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General Introduction 

The presence of heterogeneities whose mechanical behavior differs from that of the 

surrounding material, the matrix, has an influence on the overall behavior of a material. 

The study of such heterogeneous materials has several fields of application. Composite 

materials reinforced by inclusions or fibers, the appearance of micro heterogeneities 

within a material during its development or heat treatments are examples. In all these 

cases, we want to know the mechanical properties of the two-phase material but for 

different purposes. For composites, for example, it is desired to precisely improve 

certain overall elastic proprieties. 

The advent of nanotechnology enables the fabrication of various nanostructured 

material and nanosized devices such as nanobeam, nanocomposites, and NEMS (Nano 

Electro-Mechanical systems). Compared with their bulky counterparts, these systems 

may show very enhanced physical properties like higher elastic stiffness, electrical and 

thermal conductivities. This property enhancement is related to role assigned to the 

surface of the nanoobject in these systems. In fact, as the number of atoms near the 

surface/interface in these nanostructured materials is relatively large compared to the 

total number of atoms, the surface/interface starts to have a specific behavior that affects 

significantly the properties of the nano particle or the nanostructured material [1]. This 

specific behavior of the surface/interface is materialized by a proper constitutive law like 

the one established/investigated by Miller and Shenoy [2] at the free surface of nanovoids 

in aluminum matrix as example. The results regarding the surface constitutive law 

obtained by Miller and Shenoy have been used in many works in literature and in the 

present study as well. The investigations of these researchers suggest that the 

modification of the crystallographic orientation leads theoretically to different free 

surface behavior. Hence, it could be possible to tailor the surface structure in order to get 

particular behavior by chemical functionalization [3]. It will then be possible to obtain 

novel and unusual effective behavior of the nanostructured material as it was evidenced in 

2D by Duan et al. [4] and Kired et al. [5], and once more in the present work following a 

3D implementation. In Duan et al. [4] and Kired et al. [5] the unusual behavior consists in 

a nanoporous materials whose stiffness matches or even exceeds that of the parent 

materials. In the present work we will retrieve thus unusual behavior. The 3D 
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implementation enables to show another unusual property: a nanoporous material 

expected to be orthotropic turns pseudo isotropic because of the effect of the surface 

energy of nanovoids. This may enable considerable reduction in size and weight of 

structural elements, and tailoring the material properties without compromising their 

stiffness and other important properties. Moreover, the 3D modeling carried out here 

allowed to tackle several extensions and generalizations of some previous works in the 

literature performed in 2D context. Among these works, there is that of  Yvonnet et al. 

[6] for which heterogeneities are limited to inclusions and voids, that of Farsad et al. [7] 

which addressed crack and decohesion problems in 2D, and the work of Kired et al. [5] 

where the flattening of voids to crack-like and the effect of size, number and orientation 

of voids and cracks were addressed in 2D. Hence, the 3D modeling sought here aims for 

handling and analyzing 3D “real” problems without going through 2D simplifications such 

as those used in [4-6]. Indeed, in these references cracks were presented by lines and the 

cylindrical or spherical voids/inclusions by circles, provided that the 2D context of plane 

strain, plane stress or axisymmetric states is admitted. Except the work of Chatzigeorgiou 

et al. [8] in which several types of interface models of discontinuities were treated 

analytically, it was not possible to find in the literature 3D numerical studies of elasticity 

problems. This was also mentioned by Kushch et al.[9], who conducted an analytical 3D 

study on the interaction between interfaces of nanoheterogeneities. Besides, the few 3D 

studies found were devoted to the analysis of thermal conductivity [10] and 

piezoresistivity [11-13] of nanocomposites.  

The main objective of the first part of this work (chapter 4 and 5) is the numerical 

study in 3D of the effect of nano-heterogeneities on the effective stiffness of medium 

hosting such nano-heterogeneities. For this purpose, the mechanical equilibrium equation 

of the bulk material were solved in Matlab® in conjunction with the equations of surface 

equilibrium of Laplace-Young equations for coherent interfaces [8,14-15]. This has been 

achieved  by using eXtended Finite Element Method (XFEM) based on “the partition of 

unity” concept and the Level-Set function method (LSM), [6,10,16-22]. The 

implementation of the problem leads to a 3D numerical simulation tool that was 

employed to carry out several parametric studies. Note that the free software Gmsh® 

[23] was used to perform the geometric modeling and the meshing parts. The applications 

carried out concern the evaluation of the effective properties of a medium containing 

single (which can be multiple) nano-inclusion/void, which can tend towards crack by 
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successive flattening without remeshing. This latter functionality becomes possible thanks 

the combination of the XFEM (which becomes FEM for voids as the enrichment is 

disabled) and the technique of Level-Set Method (LSM) [6,10,16-22].  

