishment of the
boundary layer. This phenomenon on increases strongly the pressure drop.
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Figure 3.22: Evolutions of the local Poiseuille number with the curvilinear coordinate for

the two geometries for a power-law index of 0.5 and 1 (Re, =100).

Figure 3.16 presents the evolutions of the mean Poiseuille number with generalized
Reynolds number for the two considered geometries and for power-law index ranging
from 0.5 to 1.In the straight channel when the flow regime is established, the mean
Poiseuille number keep a constant value whatever the generalized Reynolds number for a
given value of power-law index n. This parameter (Pomean) increases with the growth of
the power-law index. As mentioned to above, the pressure drops are influenced by the
intense secondary flows and accentuated with the increase of the generalized number and
the power-law index. So, the mean Poiseuille number is very significant in the C-shaped
than that calculated in the straight channel.
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Figure 3.23: Evolutions of the mean Poiseuille number with generalized Reynolds
number in straight and C-shaped channels.
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3.6 Heat transfer characteristics

The axial variation of the local Nusselt number with respect to power-law index n = 1 to
0.5, is depicted in Figure 3.24. The local Nusselt number sharply decreases at the entry
and then fluctuates for all cases of Newtonian (n = 1) and non-Newtonian (n = 0.9 to
0.5) fluids. This observed phenomenon is different from that of straight channel, and
these oscillations are caused by the flow pattern which is affected by the centrifugal and

viscous forces inducing thermal boundary layer formations at the entrance, see figure 3.
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Figure 3.24: Evolutions of the local Nusselt number as function of the curvilinear
coordinate (S) in the C-shaped channel for n = 0.5 to 1 with: (a) Re; = 50, (b) Re; = 100,
(c) Reg = 150 and (d) Re, = 200.

In the entrance length of the straight channel, the local Nusselt number decreases strongly
to reach an asymptotic value which depends on the power-law index (Figure 4.25).
However, in the C-shaped geometry, the chaotic behavior exhibits a marked influence on
heat transfer distributions in the system. Due to the continuous effect of the boundary
layer destruction, the local Nusselt number evolves periodically with the curvilinear

coordinate, which allowed us to make the computation in one period. Consequently, the
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thermal boundary layer in the chaotic channel became thin and the heat transfer is very
sensitive to temperature changes between the wall temperature and the mean bulk
temperature. The maximum variation of the local Nusselt number is very considerable
and it is around 40.

-9 --C-shaped,n=1
120 —— C-shaped, n = 0.5 :
-+ -- Straight channel, n =1 :
100+------ —&— Straight channel, n=05 | _ .|
First Period 1 Second Period !  'Third Period"
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0.0 0.2 0.4 0.6 0.8
S-Coordinate, (m)

Figure 3.25: Evolutions of the local Nusselt number with the curvilinear coordinate in
the two geometries for two values of the power-law index 0.5 and 1 (Reg = 100).

In order to compare the heat transfer performances between the two geometries, the
variation of the mean Nusselt number as function of generalized Reynolds number for
several power-law index values ranging from 0.5 to 1 is estimated (figure 3.206).

In the straight channel, the mean Nusselt number is independent of the generalized
Reynolds number and keeps a constant value, which increases with the power-law index
value n. This is due to the effect of the chaotic kinematics of the fluid flow. With a view
to examine the increase of heat transfer rate rather than the decrease of pressure drop, we
present on the figure 3.27 the evolutions of the ratio Numean/POmean with the generalized
Reynolds number for the power-law index values. When this ratio is high, the
compromise (improving heat transfer- diminution pressure losses) is the best. In the
straight channel, this parameter has a constant value for a given power-law index and is
lower when n = 1.

However, in the C-shaped geometry, the ratio Numean/POmeanbecomes higher with the
increase of the power-law index but it decreases with the generalized Reynolds number.
As conclusion, the compromise (improving heat transfer- diminution pressure losses)
provided by the C-shaped is very significant in comparison with that calculated in the
straight channel.
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Figure 3.26: Evolutions of the mean Nusselt number with generalized Reynolds number

in straight and C-shaped channels power-law index (n = 1 to 0.5).
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Figure 3.27: Evolutions of the ratio of the Poiseuille number to the Nusselt number with

different power-law index for straight channel and C-shaped geometry.

3.7 Thermal mixing performances

The thermal mixing (temperature homogenization) between hot and cold non Newtonian
fluids is considered for two injections modes (horizontally and vertically). For this, the
inlet cross section of each geometry is divided in two parts. The hot fluid is injected in
one part at 330K and the cold fluid is injected in the other part at 300K, see figure 3.28.
In this paper, we estimate the mixing performances in the chaotic geometry (C-shaped
geometry) and its performances will be compared to those of the classical geometry,

Straight channel.
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30 K— II «—300K

(b) vertical injection

(a) Horizontal injection
Figure 3.28: Temperature at the inlet cross section.

3.7.1 Temperature contours

Figures 3.29, 3.30, 3.31 and 3.32 present the temperature contours in five cross sections in
the Straight channel for different power-law index (n = 0.5, 0.8 and 1) and for two
generalized Reynolds numbers equal to 50 and 150 and for two injection modes,
horizontally and vertically. In the straight channel, the trajectories are parallels for which
there is no transfer of fluids in the transverse direction. So, the thermal mixing between
the two fluids is located at the interface and it is achieved only by molecular diffusion
(conduction). Because the heat transfer level in the straight channel depend to the
residence time, the thermal mixing for generalized number equal to 50 is better than that
obtained when generalized Reynolds number equal to 150 for both horizontal and vertical
injections. As known, the increase of the power law index gives a significant role of a
molecular diffusion. In other words, when the power law index n is high the fluid became

more viscous and consequently the momentum transfer by conduction dominates.

S1 S3 S 4 S5

Figure 3.29: Temperature contours in the Straight channel for different power-law index (n
: 0.5, 0.8 and 1) with horizontal injection (Reg = 50) at five cross sections: S1: inlet
section, S2: middle of the first period, S3: outlet of the first period, S4: middle of the
second period and S5: outlet of the second period.
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Figure 3.30: Temperature contours in the Straight channel for different power-law index (n : 0.5,

0.8 and 1) with horizontal injection (Re, = 150) at five cross sections: S1: inlet section, S2: middle

of the first period, S3: outlet of the first period, S4: middle of the second period and S5: outlet of
the second period.
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Figure 3.31: Temperature contours in the Straight channel for different power-law index
(n: 0.5, 0.8 and 1) with vertical injection (Reg = 50) at five cross sections: S1: inlet section,
S2: middle of the first period, S3: outlet of the first period, S4: middle of the second
period and S5: outlet of the second period.
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Figure 3.32: Temperature contours in the Straight channel for different power-law index
(n:0.5, 0.8 and 1) with horizontal injection (Re; = 150) at five cross sections: S1: inlet
section, S2: middle of the first period, S3: outlet of the first period, S4: middle of the
second period and S5: outlet of the second period.

For a given value of generalized Reynolds number, if the power law index n increase, the
velocity increase too. Contrary to the power law index n effects, the increase of the
velocity begets the decreasing of the mixing level. So, there is a competition between the
two effects. For example, we remark that for mixing is better for n=0.5 than that obtained
for n=0.8 which explain that the effect of the velocity on the mixing is dominated and
vice versa.

