Liste des figures

Figure I.1 : Phénomène de blocage des granulats aux droits d'un obstacle	03
Figure I.2 : Composition d'un béton ordinaire (BO) et d'un BAP. Aspect à l'état frais d'un BO plastique et d'un BAP	04
Figure I.3 : Phénomène de ressuage	05
Figure I.4. : Comparaison entre une composition de BAP et celle d'un béton vibré	06
Figure I.5: Exemples de comportements rhéologiques pour différents types de béton	07
Figure I.6 : Essai d'étalement au cône (slump flow) [self]	08
Figure I.7 : Entonnoir en forme V (V funnel) [self]	09
Figure I.8 : Essai de la boite en L (L-box test) [self]	09
Figure I.9 : Essai en U (à gauche), essai de caisson (à droite)	10
Figure I.10 : Essai de stabilité au tamis	11
Figure I.11 : Essai de ressuage à l'aéromètre	12
Figure I.12 : Evolution de la résistance mécanique d'un BAP (SCC) et d'un BV (BEF) correspondant	12
Figure I.13 : Résistance mécanique d'un béton vibré et deux BAP (deux formulations différentes)	13
Figure I.14.a :Charge en Colomb Test (RCPT)	15
Figure I.14.b : Immersion dans 3%NaCl	15
Figure I.15: Relation entre la profondeur de pénétration des ions Cl ⁻ et le type de mortier Figure I.16: Comparaison de la profondeur des ions chlore entre PET6 et CPJ En immersion	16
partielle et totale à 28 jours (De gauche à droite) respectivement	16 17
Figure I.18 : Relation entre la profondeur de pénétration des ions Cl- et le BAP à base des granulats recyclés	17
Figure I.19 : Comparaison entre la profondeur de pénétration des ions Cl- entre le BAP N et le BAP R	18
Figure I.20 : Comparaison entre la profondeur de pénétration des ions Cl- et le %de la pouzzolane naturelle à 28,56 et 90 jours d'immersion	19
Figure I.21: Relation entre le coefficient apparent de diffusion des ions Cl ⁻ et le % de la pouzzolane naturelle	19
Figure I.22:Comparaison entre la profondeur de pénétration des ions Cl- entre le BAP N et le BAPR Figure I.23:Relation entre le coefficient apparent de diffusion des ions Cl ⁻ et le % de la sable de	20
dune Figure 1.24: Comparaison entre la profondeur des ions CL- entre le RAPN et le RAPR à 28 jours	21
EDITIE I ZA COMBINISMI EMIE IN MOTOROEM DESTOUS ETERNITE IE DAP IN ELLE DAPK 9 /X MITS	

Figure II.1 : Photo MEB du ciment	
Figure II.2: Spectre DRX du ciment	
Figure II.3: Scories de la pouzzolane Naturelle de Beni-Saf avant broyage	
Figure II.4: Poudre de la pouzzolane Naturelle de Beni-Saf après broyage, < 80 μm	
Figure II.5 : Courbes granulométriques de sable carrière	
Figure II.6 : diamètre de sabla carrière	
Figure II.7: Schéma du principe de fonctionnement de l'essai de perméabilité aux ions	
Chlore	
Figure II.8 : Immersion totale des échantillons dans une solution de 5% NaCl	
Figure II.9: Séchage de 24h des échantillons après 28, 56 et 90 jours d'immersion	
(totale)	
Figure II.10 : Coupe de l'éprouvette en deux après 28,56 et 90 jours d'immersion	
(totale) Figure II.11: Coupes schématiques de l'échantillon pour mesurer de la profondeur de pénétration	
d'ion chlore	
Figure II.12: Mesure de la profondeur de pénétration d'ion chlore	
Figure III.1: Immersion totale des échantillons dans une solution de 5% NaCl	
Figure III.2: Coupe de l'éprouvette en deux après 28,56et90jours d'immersion (totale)	
Figure III.3: Mesure de la profondeur de pénétration d'ion chlore	
Figure III.4: Relation entre la profondeur de pénétration des ions CI- et le %de	
la pouzzolane naturelle à 28 jours d'immersion	
Figure III.5 : Relation entre la profondeur de pénétration des ions Cl- et le %de	
la pouzzolane naturelle à 56 jours d'immersion	
Figure III.6: Relation entre la profondeur de pénétration des ions CI- et le %de	
la pouzzolane naturelle à 90 jours d'immersion	
Figure III.7: Comparaison entre la profondeur de pénétration des ions CI- et le	
%de la pouzzolane naturelle à 28,56 et 90 jours d'immersion	
Figure III.8: Relation entre la profondeur de pénétration et le temps d'immersion Immersion totale	
Figure III.9: coefficient apparent de la diffusion des ions chlore Immersion totale	
Figure III.10 : Relation entre le coefficient apparent de diffusion des ions Cl	
et le % de la pouzzolane naturelle	
Figure III.11: Comparaison de la profondeur des ions chlore entre MAP 0%PZ et MAP15%PZ En	
immersion totale à 28jours (De gauche à droite) respectivement	
Figure III.12: Comparaison de la profondeur des ions chlore entre MAP 0%PZ et MAP15%PZ En	
immersion totale à 56jours(De gauche à droite) respectivement	
Figure III.13: Comparaison de la profondeur des ions chlore entre MAP 0%PZ et MAP15%PZ En	
immersion totale à 90 jours (De droite à gauche) respectivement	
minicision totale a 30 jours (De dioite a gaddie) respectivement	