To show the usefulness of the proposed 3D modeling in numerical homogenization of 

nanostructures, various problems have been addressed, including validation, for which 

the analytical solution concerning effective bulk moduli is available. Some extensions are 

also discussed, such as the stiffness and the orthotropic ratio analysis of the composite 

processed for two theoretical cases; by going down below the nano scale or by amplifying 

the surface elastic parameters of the interface. This latter case was also recently addressed 

by Chatzigeorgiou et al. [8] in order to show the influence of interface proprieties on the 

effective behavior of nano composites. In these tests, it is found possible to get 

composites stiffer than their parent materials in different directions (parallel and 

perpendicular to cylindrical void orientation), and/or to have a constant longitudinal 

stiffness along these directions (pseudo isotropy). This could be interesting if one 

manages to concretize these tests by passing from the theory to the practice, considering 

its technological interests. Quoting among them the gain in weight without 

compromising stiffness and/or insuring a pseudo-isotropic behavior.  

The other type of treated problems concerns the flattening of the cylindrical or 

spherical voids and its influence on the overall effective behavior of the composite as well 

as the influence of the surface energy versus the degree of flattening until its limit case, 

i.e. a crack (instead of a void). The evolution of the global behavior is followed by 

evaluating the effective elasticity stiffness matrix of the composite as well as the two 

linear elastic invariants, defined by Ahmed [24], comprising different types of stiffness 

(longitudinal, transversal and shear modulus).  

After that in the last part of this work we are care of the interaction energy effect 

between nanovoids under pressure and periodic conditions and analyze the effect of the 

random nanostructure on the effective behavior of nanomaterials.  This is done by 

evaluation of the linear elastic invariant A1, the effective compressibility modulus Keff and 

elastic constants for the Ceff matrix. 

In summary, the major contributions of the present work are: 
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- Full 3D mechanical homogenization of nanostructured medium containing different 

kinds of heterogeneities (void, inclusion and/or crack) with surface energy contribution, 

by XFEM/FEM combined with Level-Set technique. 

- Parametric studies on the effective 3D behavior of nanocomposite/porous medium 

are carried out without assumption on the dimensionality of the problem. The examined 

parameters are: the size of heterogeneity, its volume fraction, the sign of surface elastic 

constants, the shape of the surrounding material or the Representative Elementary 

Volume (REV), the type of boundary conditions applied to REV and the flattening rate of 

heterogeneities.    

- Analyzing the link between flat voids and cracks of comparable sizes regarding the 

influence of the surface energy on the effective behavior. 

- Simulating particular and unusual cases where the nanoporous medium can be stiffer 

than its parent or when the material initially orthotropic becomes pseudo-isotropic thanks 

to the surface energy effect. 

- Confining the interaction energy effect on nanoporous materials behavior with 

organized and randomized repartitions of voids.   

This thesis is organized in 6 chapters as follows: in chapter 1, State of the art and 

bibliographic research on the composite materials, fracture mechanics and numerical 

modelling methods. Then in chapter 2: generalities on homogenization. In chapter 3, the 

XFEM discretization of the mathematical model is detailed, combined with the Level Set 

technique. In chapter 4 5 and 6 respectively, we presented the efficiency of elaborate 

calculation code without surface effect after that the numerical homogenization 

procedure within surface effect,  and in the last part the effect of the interaction energy in 

the nanostructures behavior. This thesis is ended by general concluding remarks and 

outlooks. 
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1.1 Composite materials: 

1.1.1 Definition: 

In this part we are going to give a general definition of the composite 

material, the word “composite” means “made up of two or more different parts”. In 

fact, the term composite or composite material is used in a much more restrictive 

sense. We give for the moment the following general definition. A composite 

material is made up of the assembly of two materials of different natures, 

complementing each other and making it possible to end up with a material whose 

overall performance is superior to that of the components taken separately[25]. 