Figures 3.33, 3.34, 3.35 and 3.36 present the temperature contours in five cross sections in
the C-shaped channel for different power-law index (n = 0.5, 0.8 and 1) and for two
generalized Reynolds numbers equal to 50 and 150 and for two injection modes
horizontal and vertical. Unlike what is given by the Straight channel, the preview of the
temperature contours at each cross section situated along the C-shaped geometry
indicates that the mixing quality is not affected by the power law index n for a given
generalized Reynolds number Reg either horizontally or vertically injections. So, the power
law index has not any effect on the mode of momentum transfer in the flow. For a given
value of the power law index and on the same cross section, the mixing quality is more
vigorous when the generalized Reynolds number is more important. The increase of the
generalized number enhances highly the dynamic of the flow and the kinematic of the
fluid particles changes considerably and the mixing level will be improved.
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Figure 3.33: Temperature contours in the C-shaped channel for different power-law

index (n = 0.5- 1) with horizontal injection (Reg = 50) at five cross sections: S1: inlet

section, S2: middle of the first period, S3: outlet of the first period, S4: middle of the
second period and S5: outlet of the second period.
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Figure 3.34: Temperature contours for different power-law index (n = 0.5, 0.8 and 1)
with horizontal injection (Reg = 150) at five sections: S1: inlet section, S2: middle of the
first period, S3: outlet of the first period, S4: middle of the second period and S5: outlet

of the second period.
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Figure 3.35: Temperature contours for different power-law index (n = 0.5, 0.8 and 1)

S

0.8

with vertical injection (Reg = 50) at five sections: S1: inlet section, S2: middle of the first
period, S3: outlet of the first period, S4: middle of the second period and S5: outlet of the

second period.
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Figure 3.36: Temperature contours for different power-law index (n = 0.5, 0.8 and 1)
with vertical injection (Re = 150) at five sections: S1: inlet section, S2: middle of the first
period, S3: outlet of the first period, S4: middle of the second period and S5: outlet of the

second period.

-76 -



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances

3.7.2 Mixing degree
3. 7.2.aThe evolutions of the Mixing degree with the non-dimensional residence

Figures 3.37 and 3.38 show the evolutions of mixing degree, Mg, with the non-
dimensional residence time for initial horizontal and vertical injections, for generalized
Reynolds numbers 50 and 150 and for power-law index n equal to 0.5 and 1 in the two
geometries straight and C-shaped channels.

In the straight channel, the particle trajectories are parallels and consequently the heat
transfer is done only by conduction through the interface between the two fluids. This
leads to a very bad thermal mixing quality for all cases taken account whatever the power
law index values and the generalized Reynolds number and as consequently the level
mixing does not go beyond 0.2. To have a good quality mixing level it should be take a
very important duration. So, the straight channel is not the appropriate channel for to use
it in the thermal mixing process.

In the C-shape channel, the agitation is more vigorous due the chaotic kinematic of the
trajectories and to the existence of the intense recirculation zones in the flow. This
behavior contributes considerably to the enhancement of the mixing performances
compared to that in the straight channel wherein the flow is regular. When the generalized
Reynolds number increases, mixing is more vigorous, and the mixing degree evolves more
quickly so the best quality of the thermal mixing is reached. In this type of the geometry,
the mixing time does not exceed one second for the two values of the generalized
numbers 50 and 150 and for the power law index n equal to 0.5 and 1. We remark that
there are barely difference between the mixing levels obtained for the power law index n
equal to 0.5 and 1. In addition, it is seen that the chaotic nature of the trajectories in this
geometry cancels completely the effect of the mode injection on the thermal mixing of

the two fluids (hot and cold).

1.0 . . . . . . .
. ﬁﬁdj] : : : : : —— C-Shaped,n =1, Re =50
0.8 ----r-- bbb o CoShaped, n = 0.5, Re, = 50
: : : : : \ g 4| —m—C-Shaped,n=1,Re =150
0.61---- s ereeeeses oyt 25| - 8- C-Shaped, n = 05, Re, = 150
- ke —@— Straight Channel, n = 1, Re_=50
= 044--m R R SRR oo e e e oe : --O--Straight Channel, n = 0.5, Reg =50
' ' L RS ' ' ' —A— Straight Channel, n =1, Reg =150
0.2+4- = ----- ----- ..... ..... _ -5~ Straight Channel, n = 0.5, Re_= 150
0.0 101006 0:0]00-0 00

0.00 0.05 0.10 015 020 025 030 035
S/ (D, Re)
Figure 3.37: Evolution of the mixing degree VS non-dimensional residence time in the
two geometries (Straight and C-shaped channels) for different power-law index and
generalized Reynolds number with horizontal injection.
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Figure 3.38: Evolution of the mixing degree VS non-dimensional residence time in the
two geometries (Straight and C-shaped channels) for different power-law index and
generalized Reynolds number with vertical injection.
3.7.2.b Evolutions of the Mixing degree with the generalized Reynolds number

Figures 3.39 and 3.40 show the evolutions of the mixing degree, Mg, with generalized
Reynolds as function of generalized Reynolds numbers and for two power-law index
values n equal to 0.5 and 1 in the two geometries straight and C-shaped channels and for
initial horizontal and vertical injections as respect.

In the straight channel, the mixing degree is very weak both in horizontal or vertical
injections and for the two powers law index values n in the generalized Reynolds number
range. Because the heat transfer is done only by conduction the mixing decreases as
function of generalized number. Despite the slight superiority of the Mq for the value of n
equal to 0.5, we can see that the effect of the power law index on the mixing is almost

negligible.

10 T T T T

n =0.5, C-Shaped
—-—-n=1, C-Shaped
—2&—n = 0.5, Straight channel
—C—n =1, Straight channel

0.8+

0.6+

0 50 100 150 200 250
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Figure 3.39: Evolutions of the mixing degree as function of generalized Reynolds
number for two power-law index values n (0.5 and 1) and for horizontal injection at the
outlet cross section of the 24 period.
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In the case of the C-shaped geometry, the flow is chaotic which leads to a great agitation.
This behavior improves considerably the thermal mixing as function of generalized
Reynolds number. For generalized Reynolds number equal to 200, the mixing degree is
close to 1 and the quality mixing is perfect. The degree of mixing has an insignificant
difference as a function of the power law index considered so, the power law index n has

the same effect on the Mp as described above.

1.0 . . . . n =0.5, C-Shaped
——-n=1, C-Shaped
08 —4—n = 0.5, Straight channel
7 —0—n = 1, Straight channel
0.6 RN TR e e |
r ‘ ‘ ‘

eI SR I

0.2 e

0.0+

0 5 100 150 200 250
Reg
Figure 3.40: Evolutions of the mixing degree as function of generalized Reynolds
number for two power-law index values n (0.5 and 1) and for vertical injection at the

outlet cross section of the 24 period.
3.7.3 Temperature distribution

The temperature distribution is influenced by the velocity field that prevails in the two
geometries, straight and chaotic channels. For this aim, we present in figures 3.41 and
3.42 the probability density function at the outlet cross section of the first three periods in
two considered geometries (Straight and C-shaped channels), for two values of power law
index (0.5 and 1), for generalized Reynolds number equal to 100 and for two mode
injections, horizontal and vertical, respectively. In the straight channel, the thermal mixing
occurs only by conduction such as declared above either in horizontal or vertical
injections. This mode of heat transfer is very slow in order to realize an acceptable
thermal mixing level. The preview of the temperature distributions in this channel shows
that the temperature field remains as it is released since the inlet section. Also, we can see
that the power law index has not an effect on the mixing process and the temperature
cartography is unchangeable in the three periods. The initial temperature values, 300K
and 330K, have the greater percentage with a barely difference between the three periods.
This indicates that the use of the straight channel in the mixing process of the fluids is not
the suitable choice.

