

I. Operations On Type-2 Sets

Consider two fuzzy sets of type-2, \widetilde{A} and \widetilde{B} , in a universe X. Let $\mu_{\widetilde{A}}$ and $\mu_{\widetilde{B}}$ be the membership grades (fuzzy sets in $J_x \in [0,1]$) of these two sets, represented, for each x, as $\mu_{\widetilde{A}} = \int_u f_x(u)/u$ and $\mu_{\widetilde{B}} = \int_w g_x(w)/w$, respectively, where $u, w \in J_x$ indicate the primary memberships of x and $f_x(u), g_x(w) \in [0,1]$ indicate the secondary memberships (grades) of x. Using Zadeh's Extension Principle [15,54,55], the membership grades for union, intersection and complement of type-2 fuzzy sets, \widetilde{A} and \widetilde{B} have been defined as follows [56]:

• Union

$$\tilde{A} \cup \tilde{B} \Leftrightarrow \mu_{\tilde{A} \cup \tilde{B}}(x) = \mu_{\tilde{A}} \sqcup \mu_{\tilde{B}} = \int_{u} l \int_{w} (f_{x}(u) \star g_{x}(w)) / (u \vee w)$$
(1)

Intersection

$$\tilde{A} \cap \tilde{B} \Leftrightarrow \mu_{\tilde{A} \cup \tilde{B}}(x) = \mu_{\tilde{A}} \sqcap \mu_{\tilde{B}} = \int_{u} l \int_{w} (f_{x}(u) \star g_{x}(w)) / (u \star w)$$
 (2)

Complement

$$\bar{A} \Leftrightarrow \mu_{\bar{A}} = \neg \mu_{\bar{A}} = \int_{u} f_{x}(u)/(u-1) \tag{3}$$

Where \vee represents the max t-conorm and \star represents a t-norm. The integrals indicate logical union. In the sequel, we adhere to these definitions, and, as in [56], we refer to the operations \sqcup , \sqcap and \neg as join, meet and negation, respectively.[57]

II. Membership Functions Creation

Triangular and trapezoidal membership functions retained in this work are defined using 4 linear functions, completely described by 5 points (a, b, c, d and e) as defined in Equations 1, 2 and 3, and illustrated in Figure 1. Triangular MFs are a particular case of trapezoidal MFs where b=c as illustrated in Figure 2.

$$Trapezzoid(x, a, b, c, d, e) = max(0, min(y_1, y_2, e))$$
(1)

$$y_1(x, a, b, c) = e^{\frac{x-a}{b-a}}$$
 (2)

$$y_2(x, c, d, e) = e^{\frac{d-x}{d-c}}$$
 (3)

y= Trapezoid

Fig 1 Trapezoidal MF example

$$a = -0.8$$
; $b = -0.4$; $c = 0.2$; $d = 0.6$; $e = 0.8$

y= T_{riangle}

Fig 2 Triangular MF example

$$a = -0.5$$
; $b = c = 0$; $d = 0.5$; $e = 1$

KM Algorithm for Computing y_L :

KM Algorithm for Computing y_r :

FUZZY PID STRUCTURES

we present some different FUZZY PID structures.[24][21] : where e is error , Δe is change of error and $\Delta^2 e$ rate of change of error.

Fig 3 Three-input fuzzy PID (coupled rules)

Fig 4 Three-input fuzzy PID (decoupled rules)

Fig 5 Two-input fuzzy PID (coupled rules)

Fig 6 Two-input fuzzy PID (decoupled rules)

Fig 7 One-input fuzzy PID (coupled rules)

Fig 8 One-input fuzzy PID (decoupled rules)