Examples of composite materials taken in the broad sense are given in Table 1.1. 

1.1.2 general Characteristics:  

A composite material consists in the most general case of one or more 

discontinuous phases distributed in a continuous phase. In the case of several 

discontinuous phases of different natures, the composite is said to be hybrid. The 

discontinuous phase is usually harder with better mechanical properties than the 

continuous phase [25]. The continuous phase is called the matrix. The discontinuous 

phase is called the reinforcement or reinforcing material (fig.1.1). An important 

exception to the preceding description is the case of polymers modified by 

elastomers, for which a rigid polymer matrix is loaded with elastomeric particles. 

For this type of material, the static characteristics of the polymer (Young's modulus, 

fracture stress, etc.) are practically not modified by the addition of elastomer 

particles, while the impact characteristics are improved  

The properties of composite materials result from: 

- The properties of the constituent materials, 

- Their geometric distribution, 

- Their interactions, etc… 
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Table 1.1: Examples of composite materials 

Composite type Constituents Application areas 

1. Organic Matrix 

Composites 

- Cardboard 
- Particle boards 
- Fiber boards 
- Coated fabrics 
- Sealing materials 
- Tires 
- Laminates 
- Reinforced plastics 

Resin / fillers / fibers 
cellulosic 
Resin / wood chips 
Resin / wood fibers 
Soft resins / fabrics 
Elastomers / bitumen / 
textiles 
Rubber / canvas / steel 
Resin / fillers / fibers 
glass, carbon, etc. 
Resins / microspheres 

Printing, packaging, etc. 
Carpentry 
Building 
Sports, building 
Roof, terrace, etc. 
Automotive 
Multiple domains 

2. Ceramic matrix 
composites 
- Concrete 
- Carbon-carbon composite 
- Ceramic composite 

Cement / sand / 
aggregates 
Carbon / carbon fibers 
Ceramic / fibers 
ceramics 

Civil engineering 
Aviation, space, sports, 
bio-medicine, etc. 
Thermal mechanical parts 

3. Metal matrix 
composites 

 

Aluminum / boron 
fibers 
Aluminum / carbon 
fibers 

Space 

 

 

 

 

 

 

 

 

Thus, to access the description of a composite material, it will be necessary to 

specify: 

- The nature of the constituents and their properties, 

- The geometry of the reinforcement and its distribution, 

- The nature of the matrix-reinforcement interface. 

Fig.1.1: Composite material 
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The geometry of the reinforcement will be characterized by: its shape, its 

size, the concentration of the reinforcement and its arrangement (its orientation), 

etc. If all of these parameters contribute to determine the properties of the 

composite, the descriptive models will only take into account certain parameters, 

due to the complexity of the phenomena involved. For example, the shape of the 

reinforcement will be roughly approximated either by spheres or by cylinders. 

The concentration of the reinforcement is usually measured by the volume 

fraction (volume fraction) or by the mass fraction (mass fraction). The 

concentration of the reinforcement is a determining parameter of the properties of 

the composite material. 

For a given concentration, the distribution of the reinforcement in the 

volume of the composite is also an important parameter. A uniform distribution 

will ensure “homogeneity” of the material: the properties of the composite will be 

independent of the measuring point. In the case of a non-uniform distribution of the 

reinforcement, the rupture of the material will be initiated in the areas of poor 

reinforcement, thus reducing the strength of the composite. 

In the case of composite materials in which the reinforcement consists of 

fibres, the orientation of the fibers determines the anisotropy of the composite 

material. This aspect constitutes one of the fundamental characteristics of 

composites: the possibility of controlling the anisotropy of the finished product by a 

design and manufacture adapted to the desired properties. 

1.1.3 Classification of composite materials: 

1.1.3.1 Classification according to the form of the constituents: 

According to the shape of the constituents, composites are classified into two main 

classes: composite materials with particles and composite materials with fibers. 