-79 -



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances

50

—*— n =1, C-shaped
40 —«— n=0.5, C-shaped
—=a— n = 1,Straight channel

§ 30 —0o— n = 0.5,Straight channel
|_
g
e 20
10
10
330
a
lo T T [ T T 50
| ! ! —*— n =1, C-shaped
o | R 77777 40| —*— n=0.5, C-shaped
< ' ' ‘ ! ' —=— n = 1,Straight channel
=6l A Lol Aa N 30| —— n=0.5Straight channel
— : : ! : :
g [ : :
£ 4t e\l 20
' '
24t - Lo N A P Ta 4110
l : L
0 ; ; . I . 0
300 305 310 315 320 325 330
T (k)
b
12 T T [l T T 60
! ! ! ! ! —&— n =1, C-shaped
104 --mmmroes SRR |V Pt Fooe 190  —+— n=0.5, C-shaped
° ) —=a— n = 1,Straight channel
§ 8 : : : : : 0 5 - 0.5,Straight channel
= : : ! : :
k| IR S i (L S co 30
- : : i : :
41k---- (RS R R I BREEEES ----H20
24|t o

30 305 310 315 320 335 33
T (k)
C
Figure 3.41: Temperature distribution at the outlet cross section
in the C-shaped and straight channels for horizontal injection and for Reg = 100, (a) first
period (b) second period (c) third period.
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Figure 3.42: Temperature distribution at the outlet cross section
in the C-shaped and straight channels for vertical injection and for Re; = 100, (a) first
period (b) second period (c) third period.
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Regarding the chaotic geometry, the temperature distribution is completely different
compared to that obtained by the Straight channel. At the outlet cross section of the first
period, the temperature distribution begins to disperse and the temperature values are
distributed over all the values included between 300K and 330K. As the fluid passes
through the geometry, the fluids are well mixed and tend to be homogenized under the
effect of the chaotic behavior of the flow within this geometry. So, the temperature
distribution at the outlet cross section of the third period is concentrated in a narrow
range of the order of 2K where the peak of this distribution is corresponding to the
desired mixing temperature, 315K regardless the power law index values 0.5 or 1.

3.5 Conclusions

In this chapter, we characterized the hydrodynamic, heat transfer and thermal mixing
(temperature homogenization) in two geometries, straight and chaotic channels, for
generalized Reynolds number ranging from 50 to 200, for power law index values 0.3to 1.
This paper outlines the evolutions of the Nusselt number and the Poiseuille number with
generalized Reynolds number and with the power law index ranging from 0.5 to 1.It was
observed that the local friction factor and Nusselt number starches and folded as the axial
distance increases. The chaotic configuration displays a heat transfer enhancement in
terms of the mean Nusselt number compared to the straight channel, however the
pressure drop in this geometry increases (high Poiseuille number) for all examined
Reynolds number. The mixing quality is highlighted by two criteria as the mixing degree
My and the probability density function Pdf. These criteria confirmed that the capacities
of the chaotic geometry in terms of the temperature homogenization of two pseudo
plastic fluids (hot and cold) in the flow is more better compared to that prevails in the
straight channel. The evaluate of the mixing degree Mg outlines that the perfect mixing is
reached rapidly in the chaotic geometry where the mixing time of the homogenization
don’t exceed 2seconds in the worst cases but in the straight channel, the mixing time is
very important and it exceeds several tens of minutes. In addition, it is proven by the Pdf
function that the temperature field is well and rapidly homogenized in the chaotic
geometry contrary to the straight channel where the temperature field very dispersed and
it remains such that it is released at the inlet section.
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CHAPTER 4

Entropy Generation Due to the Heat
Transfer and Fluid Flowln theDucts

4.1 Introduction

In this chapter, we characterize the geometries in terms of entropy generation witch due
to the heat transfer and fluid friction as function of generalized Reynolds number and

power-law index under the effects of different wall heat fluxes.

4.2 Quantities used for the characterization

Based on the temperature and velocity distribution of the flow field, the local entropy
generation due to heat transfer irreversibility (S7') and thefluid friction

irreversibility(Sp") are given for three dimensional flow as follows [88] [89]:

L A [@T\*  (T\* 3T\’ (4.1)
=]+ () D
T? |\ox dy 0z
o _ Famn [, (6u>2 . (61})2 . (6W)2 . (au N av)z N (au N GW)Z N (av N E)W)z
P 0x dy 0z dy 0x dz Ox dz Jdy (4.2)
The total volumetric entropy generation in the flow field can be obtained by :
Siun =St + Sp (4.3)

The mean entropy generation rates due to the heat transfer, Syoan 1 » Smean,p due to fluid

flow and Sgen meanthe whole entropy generation field are defined by:

mnr " (44)
==\ SpdV
mean,T % T
mnr 1 " 4.5
mean,P — vJSPdV (*3)
1
Sg,/,e,n,mean = ;J SéanV (4.0)
Where V is the total volume of the fluid.
The non-dimensional entropy generation numbers are defined as follows [89]:
_ Sglyleln,mean (4-7)

Ng = —
. Q/T;

WhereQ is the total heat transfer rate.

In addition, the Bejan number is defined as the ratio of the heat transfer entropy

generation to the global entropy generation, [88]:

mnr

T 4.8)

Be = SIII
gen
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Be=0 and Be=1 are two limiting cases representing the irreversibility is dominated by
fluid friction and heat transfer, respectively.

Mean Bejan number, Beyean, is defined as follows:

_ Ilrlllean,T (4' 9)

Bemean - S 127}
genmean

4.3 Effects of generalized Reynolds number on entropy generation

4.3.1 Entropy generation due to heat transfer

Figure 4.1 presents the local distributions of the entropy generation due to heat transfer (
St') for the straight and C-shaped channels for wall heat flux q" = 5000 w/m2with
different values of power-law index and generalized Reynolds number. We remark that
the entropy generation due to heat transfer is located near the corners while in the rest of
the cross section is zeros. This is explained by that the temperature is not homogenized
over the cross section. This behavior depends to the velocity field where this later is
laminar and regular.

In C-shaped channel, the both cases of Newtonian fluid (n = 1) and non-Newtonian
fluid(n = 0.6 and 0.8) the entropy generation due to heat transfer is very low over the
cross section regardless the generalized Reynolds number and the power law index which
verify that the C-shaped channel can effectively enhance the heat transfer performance
for both Newtonian and non-Newtonian fluids.

Figure 4.2 shows the evolutions of the entropy generation rate due to heat transfer with
various values of generalized Reynolds numbers and for different power law index values
in both straight and C-shaped ducts. The heat entropy generation in the C-shaped channel
is less than in that calculated in the straight channel. The heat entropy generation
decreases with the increase of the generalized Reynolds number. This explains that the
amelioration of the heat transfer in ducts decreases the creation of the entropy. Also, we
found that the heat entropy generation decreases with the increase of the power law index
n which explain that the increase of the viscosity decreases the creation of the entropy.
These results verify again that the chaotic flow can effectively enhance the heat transfer
performance by increasing in generalized Reynolds number and increasing in power-law

index.
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Figure 4.1: Contours of local entropy generation due to heat transfer at the outlet

cross section of: (a) straight channel and (b) C-shaped channel for different power-law
index and various generalized Reynolds number at constant wall heat flux (" = 5000

w/m?2).
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Figure 4.2: Evolutions of the entropy generation rate due to heat transfer for (a): straight
duct and (b): C-shaped channel, with various values of generalized Reynolds number,

4.3.2 Entropy generation due to fluid friction

Figure 4.3 presents the local distributions of entropy generation due to fluid friction for
various values of generalized Reynolds numbers and for different values of power law
index in both straight and C-shaped channels. We see that the entropy generation duo to
the friction increase as the power law index increases, which is attributed to the more
serious fluid friction and the accompanied frictional irreversibility induced by the larger
Reynolds number.