1.1.3.1.1 Fiber composites: 

A composite material is a fiber composite if the reinforcement is in the form 

of fibers. The fibers used are either in the form of continuous fibers or in the form 

of discontinuous fibers: cut fibers, short fibers, etc. The arrangement of the fibers 
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and their orientation allow the mechanical properties of composite materials to be 

modulated as required, to obtain materials ranging from highly anisotropic materials 

to isotropic materials in a plane[25]. The designer therefore has here a type of 

material of which he can modify and modulate at will the mechanical and physical 

behavior by playing on: 

- The nature of the constituents, 

- The proportion of constituents, 

- The orientation of the fibers, 

According to the specifications imposed. 

The importance of fiber-based composite materials justifies an exhaustive 

study of their mechanical behavior. As a result, the present work is essentially 

devoted after that to the study of this type of material. 

1.1.3.1.2 Particle composites: 

A composite material is a particulate composite when the reinforcement is in 

the form of particles. A particle, as opposed to fibers, does not have a privileged 

dimension. 

Particles are generally used to improve certain properties of materials or 

dies, such as stiffness, temperature resistance, abrasion resistance, reduced 

shrinkage, etc. In many cases, the particles are simply used as fillers to reduce the 

cost of the material, without diminishing its characteristics. 

The choice of the matrix-particle association depends on the desired 

properties. For example, lead inclusions in copper alloys will increase their ease of 

machining. Particles of brittle metals such as tungsten, chromium and 

molybdenum, incorporated in ductile metals, will increase their properties at 

elevated temperatures, while retaining the ductile character at room temperature 

[25]. 

Cermets are also examples of particulate metal-ceramic composites, suitable 

for high temperature use. For example, oxide based cermet are used for high speed 

cutting tools, and for high temperature protections. 
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In addition, elastomer particles can be incorporated into fragile polymer 

matrices, so as to improve their properties at break and impact, by reducing the 

susceptibility to cracking. 

1.1.3.2 Classification according to the nature of the constituents: 

Depending on the nature of the matrix, the composite materials are classified 

according to composites with an organic matrix, a metal matrix or a mineral 

matrix. Various reinforcements are associated with these matrices. Only certain 

pairs of associations currently have industrial use, others are being developed in 

research laboratories [25]. Among these composites are: 

a. Composites with an organic matrix (resin, fillers), with: 

- Mineral fibers: glass, carbon, etc. 

- Organic fibers: Kevlar, polyamides, etc. 

- Metal fibers: boron, aluminum, etc. 

b. Metal matrix composites (light and ultralight aluminum alloys, magnesium, 

titanium), with: 

- Mineral fibers: carbon, silicon carbide (SiC), 

- Metal fibers: boron, 

- Metallo-mineral fibers: boron fibers coated with carbon silicon (BorSiC). 

c. Composites with mineral matrix (ceramic), with: 

- Metal fibers: boron, 

- Metallic particles: cermets, 

- Mineral particles: carbides, nitrides, etc. 

Composite materials with an organic matrix can only be used in the range of 

temperatures not exceeding 200 to 300 °C, whereas composite materials with 

metallic or mineral matrices are used above: up to 600 °C for a matrix metallic, up 

to 1000 °C for a ceramic matrix. 
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1.1.4 Volume fraction and mass fraction:  

1.1.4.1 Introduction: 

One of the most important factors that determine the mechanical 

characteristics of a composite material is the relative proportion of matrix and 

reinforcement. This proportion can be expressed either as a volume fraction  or as a 

mass fraction. Mass fractions are easier to measure when developing materials. On 

the other hand, volume fractions intervene directly in the theoretical models 

describing the mechanical behavior of materials [25]. It is therefore necessary to 

know how to switch from one of these fractions to the other. These expressions will 

be established for a material with two phases, and then extended to a material with 

more than two phases. 

1.1.4.2 Volume fraction: 

Consider a volume vc of composite material, composed of a volume vf of 

fibers and a volume vm of matrix. Subsequently, the indices c, f and m will be 

systematically used as respective indices of the characteristics of the composite 

material, of the fibers and of the matrix. The volume fraction of fibers is: 

Vf =
vf

vc
                                                                       (1.1) 

The volume fraction of the matrix is: 

Vm =
vm

vc
                                                                       (1.2) 

With 

Vm = 1-Vf                                                                 (1.3) 

Since 

vc = vf + vm                                                               (1.4) 

 

1.1.4.3 Surface fraction: 

For example an elliptical inclusion with greater radius a and lower radius b, 

the area fraction is given by f ' =  a/w, since the thickness is taken unitary with w is 

taken half the width of the composite. 
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1.1.4.4 Mass fraction: 

In the same way as the volume fractions, the mass fraction of the fiber is 

written as a function of the mass of the composite mc, the mass of the fiber mf  is the 

mass of the matrix mm as follows [2]: 

Mf =
mf

mc
                                                                       (1.5) 

The mass fraction of the matrix is: 

Mm =
mm

mc
                                                                       (1.6) 

Giving: 

Mm = 1-Mf                                                                       (1.7) 

1.1.5 The presence of porosity: 

The presence of porosities in a composite can lead to a significant reduction 

in its mechanical characteristics, by increasing the dispersion of its values. The 

presence of porosities also increases the sensitivity of the composite material to the 

external environment: increase in moisture absorption, decrease in resistance to 

chemicals, etc [25]. It is therefore important to have an estimate of the proportion 

of porosities, in order to assess the quality of a composite. A quality composite 

material contains less than 1% by volume porosity, while a poor quality composite 

may reach 5%. 

1.1.6 Nano-materials: 

A nanomaterial is a natural material, accidentally formed or manufactured, 

containing free particles, in an aggregate or agglomerate form, of which at least 

50% of the particles, in the numerical distribution by size, have one or more 

external dimensions, between 1 nm and 100 nm [26].  

According to the ISO TS 80004-1 standard, a nanomaterial is a material in 

which at least one external dimension is at the nano-metric scale, that is to say 

between approximately 1 and 100 nm or which has an internal or surface structure 

at the nano-scale. 

There are two main families of nano-materials: 
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a. Nano-objects:  

Which are materials of which one, two or three external dimensions are 

located at the nano-metric scale, which means approximately between 1 and 

100 nm, among the nano-objects, it is possible to distinguish three 

categories: 

- Nanoparticles 

- Nanofibers, nanotubes, nano-filaments or nano-drams. 

- Nano-sheets, nano-plates or nano-plates. 

b. Nano-structured materials:  

It has an internal or surface structure at the nanometric scale. Among the 

nanostructured materials, it is possible to distinguish several families among 

which: 

- Aggregates and agglomerates of nano-objects: Nano-objects can be in 

individual form (that is, in the form of primary particles) or in the form of 

aggregates or agglomerates which their size is substantially greater than 100 

nm. 

- Nano-composites: These materials are composed of all or part of nano-

objects which give them improved or specific properties of the nano-metric 

dimension. Nano-objects are incorporated in a matrix or on a surface in 

order to provide new functionality or to modify certain mechanical, 

magnetic, thermal properties, etc. Polymers loaded with carbon nanotubes 

used in the sports equipment sector to improve their mechanical strength 

and reduce their weight are an example of nanocomposites. 

- Nano-porous materials: These materials have nano-metric sized pores. Silica 

aerogels are nano-porous materials that exhibit excellent thermal insulation 

properties. 
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1.2 History and theory of fracture mechanics: 

1.2.1 Development and history of fracture mechanics: 

Fracture mechanics were initiated by Griffith [27] around 1920. The 

objective of fracture mechanics is to characterize the cracking behavior of structures 

using parameters that can be quantified in the engineer's sense, in particular the 

stress field, the size of the crack and the resistance to cracking of the material. The 

first theoretical developments in the analysis of displacement, strain and stress fields 

in the vicinity of a crack were undertaken by Westergaard around 1940, a failure 

theory based on the stability of the crack valid only for brittle materials, not taking 

into account the energy dissipation due to plasticization. In 1948 Irwin proposed a 

modification of Griffith's theory by precisely including the energy due to 

plasticization in the energy balance, so that Griffith's approach was applicable to 

ductile materials.   

In 1956, a group of US Navy researchers extended the concept of the rate of 

energy release from Griffith's theory into a form that could be easily used by 

structural designers. In 1957, based on the work of Westergaard [28], Irwin [29] 

showed that the displacements and the stresses in the vicinity of the end of a crack 

can be described using a single parameter related to the energy release rate. This 

parameter characterizes the state of stress in the region in which the failure occurs; 

it is called the Stress Intensity Factor (SIF). 