Figure 4.4 illustrates the effect of generalized Reynolds number on the entropy generation
rate due to fluid friction in both straight C-shaped channels, with various values of power
law index. As the power law index n increases, the irreversibility of the fluid friction
increases obviously. The reason behind this trend is the fact that the velocity gradients
inside the flow increase. Also we see that the difference between the results of the straight
duct and the C-shaped channel are relatively minor.
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Figure 4.3:Contours of local entropy generation due to fluid friction on outlet cross

section of: (a) straight channel and (b) C-shaped channel for different power-law index
and various generalized Reynolds number at constant wall heat flux (q" = 5000

W/m?2).
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Figure 4.4: Evolutions of the entropy generation rate due to fluid friction for (a):

straight duct and (b): C-shaped channel, with various values of generalized Reynolds

number,

Figures 5.6 presents the evolutions of the non-dimensional entropy generation for
different values of power law index (n) and for various values of generalized Reynolds
number. For both straight and chaotic geometries, the non-dimensional entropy
generation decreases as the generalized Reynolds number increases. Cleatly, the non-
dimensional entropy generation decrease with the increasing of the power law index,
witch, which reveal again that the effect of the power law index on heat transfer

performance is substantial.
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Figure 4.6: Evolutions of global non-dimensional entropy generation rate for (a): straight
duct and (b): C-shaped channel, with various values of generalized Reynolds number.

-88 -



CHAPTER 4: Entropy Generation Due to the Heat Transfer and Fluid Flow In the Ducts

4.3.4 Bejan number

Figure 4.7 presents the local distributions of Bejan number in straight and C-shaped
channels with different value of power-law index and generalized Reynolds number. The
maximum values of Bejan number concentrates near the heated wall, indicating entropy
generation comes from the heat transfer irreversibility. Therefore, the contribution of the
global entropy generation is mainly due to heat transfer irreversibility while the

contribution of fluid friction irreversibility is minor.
6 n=0.8

(b)
Figure 4.7:Contours of local Bejan number on outlet cross section of: (a) straight
channel and (b) C-shaped channel for different power-law index and various
generalized Reynolds number at constant wall heat flux (" = 5000 w/m?).
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Globally, the distribution of local Bejan number for straight duct larger than that obtained
for the C-shaped channel, which indicates that the heat transfer performance is most
serious in chaotic flow.

Figure 4.8 illustrates the effect of generalized Reynolds number on the global Bejan
number at a given wall heat flux (q" = 5000 w/m?). For straight channel, the values of
Bejan number are larger than 0.5, which is a reliable result that the entropy generation is
dominated by heat transfer irreversibility. It is also noted that in C-shaped channel, the
Bejan number is smaller than 0.5 for n exceeds 0.8. This is because the velocity gradients
are higher than temperature gradients.

Generally, the fluid friction irreversibility is less prominent, leading to higher Bejan

number in straight channel compared to the chaotic geometry.
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Figure 5.8: Evolutions of Bejan number for (a): straight duct and (b): C-shaped channel,

with various values of generalized Reynolds number.

4.4 Effects of wall heat flux on entropy generation at given generalized Reynolds
number (Re; = 100)

4.4.1 Entropy generation due to heat transfer

Figure 4.9 displays the local distributions of the entropy generation due to heat transfer
with different value of wall heat flux in straight and the C-shaped channels.

It can be observed that for straight channel, heat entropy generation concentrates at the
corners, and for the C-shaped channel, the entropy generation concentrates like a thin
layer near the heated wall, and gradually penetrates toward the central of the cross section.
However, entropy generation due to heat transfer increases with decreasing of the power
law index, because the temperature gradients are greater near the wall especially for the C-
shaped channel.

Figure 5.10 shows the evolutions of the heat entropy generation in straight and C-shaped
ducts, with various values of wall heat flux
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Figure 4.9:Contours of local entropy generation due to heat transfer on outlet cross section
of: (a) straight channel and (b) C-shaped channel for different wall heat flux.
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It can be seen, the value of heat entropy generation gradually increases as the wall heat
flux increases for both geometries. The values of entropy generation due to heat
transfer in C-shaped channel are generally smaller than that obtained for the straight
duct, which indicates the trend that the chaotic flow created in the C-shaped channel
can enhance the heat transfer and in turn to reduce heat transfer irreversibility.
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Figure 4.10: Evolutions of the heat entropy generation for (a): straight duct and (b): C-

shaped channel, with various values of wall heat flux.

4.4.2 Entropy generation due to fluid friction

Figure 4.11 presents the local distributions of the entropy generation due to fluid friction
in straight and C-shaped channels, with different value of wall heat flux and various
power-law index. The major entropy generation due to fluid frictional irreversibility is
found to concentrate at the wall of straight duct. In C-shaped channel, the values of
Sp near the bottom wall ate relatively smaller than obtained for the other sides.

Figure 4.12 shows the effect of wall heat flux on entropy generation due to fluid friction,
for different values of power law index.

The maximum rates of entropy generation due to fluid friction obtained for high power-
law index, and it’s increases with increasing of power law index. However, the power law
index induces stronger influence on the fluid friction irreversibility, which is much
dependent to the velocity gradient.
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Figure 4.11:Contours of local entropy generation due to fluid friction on outlet cross-section of:
(a) straight channel and (b) C-shaped channel for different wall heat flux.
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Figure 4.12:Evolutions of the entropy generation rate due to fluid friction for (a): straight
duct and (b): C-shaped channel, with various values of wall heat flux.

4.4.3 Global entropy generation

Figure 4.13 shows the global non-dimensional entropy generation Ngwith different power
law index and various values wall heat flux. For high wall heat flux, more than 80%
decreases in the global entropy generation rate from straight duct to C-shaped channel.
Moreover, global entropy generation decrease with increasing of power law index because
the entropy generation due fluid friction has dominated.

Since the heat entropy generation is higher and the entropy generation due to the fluid
friction is smaller, the larger non-dimensional entropy generation rates are observed,
when the wall heat flux increases for both straight and C-shaped channel. Hence, it

explains that the heat transfer performance increase when the power law index rises.
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Figure 4.13: Evolutions of the global non-dimensional entropy generation rate due to
heat transfer for (a): straight duct and (b): C-shaped channel, with various values of

generalized Reynolds number.
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CHAPTER 4: Entropy Generation Due to the Heat Transfer and Fluid Flow In the Ducts

4.4.4 Bejan number

Figure 4.14 presents the evolutions of the Bejan number for various values of wall heat
flux in straight and the C-shaped channels.

Both straight and C-shaped channels indicate that the Bejan number increases as the wall
heat flux augments. No remarkable change on Bejan number for high wall heat flux, that’s
mean the entropy generation due to heat transfer, has dominated for all cases of power-
law index. Consequently, in order to minimize the heat entropy generation, higher power

law index with lower external heat flux should be considered.

straight duct C-shaped channel

0 2000 4000 6000 8000 10000 O 0 4000 6000 8000 10000
mn 2
q", (w/m’) q", (w/m’)
(2) (b)

Figure 4.14: Evolutions of the Bejan number for (a): straight duct and (b): C-shaped

channel, with various values of wall heat flux.
4.5 Conclusion

In this chapter, numerical study of entropy generation to Newtonian and non-Newtonian
fluids flow flowing in straight and chaotic ducts is investigated. This work has been
performed for the important parameters in the following ranges: generalized Reynolds
number (Reg = 50 to 200), flow behavior index (n = 0.5 to 1) and wall heat flux (q" =

5000 w/m? to 10000 w/m?). As generalized Reynolds number increases, the entropy
generation due to heat transfer decreases, which reveal that the effect of the generalized
Reynolds number on heat transfer performance is substantial. These results verify that the
C-shaped channel can enhance the heat transfer performance for different values of
power law index. Global entropy generation rate in straight duct larger than that obtained
for the C-shaped channel, which leads to enhance the heat transfer performances. The
increase in the value of generalized Reynolds number causes Bejan number to declines
and its increase significantly, as wall heat flux augments which demonstrates a jump in the
irreversibility due to heat transfer. For all cases of power-law index, the chaotic flow can
effectively enhance the heat transfer performance more than that obtained for the straight
duct.
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General Conclusion and Perspectives

In this work, numerical simulations were performed using CFD code in order to study the
flow charactetistics of non-Newtonian power-law fluid in two geometries, C-shaped and
straight channels.