The period from 1960 to 1980 saw an intensification of research on the 

fracture with two competing schools. On the one hand, the proponents of the 

approach using linear fracture mechanics and on the other hand those who were 

mainly interested in the plasticization that develops at the end of a crack. To take 

into account the effect of this plasticization on the stress and displacement fields at 

the end of a crack, several authors such as Barenblatt [30] gave what is called a 

plastic zone correction. The size of the crack is then increased by this plastic zone to 
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find the elastic stress fields described by the SIF. Later, Hutchinson in 1968, Rice 

and Rosengren (HRR) [31] developed a new parameter called J-integral. This 

parameter perfectly describes the distribution of stresses in plasticized zones (HRR 

field). 

1.2.2 Generalities on fractures by cracking: 

Cracking is a defect that affects materials and degrades its mechanical 

strength. Cracks are initially small in size (microscopic cracks) that can come 

together to lead to the appearance of a dangerous incision. Most cracks are due to 

physical phenomena (shrinkage, expansion). 

 

Cracking is the result of local damage, by repeated mechanical stress, or a 

maximum stress exceeding the allowable stress (greater than the possibilities) of the 

material. Permanent plastic deformations are created at the microscopic level. 

There are several types of cracks: 

- Detachment cracks between different types of materials (for example 

between a fibre and matrix or in the vicinity of an empty hole in the materials). 

- Fracture cracks which may be through (or partial) and which correspond to 

excessive stress (tensile or shear stress greater than the "possibilities" of the 

material). 

 

Fig.1.2: Macroscopic crack  
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1.2.3 The three modes of a fracture of a crack: 

If someone finds a crack in a plan, he will recognize it according to the 

direction of stress three modes of displacement of the lips of the crack. The modes 

indicated on the figure 1.3 correspond to various kinematics of displacement to the 

lips of the crack: 

1.2.3.1 Mode I or opening mode (tensile test):  

The loading or the applied force is perpendicular both to the plan of the crack and 

to the line at the end of the crack. The field of displacement and stress in the 

vicinity of a crack is defined by: 

 Stress field in mode I: 

𝜎xx =
KI

√2πr
cos (

θ

2
) [1 − sin (

θ

2
) sin(

3θ

2
)] 

𝜎yy=
KI

√2πr
cos (

θ

2
) [1 − sin (

θ

2
) sin(

3θ

2
)] 

𝜎xy=
KI

√2πr
cos (

θ

2
) sin (

θ

2
) cos(

3θ

2
)] 

𝜎𝑧𝑧 = 𝜈 (𝜎𝑥𝑥 + 𝜎𝑦𝑦) in plan strain 

𝜎𝑧𝑧 = 0 in plan stress 

𝜎xz and 𝜎yz=0 

 Displacement field in mode I: 

ux= 

KI

2µ
√

r

2π
cos (
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) [κ − 1 + 2 sin2 (
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2
) 

uy= 

KI

2µ
√
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2π
sin (

θ

2
) [κ + 1 − 2 cos2 (

θ

2
) 

𝜅 = 3 − 4𝜐   in plan strain 

κ =
3−υ

1+υ
  in plan stress 

1.2.3.2 Mode II or plan sliding mode (shear test): 

The loading is parallel with the plane of the crack and perpendicular to the 

line of the end of the crack. The field of displacement and stress in the vicinity of 

crack is defined by: 
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 Stress field in mode II: 

𝜎xx =
KII

√2πr
sin (

θ

2
) [2 + cos (

θ

2
) cos(

3θ

2
)] 

𝜎yy =
KII

√2πr
sin (

θ

2
) cos (

θ

2
) cos(

3θ

2
) 

𝜎xy =
KII

√2πr
cos (

θ

2
) [1 − sin (

θ

2
) sin(

3θ

2
)] 

𝜎𝑧𝑧 = 𝜈 (𝜎𝑥𝑥 + 𝜎𝑦𝑦) in plane strain 
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 Displacement field in mode II: 
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1.2.3.3 Mode III or anti-plan sliding mode (torsion test): 

The loading is parallel with the plane of the crack and parallel to the line of 

the end of the crack. The field of displacement in the vicinity of crack is defined by: 

 Stress field and Displacement field in mode III: 
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1.3 The Historic of different numerical modelling methods: 

1.3.1 The meshless method:  

This method was invented in 1977 to review the phenomena of astrophysics 

such as the explosion of stars. Subsequently, several research works were interested 

in the developments of this method led to the emergence of new variants. 

The literary definition of the non-mesh method is: "a method which does not 

use any mesh for solving a physical problem or is a method based on the building of 

the shape function not dependent on any mesh ". 

Another definition proposed by N. Calvo et al. [32] which joins the first 

proposition in a more concise way: "A method without mesh is a method where the 

function of form employed depends on the positions of the nodes only." Through 

these two definitions we can notice that the key step in these methods is that of the 

construction of the shape function. The latter should not depend on any mesh; 

however it leaves the possibility of using a mesh in the rest of the solving process. 

1.3.1.1 Using the meshless method: 

The meshless method is useful in the following cases: 

Mesh degeneration during simulation (the re-meshing operation can introduce 

errors). 

In the case of deformable boundaries (multiphase flows ...) or large deformations 

(plastic materials, etc.), where it is very difficult to maintain the connectivity of the 

mesh without introducing errors during the simulation [33]: 

Fig.1.3: The three modes of a fracture of a crack 
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 Complex 3D geometries: Difficult mesh requiring human assistance. 

 Creation or destruction of nodes (simulation of crack propagation). 

 Problematic geometry misalignment for a fixed mesh in bending 

simulations… 

 Nonlinearities, discontinuities or singularities. 

1.3.2 The meshing methods: 

1.3.2.1 The finite element method FEM: 

The origin of this mathematical method was discovered by the 

mathematician COURANT in 1943 based on the variational method of Rayleigh 

(1870) and Ritz (1909) which was discovered in the 1940s. This led them to try to 

combine with continuous structures, by making an approximation on small portions 

in a continuous problem of a long bar, hence the basic idea of finite elements. 

Argyris (1955), Turner (1956), Glough (1956) and Martin (1956) made a 

direct analogy by adopting a simplified behavior for small portions: they represent 

an elastic continuous medium in two dimensions by an assembly of triangular 

panels, on which displacements are supposed to be linearly varied as for each bar or 

beam of the discrete system [34]: each panel is described by a stiffness matrix and 

the assembly gave the total rigidity of the continuous medium, from where the birth 

of finite elements.  

1.3.2.2 The extended finite element method XFEM: 

 Historic: 

In 1997, Babuška and Melenk introduced a method to have the functions 

describing the singularity while respecting the boundary conditions. Their principle 

is to introduce as a form function functions capable of taking into account the 

singularity that one wants to treat (known by different approaches) and to 

regularize them on the edge thanks to a function (which preserves the properties of 

the functions introduced on the inside of the domain). They have shown that with 

this method, the normal convergence rate can be found. 
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This new method is an original idea of Belytschko and Black [35]; the authors 

presented a method for the enrichment of finite elements so that the crack growth 

problems can be solved with a minimal meshing. 

Möes et al. [36] completely eliminated the meshing operations by adding a 

discontinuous function in the enrichment base. Sukumar et al. [37] presented the 

implementation of X-FEM in 3D crack modelling. They demonstrated the accuracy 

of this technique for three-dimensional stationary cracks, a discontinuous function 

was used to model the inner surface of the crack, and asymptotic functions derived 

from the two-dimensional displacement field for the enrichment of the crack 

boundaries.  

Jack Chessa and Ted Belytschko [38] generalized the method for the 

representation of the arbitrary discontinuity. Stolarska et al. [39] used X-FEM in 

conjunction with the method level set to treat the crack propagation in two 

dimensions. Belytschko et al. [40] presented a simplified method based on implicit 

functions to describe discontinuities between materials, surface slippage and cracks. 

In the extended finite element method, firstly, the usual finite element mesh 

is produced. Then, by considering the location of the discontinuities, some degrees 

of freedom are added to the classical finite element model in selected nodes close to 

the discontinuities to provide a higher level of precision with the consideration of a 

discontinuity within an element. 

The advantages of this method are: 

- A least meshing. 

- Introduction of singular fields. 