First, the kinematic behavior of the fluid flowwas characterized in terms of the vorticity
rate, Deformation rate andRotation rate. As known, the enhancement of these parameters
in the fluid flow maximizes the mixing performances of the fluid. The results illustrate that
the increase of both generalized Reynolds number and power law index increase the
considered parameters.

Then, hydrodynamic and thermal performances are characterized by the calculation of the
Poiseuille(Po) number and the Nusselt number (Nu). The chaotic configuration displays a
heat transfer enhancement in terms of the mean Nusselt number compared to the straight
channel, however the pressure drop in this geometry increases (high Poiseuille number)
for all examined generalized Reynolds number. Although, the ratio of the Nusselt number
to the Poiseuille numbetr (Numean/POmean) 1s higher in the C-shaped geometry, showing
that the compromise between the heat transfer enhancement-diminution of pressure
losses is obtained for the C-shaped geometry.

After that, thermal mixing was characterized inboth straight and C-shaped channels by
calculate the degree of mixing (Dm) of two fluid with different inlet temperatures and for
various values of generalized Reynolds numbers (Reg = 50-200). Results have shown that
the C-shaped geometry has an important efficiencyin term of the mixing than the straight
channel due to the existence of the chaotic zones.

Also, we characterized these geometries in terms of thermodynamic performances. We
estimate the generated entropy dues to heat and friction irreversibilities. Results showed
that the created entropy generations due to the pressure losses are very low and have the
same values in both straight and C-shaped channels. However, the created entropy
generations due to the heat transfer are negligible in the C-shaped channel compared to
that found in the straight channel. This explains that the homogenization of temperature
field in C-shaped channel contributes to the diminution of the entropy.

As conclusion, this work confirms that the chaotic geometry presents a highly efficient of
thermal mixing system and better performances in thermodynamics, for both Newtonian
and non-Newtonian fluids.

As related to the present work, the following suggestions are recommended for future
developments:

» Study the problem expetimentally.
» Take in consideration various type of fluids (Bingham, dilatant fluids. . .etc)
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Abstract

In this work, a numerical study is carried out by using CFD code (Fluent) to investigate a
steady laminar flow of non-Newtonian power-law fluids in two geometries: complex geometry,
called C-shaped, and straight channel. The chaotic flows created in the C-shape geometry
enhance considerably the performances in terms of heat transfer and pressure losses. These
petrformances are reported for a given geometry as function of both the generalized Reynolds
number ranging from Reg=50 to 200 and power-law index n varying from 0.5 tol.

In the straight channel, the flow is a fully developing and the regime is laminar and steady. The
obtained Nusselt and Poiseuille values are compared to those reported in the literature. The
comparison reveals a good concordance with the theoretical results where the maximum
difference is less than 0.5%.

The chaotic geometry (C-shaped) accentuate highly the heat transfer rate where the mean Nusselt
number, Nu, is great at least 10 times than that obtained in the straight channel for all generalized
Reynolds and power-law index values. Thereby, the chaotic geometry exhibited very important
pressure losses in the flow. Consequently, the mean Poiseuille number is at least two times
greater than that given by the numerical results. So, the augmentation of the pressure losses rate
is negligible compared to the increase of the heat transfer rate and the better compromise
(improving heat transfer - diminution pressure drops) is for the C-shaped channel.

The thermal mixing between two fluids (hot and cold) in the two considered geometries is
performed where the inlet cross section for cach geometry is divided in two patts (horizontally
and vertically).In one part, we injected the hot fluid and in the other part we injected the cold
fluid. Thermal performances are characterized by the calculation of the mixing degree. The C-
shaped configuration displayed thermal mixing rate enhancement of 80-90% relative to the
mixing rate in the straight channel. These geometries are characterized in terms of entropy
generation in the flow which dues to thermal and hydrodynamic process. For a given wall heat
flux equal to 5000W.m?>, the thermal dimensional entropy generation decreases with the increase
of both generalized Reynolds number and flow behavior index (n). While, the dimensional
entropy generation due to the friction increases with the increase of both generalized Reynolds
number and flow behavior index (n).In interesting parameter used in this study is the ratio
between the total dimensional entropy generation to the heat transfer rate exchanged between the
wall and the fluid N The Ny coefficient presents the compromise between the entropy
generation and the heat transfer rate. This parameter decreases with both generalized Reynolds
and flow behavior index (n) for a non-Newtonian. For n=1, the Ny presents an incteasing curve
with generalized Reynolds number. As consequence, in this geometry, the heat transfer rate is

mote important than the entropy generation rate in the case of the non-Newtonian fluid.

Keywords: Chaotic advection, Non-Newtonian fluid, Poiseuille number, Nusselt number,
Mixing degree, Entropy generation.
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Résumé

Dans le présent travail, une étude numérique a été réalisée, en utilisant le code CFD, pour
enquéter sur l'écoulement laminaire des fluides non-Newtonien a travers deux géométries :
géométrie complexe, appelée géométrie en forme de C, et canal droit. Les flux chaotiques créés
dans la géométrie en forme de C a améliorer considérablement le champ hydrodynamique, le
transfert de chaleur et la performance thermodynamique. Ces performances sont rapportées pour
une géométrie donnéeen fonction du nombre de Reynolds généralisée (Re, = 50-200) et l'indice
de loi de puissance(n = 0,5-1).

Dans le canal droit, 'écoulement est laminaire entierement établi. Les valeurs de Poiscuille et
Nusselt obtenus sont comparés a ceux rapportés dans la littérature. La comparaison révele une
bonne concordance avec les résultats théoriques ou 'écart maximal est inférieur 2 0,5 %.

La géométrie chaotique accentue fortement le transfert de chaleur ou la moyenne nombre de
Nusselt, Nu, est grande au moins 10 fois plus que celle obtenue dans le canal droit pour tous les
nombres de Reynolds généralisés et les valeurs de lindice de la lot de puissance. Ainsi, la
géométrie chaotique montrentdes pertes de pression trés importantes dans l'écoulement. Ainsi,
l'augmentation du taux de pertes de charges est négligeable par rapport a l'augmentation du taux
de transfert de chaleur et la meilleure solution reste le canal en forme de C, en ce qui concerne
'amélioration du transfert de chaleur et la diminution de perte de charge.

Le mélange thermique entre les deux fluides (chaud et froid) dans les deux géométries
considérées a été exécuté selon deux types d'injection  (horizontale et verticale). Les
performances thermiques sont caractérisées par le calcul du degré du mélange. Il est observé que
le mélange thermique dans la géométrie en forme de C affiche une amélioration de 80 a 90 % par
rapport 4 celui affiché dans le canal droit. Ces géométries sont caractérisées en termes de
génération d'entropie qui sont dues aux irréversibilités thermiques et hydrodynamiques.Pour un
flux de chaleur imposé égale a 5000W.m?, la génération d'entropie thermique diminue avec
l'augmentation du nombre de Reynolds généralisé et lindice d'écoulement (n). Alors, que la
génération d'entropie due 2 la friction des fluides augmente avec l'augmentation du nombre de
Reynolds généralisé et l'indice d'écoulement (n). Ce qui ressort de l'étude est que le parametre Ns
utilisé est le rapport entre la génération d'entropie globale due au transfert de chaleur échangée
entre le mur et le fluide.Ce paramétre Ns diminue en fonction de l'indice d'écoulement (n) et le
nombre de Reynolds généralisépour lesfluides non-Newtoniens. Pour n =1, le NS présente une
courbe croissante avec la généralisation de nombre de Reynolds. En conséquence, dans cette
géométrie, le taux de transfert de chaleur est plus important que le taux de génération d'entropie
dans le cas du fluide non newtonien.

Mots-clés : advection chaotique, fluide non-Newtonien, nombre de Poiseuille, nombre de
Nusselt, degré de mélange, génération d'entropie.
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ABSTRACT

In this work, a numerical study is carried out by using CFD code to investigate a steady laminar flow of non-
Newtonian power-law fluids in two geometries: complex geometry, called C-shaped, and straight channel. C-
shaped geometry is a three-dimensional mini-channel of square cross-section. The chaotic flows created in
this geometry enhance considerably the flow and the heat transfer performances. These performances are
reported for a fixed geometry over a range of generalized Reynolds number (Re,=50-200) and power law
index (n = 0.5-1). The higher heat transfer performance is provided by the C-shaped geometry and the lower

pressure drops are obtained for the straight channel. However, the better compromise (improving heat transfer

- diminution pressure drops) is for the C-shaped channel. This is evaluated via the calculation of the ratio
between the Nusselt number and the Poiseuille number Nu/Po.

Keywords: Non-Newtonian power-law fluid; laminar flow; Poiseuille number; Nusselt number; chaotic

advection

1. INTRODUCTION

Enhancement of the heat transfer of non-Newtonian fluids
flowing in ducts is required in many practical engineering
domains [1] [2]. To achieve this goal, researchers focused on
two types of geometries, curved and chaotic channels. Since
the work realized by Dean [3] and [4] where he initiated
theoretical studies of viscous flow, the curved pipes are
widely studied numerically and experimentally. The Dean
vortexes formed in these ducts have a significant effect on the
pressure loss and heat transfer of non-Newtonian fluids flow
[5-8]. The second alternative method is to create chaotic
trajectories [9] while keeping the laminar flow that ensures
the efficient stretching and folding of material lines. This type
of flows is more efficient and provides better performance in
terms of heat transfer [10] [11]. Kamal et al. [10] investigate
numerically the enhancement of both mixing and heat transfer
in a two-rod mixer for highly viscous non-Newtonian fluids.
The mixer was composed of two vertical circular rods in a
cylindrical tank. Chaotic flows were obtained by imposing the
temporal modulations of the rotational velocities of the walls.
Three different stirring protocols were chosen: non-
modulated, continuous and alternating (non-continuous). The
last two protocols were able to give chaotic flow trajectories.
The authors confirmed that chaotic mixing is suitable for
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shear thickening fluids for which it is observed a clear
enhancement of the thermal mixing (heat extraction and
homogenization). This is due to the increase in the apparent
fluid viscosity close to the rotating walls. Lester [11]
quantifies asymptotic scalar transport (temperature or
concentration) by the application of a novel spectral method
within both Newtonian and non-Newtonian fluids over the
control parameter space of a chaotic flow, the Rotated Arc
Mixer (RAM). The non-Newtonian fluid under consideration
is a yield stress shear thinning fluid, which is traditional
problematic traditional problematic for transport enhancement
due to the existence of plug flow regions.

Our contribution in this paper is to outline and analyze the
thermal and hydrodynamic behavior of power law non-
Newtonian fluid in complex geometry, called in this paper C-
shaped geometry, in comparison to the straight channel. The
C-shaped geometry is proposed in the first time by Beeb et al
[12]. By the calculation of the Poincare section, Robin et al
[13] showed the existence of chaotic trajectories within this
geometry. In addition, Lasbet et al [14] characterized this
geometry as a new design for the PEM fuel cell cooling
system where the fluid is Newtonian (water). Their heat
performance is considerably improved compared to that when
the flow is regular (straight channel).



Different non-dimensional parameters are used to estimate

: flow and heat characteristic: Poiseuille number, Nusselt
mber and the ratio Nu/Re as function of generalized
wnolds number for large range of the power law index (n =
-1). The ratio Nu/Po characterizes the compromise
tween the improvement of the heat transfer and the
minution of pressure losses.

MODEL AND NUMERICAL SOLUTION
1 Governing equations

Figure 1 presents the basic elements of the two considered
ometries called period(C-shaped and the straight channels).

The channel cross-section is square (1.5 cm x 1.5 cm).
1e hydraulic diameter Dy, is 1.5 cm. The unfolded length of
ie period C-shaped geometry is equal to 13.5 cm.

The mass conservation, Navier—Stokes and energy
juations, which given by equations (1), (2) and (3)
spectively, are numerically solved by using the commercial
FD code Fluent©. In this study, the fluid is considered as
compressible, non-Newtonian power-law while the flow
gime is steady and laminar:

vl =0 (M
fhere Vs the velocity vector.
E= 1 = :

VV=-—VP+divr )

Je,

X

Figure 1. Schematic representation of the studied

The non-dimensional parameters that characterize the flow
-egime are the generalized Reynolds number (Re,) Poiseuille
aumber (Po) and Nusselt number (Nu). These parameters are
developed as following:

! Generalized Reynolds number

Where T (Pa) is shear stress and P is the pressure.
pcVNT = AAT

Where p,Aand T are the density, the conductivity and the

temperature of the fluid, respectevley.
The constitutive relation between the shear stress 7 (Pa)

and the shear rate 7 (s™') can be described by a simple power
law expression:

“)

A

T=ky

Where, k (Pa.s™) is power-law consistency index and n is the
power-law index.

The apparent viscosity of the work fluid is given by:

(5

- n—1

p=ky

The applied boundary conditions are:
» at the inlet section, uniform velocity profile equal to
the mean velocity.
> at solid walls, no—slip conditions and a uniform wall
heat surface flux.
» at the outlet section, the pressure outlet condition is
considered.

Outlet

X

geometries: (a) straight channel, (b) C-shaped geometry.

The generalized Reynolds number (Re,) for power-law fluids
is defined by Metzner and Reed [15]:
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lere, a* and b* equal 0.2121and 0.6771 respectively, for
lare channel and U;(m/s) is inlet velocity.

Poiseuille number (Po) :
¢ hydrodynamic performance of all geometries is
racterized by the evolution along the curvilinear
rdinate s of the local friction coefficient £, defined as:

2(%)Dh
o Q

were dp/ds is the local pressure gradient along the
vilinear coordinate of the channel. Because this parameter
»ends on the Reynolds number, it is preferable to follow the
slution of the local Poiseuille number:

9f'ocal :f'Reg (8)

e mean Poiseuille number is calculated as:

OWEGH

1 L
=— [ P0j,eys ©)
L 0

here s is the axial coordinate.
Nusselt number:
ie local Nusselt number defined as:

S I
mean (Tb _TW) 2’ (10)

here, g,, (w/m?) is the wall heat flux, 7} (k) is the

ean bulk temperature fluid over the cross-sectional

ea and T,(k) is perimeter average wall temperature.

1e mean Nusselt number is given by the following equation:

_ 17
U pean :-L_'([Nulocalds (11)

2 Numerical solution methodology

The conservation equations for mass, momentum and
ergy were solved by using computational fluid dynamics
FD) code, Fluent®. The standard scheme is used for
essure discretization, and the SIMPLE scheme is employed
r pressure-velocity coupling. The momentum and energy
juations are solved with second-order up-wind scheme. The
imputations were considered to be converged once all the
aled residuals are less than 107 and the global imbalances,
presenting overall conservation don’t exceed 107,

2.3 Grid mesh sensibility

To perform grid independence studies, four grids were used
for simulations of non-Newtonian fluid flow in the C-shaped
geometry considering a steady laminar flow, forced
convection, at a generalized Reynolds number of 200and » =
0.5. These grids are ranging from 30 to 60 nodes in the x and
y direction, and from 30 to 60in the z direction. The Nusselt
number, the Poiseuille number, velocity and temperature
profiles were assessed for increasing mesh densities.

Figures2 and 3 show the evolutions of static temperature
and the axial velocity versus x and y coordinates for various
grids at the center line of the outflow section. It can be seen
that the temperature profiles in both x and y directions are
superimposed for all mesh densities. This illustrates that the
temperature profiles are not affected by the grid mesh.
However, it can be observed that the velocity profiles are
sensitive to the grid mesh except for the mesh densities
(50x50x50) and (60x60x60) where no significant difference is
seen. As consequence, the (50x50x50) grid is chosen as the
optimal grid mesh for the computation.

300.08
30007 4 0o o Mesh 60%60%60 |
300.06 OMesh 50*350*50 o
e, X A Mesh 40%40%40 |
= 300.05 X Mesh 30%30%30 |
& Q
5 300.04 ]
B o A
2 30003 . a
£ 30002 |
Ko
2 30001 |
300 |
299.99 , , , ‘
-0.002 0.002 0.006 0.01 0.014
X - Coordinate, (m)
a
300.08
30007 4 © © Mesh 60%60%60
2 50%50%5
30006 4 OMesh 50*50%50 =
Q x A Mesh 40*40*40
— 300.05 4 x Mesh 30*30%30
s ]
‘2 300.04 4 "
b5} o
S 300.03 A [m]
5
=
300,02 4
3 ,E!
7 30001 A 2 R
@ 2 ;'.;7..'«‘17‘\",-&‘;:{ Al o
300 A
-0.002 0.002 0.006 0.01 0.014
Y- Coordinate, (m)
b

Figure 2. Temperature profiles for different mesh
densities for n = 0.5 and Re, = 200 at the outlet section of the
C-shaped channel, (a) X-Coordinate (b) Y-coordinate.
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Figure 3. Axial-Velocity profiles for different mesh
densities for n = 0.5 and Re, = 200

Table 1 presents the mean values of the Poiseuille number
between inlet and outlet sections of the C-shaped geometry
and the values of the local Nusselt number at the outlet
section for all grid densities. It shows that the differences
between the two grids mesh (50x50x50) and (60x60x60) of
the Poiseuille and the Nusselt numbers change by less than
0.24% and 1.4% respectively. This presents another argument
to select the (50x50x50) grid mesh as the optimal mesh
density for the rest of the computations.

Table 1. Mean Poiseuille number and local Nusselt number
for different mesh densities for n = 0.5 and Re, = 200 in the
C-shaped channel.

Mesh Error/ Error/
Pomean Numean
Pomean Numefm
30x30x30 218270  0.13% 41.741 13.56%
40*40*40 219.270  -0.32% 45.8307 5.09%
50*50*50 219.099 -0.24% 47.6098 1.41%
60*60*60 218.561 0.00% 48.2904 0.00%

3. VALIDATION

In this section, in order to check the reliability and the
precision of the CFD computation, a comparison with other
results provided in the literature is carried out. A fully
developing laminar steady flow of non-Newtonian power-law
fluid in straight channel with square cross section s
considered.

Tables 2 and 3 present, respectively, a comparison of the
values of the Poiseuille number and the Nusselt number
obtained in the present study and those provided in the
literature for large range of a power-law index (n = 0.3-1).The
numerical values barely differ from the case of the theoretical
values where the maximum difference is less than 0.5%.
These values are in fair agreement and the comparison is
satisfactory and reveals a very good concordance.

Table 2. Poiseuille number, Po, of fully developed laminar flow in square straight channel for different power-law index (n = 0.3-

1).
n 1 0.9 0.8) 0.7 0.6 0.5 0.4 0.3
Present work 56.90 47.47 39.32 33.00 27.52 22.90 18.99 15.66
Wheeler and Wissler [16] 56.92 47.53 39.67 33.07 27.54 22.89 18.97 15.65
Seppo [17] 56.90 47.52 39.65 33.06 27.58 22.88 18.96 15.64
Simsoo et al [18] 56.90 47.89 40.29 33.89 28.49 23.91 20.01 2
Kozicki et al [19] 56.91 47.88 40.26 33.82 28.37 23.75 19.82 -
Sayed-Ahmed [20] 56.90 - z - . 22.88 . :
Error (%)/ [17] 0.007 0.09 0.82 0.17 0.05 -0.06 -0.14 -0.14

Table 3. Nusselt number of fully developed laminar flow in square straight channel for different power-law index (n =

0.5-1)

n 1 0.9 0.8 0.7 0.6 0.5
Present work 3.0704 3.1140 3.1463 3.1832 3.228 3.2818
Wheeler and Wissler [16] 3.0950 3.106 3:135 3.171 3.216 3.274
Error (%)/[16] 02407 -02580 -0.3607 -0.3869 -0.3736 -0.2386
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)ISCUSSION AND RESULTS

n this section, the flow and heat transfer characteristics for
ower law non Newtonian fluid are studied in detail based
the numerical solution. The flow structure is the main
tribution factor which affects the flow and heat transfer
formances in the geometries. Furthermore, these
formances are a complex function of generalized Reynolds
nber and power law index. As known, the improvement of

heat transfer performance is accompanied with an
mentation of the pressure drop penalty. According to
e, it is interesting to measure the energetic efficiency of

considered geometries. This efficiency illustrates the
npromise between heat transfer and pressure losses. Three
in parameters are considered in order to achieve the
wused goals: Poiseuille number (Po) for the flow
wracteristics, Nusselt number (Nu) for the heat
aracteristics and the ratio (Po/Nu) for the efficiency
:asurement. These parameters are evaluated for generalized

Re,=50 n=0.5

number and power law index ranging from 50 to 200 and 0.5
to 1 respectively.

4.1 Flow characteristics

Figure 6 and 7 show the evolutions of the axial velocity
profiles with x and y coordinates at the center line of the
straight channel outlet section for power law non-Newtonian
fluid for two generalized Reynolds number 50 and 150. The
power-law index varies from 0.5 to 1. The profiles of the
velocity are symmetric and parabolic. The maximum velocity
is located in the center of the cross section and it increases
considerably with the increase of the power law index. It can
be seen clearly that, in the straight channel, particles Pathlines
released from the inlet section are parallel resulting in no
motion of the fluid particles in the transverse direction of the
flow, see figures 4. In addition, figure 5 displays that there is
no secondary flows appeared in the outlet cross section. So,
the momentum transfer is limited only to the molecular
diffusion mode for all cases of the power law index n.

Re,=50 n=1

Re,=150 n=0.5

Re,=150 n=1

Figure 4. Particle Pathlines released from the inlet section.

Reg=50 n=1

Kudphtrx xR A<
e En xR RRE RO X KGR
T xxm LN

xR
S
R e

Re=150n=1_

Figure 5. Velocity vectors distribution in outlet cross section.
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Figure 6. Axial velocity profiles at the outlet section of the straight channel for Re,=50, (a) X-Coordinate and (b) Y-
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Figure 7. Axial velocity profiles at the outlet section of the straight channel for Re,= 150, (a) X-
Coordinate and (b) Y-Coordinate.

Figure 8 and 9 show the evolutions of the axial velocity
with x and y coordinate at the center line of the outlet section
in the C-shaped geometry for power law non-Newtonian fluid
for two generalized Reynolds number 50 and 150.The
velocity distributions within the channel highlight the flow
complexity where the symmetric nature of the velocity profile
is disrupted under the effect of the secondary flows. The
velocity profiles in the central core region are more lower
compared to that in the straight channel. The location of the
maximum velocity point in this type of geometry is of interest.
One can gain the general idea about the secondary flow
pattern and the intensity of secondary flow. The results show
clearly that the effect of the secondary flows is to shift the
location of the maximum value toward the walls. In addition,
the maximum value increases as the value of the power law
index increases.

Besides, the evolutions of the local and the mean Poiseuille
numbers in the interest of channels are examined. This
parameter depends strongly on the nature of the kinematic
trajectories of fluid particles in the flow. Figure 10 presents

the evolutions of the local Poiseuille number with the
curvilinear coordinate for a generalized Reynolds number
equal to 100 and for two values of the power law index 0.5
and 1 in three periods of the straight and C-shaped channels.

Because the flow is regular in the straight channel, the local
Poiseuille number decreases rapidly at the entrance of the
channel as function of the curvilinear coordinate and it tends
towards an asymptotic value once the flow is established. This
value increases with the power law index n. In the C-
shaped geometry and from the second period, the variation of
the local Poiseuille number is periodic. This is explained by
the fact that the velocity field is itself periodic (figure 11).
The flow is enough disrupted due to the existence of the
geometrical perturbations which prevents the establishment of
the boundary layer. This phenomen on increases strongly the
pressure drop. Figure 12 presents the evolution of the mean
Poiseuille number with generalized Reynolds number for the
two considered geometries and for power law index ranging
from 0.5 to 1.
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In the straight channel and when the flow regime is
tablished, the mean Poiseuille number keep a constant value
satever the generalized Reynolds number for a given value
"power law index n. This parameter (Po mean) increases
ith the growth of the power law index. As mentioned to
jove, the pressure drops are influenced by the intense
condary flows and accentuated with the increase of the
sneralized number and the power law index. So, the mean
siseuille number is very significant in the C-shaped than that
slculated in the straight channel.

2 Heat characteristics

Figure 13 presents the evolutions of the local Nusselt
umber with the curvilinear coordinate in the interest
sometries for two values of the power law index 0.5 and 1
nd for a generalized number equal to 100.In the entrance
ength of the straight channel, the local Nusselt number
lecreases strongly to reach an asymptotic value which
fepends on the power law index. However, in the C-shaped

geometry, the chaotic behavior exhibits a marked influence on
heat transfer distributions in the system. Due to the
continuous effect of the boundary layer destruction, the local
Nusselt number evolves periodically with the curvilinear
coordinate which allowed us to make the computation in one
period. Consequently, the thermal boundary layer in the
chaotic tube became thin and the heat transfer is very
sensitive to temperature changes between the wall
temperature and the mean bulk temperature. The maximum
variation of the local Nusselt number is very considerable and
it is around 40.In order to compare the heat performances
between the two geometries, the variation of the mean Nusselt
number as function of generalized Reynolds number for
several power law index values ranging from 0.5 to 1 is
estimated (figure 14).

In the straight channel, the mean Nusselt number is
independent of the generalized Reynolds number and keeps a
constant value which increases with the power law index
value n.

114 -




120 - - o8-Channel. n = 1 3.3
®S-Channel.n= 0.5 33
1O SC-Shaped. n = 1 e i
e -Shaped. n = 0.3 HEE .
8O~ Firstperiod | Second period EThiriperiod I
s o | S &
5 (o A m AR A
= 17 \f SaVantia\Va
o £ / - Ff’ { o 5 f s
.. f%f ‘/Va» AN, Mo
| Tt N A AY S
VAR VA, /
20 - i
(8]
0,00 010 0.20 .30 0. 40

Curvilinear coordinate. {m)

igure 13. Evolutions of the local Nusselt number with the curvilinear coordinate in the two geometries for two values of the
power law index 0.5 and 1 (Re, = 100).

80 s
%S-Channel. n = |
70 - wS-Channcl. n =09
60 - S-Channel. n= 0.8
® S-Channel. n= 0.7
S0 4 3 ; 5
_ @ S-Channel. n = 0.6
2 40 - . ®S5-Channel. n= 0.5
= 30 #(-Shaped. n = |
» 2 . a(-Shaped n= 09
20 4 318 } ) .
= 3§ 4 — ~ +(-Shaped. n=038
10 4 05 LT <+ -Shaped. n =07
90 100 110 L o
) = - - a | ®C-Shaped. n= 06
( £ T | T T T

40 60 80

Rey

OO 120 140 160 180 200 ¢

0.3

&

 aC-Shaped.n =

jgure 14. Evolution of the mean Nusselt number with generalized Reynolds number in straight and C-shaped channels Power

law index (n =1 to 0.5).

o<
0.495 1 +\\ . %8-Channel. n = |
0.445 A - ~ ®S-Channel. n = 0.9
0.393 - OS-Channel. n= 0.8
(. - ® S-Channel. n= 0.7
£ 03435 - oy
= = —~ || ® S-Channel. n = 0.6
= 0.295 A e i O | R .
:: ' = \»-‘:,: oS-Channel. n= 023
2 Y 245 ® - #(-Shaped. n = |
0.195 - ~ aC-Shaped n =09
{ - ape = () ¥
0.145 41 o - § C-Shaped. n=038
o— & e | <C-Shaped.n=0.7
0095 4 s— & & . )
= - * o (C-Shaped. n = 0.6
0.045 e - m— ;== - 4= s
p 3 T Y T T T 1 I ﬂr-( ~Shapcd_ n= ()_\
10 60 S0 100 120 140 160 180 200

Reg
Figure.15. Evolution of the ratio of the Poiseuille number to the Nusselt number with different Power law index for straight
channel and C-shaped geometry.

-115 -




This is due to the effect of the chaotic kinematics of the
particles. With a view to examine the increase of heat transfer
rate rather than the decrease of pressure drop, we present on
the figure 15 the evolutions of the ratio Nuypeu/Pomes With the
generalized Reynolds number for the power law index values.
When this ratio is high, the compromise (improving heat
transfer- diminution pressure losses) is the best. In the straight
channel, this parameter has a constant value for a given power
law index and is lower whenn = 1.

However, in the C-shaped geometry, the ratio Nu/Po
becomes higher with the increase of the power law index but
it decreases with the generalized Reynolds number. As
conclusion, the compromise (improving heat transfer-
diminution pressure losses) provided by the C-shaped is very
significant in comparison with that calculated in the straight
channel.

5. Conclusions

In this work, numerical simulations were performed by
using CFD code in order to study flow characteristics of the
non-Newtonian power law fluid in two geometries, C-shaped
and straight channels, in terms of heat transfer and fluid flow.
This paper outlines the evolutions of the Nusselt number and
the Poiseuille number with generalized Reynolds number and
with the power law index ranging from 0.5 to 1.It was
observed that the local friction factor and Nusselt number
straches and folded as the axial distance increases. The
chaotic configuration displays a heat transfer enhancement in
terms of the mean Nusselt number compared to the straight
channel, however the pressure drop in this geometry increases
(high Poiseuille number) for all examined Reynolds number.
Despite this, the ratio of the Nusselt number to the Poiseuille
number is higher in the C-shaped geometry, showing that the
heat transfer enhancement is important than the pressure loss
increase. The study of thermal mixing in the C-shaped
geometry of the Non-Newtonian fluids is in progress.
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