- Intrinsic positioning of the crack. 
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CHAPTER 2  

Generalities on Homogenization  
n the calculation of structures, materials are often assumed to be homogeneous or at least 

homogeneous by area. In reality, the materials are always heterogeneous on a smaller 

scale, more or less small depending on the materials. When we go down to this so-called 

microscopic scale, we generally notice that the material consists of different zones that can 

be considered to be homogeneous. The homogenization philosophy consists in replacing a 

non-homogeneous real material by a homogeneous fictitious material with equivalent 

macroscopic properties. The homogenization procedures can be applied to determine a 

wide range of physical properties which can be mechanical, electrical, acoustic, thermal, and 

others. For a possible homogenization, it is necessary to be able to define a representative 

elementary volume (R.E.V) of the material. The result of the homogenization will be the 

behavior of the equivalent homogeneous material. In this chapter, we will present the 

homogenization technique used in linear elasticity. 

 

SUMMARY 

 

 

 

 

I 

2.1 State of the art 25 
2.2 Behaviour law 25 
2.3 Concept of homogenization 27 

2.3.1   Representative Elementary Volume (REV)  27 
2.3.2   Homogenization and boundary conditions 28 

2.4 Homogenization based on the analytical approach 29 
2.4.1   Mean field theory 29 
2.4.1.4    Reuss Model 31 
2.4.1.5    Voigt Model 31 
2.4.2   Homogenization based on the numerical approach 31 
2.4.2.1    Homogenization configurations 31 
2.4.2.2    Boundary conditions applied to REV 33 
2.4.3   Direct simulation of the microstructure 34 

2.5 Homogenization flowchart 38 
2.6 Conclusion 39 



CHAPTER 02: Generalities on Homogenization 

 

 
25 

 

2.1 State of the art: 

Most multiscale approaches are based on the principle of homogenization. The first 

works consisted in setting up spatial homogenization methods based on analytical or semi-

analytical studies at the microscopic scale thus leading to the identification of a macroscopic 

behavior between “effective” average quantities Eshelby 1957, Hashin 1962, Hill 1965, Mori 

and Tanaka 1973. However, the latter do not allow strengthening to local properties. The 

taking into account of increasingly complex mechanisms at the microscopic level has given 

rise to methods called "Unit Cell Methods" Christman et al. 1989, Tvergaard 1990, Sluis et 

al. 1999. They make it possible to identify a macroscopic model by "numerical tests" on a 

representative elementary volume (REV) of the structure and to obtain local information on 

the solution. Unfortunately, the a priori definition of a macroscopic model remains 

penalizing when it comes to dealing with problems where large gradients of deformations 

occur (near edges, holes, cracks) and more usually when it comes to handle non-linear 

problems. Moreover, these “phenomenological” approaches are not necessarily multi-scale 

approaches. 

2.2 Behaviour law: 

In the context of small disturbances, the systems studied in this thesis are considered 

to have a linear elastic response to mechanical stresses. The behavioral relations are 

expressed for each of the phases within the framework of linear elasticity using generalized 

Hooke's law: 

     𝛔 = 𝐂: 𝛆                                                           (2.1) 

Where C, tensor of order 4, is called tensor of elastic moduli or tensor of elastic rigidities, it 

allows expressing the stress tensor as a function of the strain tensor. Furthermore, it is 

possible to express the strain tensor as a function of the stress tensor via the flexibility tensor 

or flexibilities tensor S, the inverse of the stiffness matrix:                                                                                              

                                                                 𝛜 = 𝐒: 𝛔                                                            (2.2) 

With   S = C−1 



CHAPTER 02: Generalities on Homogenization 

 

 
26 

 

Using symmetry, the 81 components of Cijkl and Sijkl are reduced to 21 components. These 

21 components can then be represented in the form of a Cij and Sij matrix with 21 

independent components as follows: 

The stiffness tensor can be written in the following matrix form:            

       

11 12 13 14 15 1611 11

12 22 23 24 25 2622 22

13 23 33 34 35 3633 33

14 24 34 44 45 4623 23

15 25 35 45 55 5631 31

16 26 36 46 56 6612 12

2

2

2

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

 

 

 

 

 

 

   
   
   
     

    
   
   
   
     










 

                                     (2.3) 

The flexibility matrix is obtained by inverting (2.3). We then obtain: 

                            

11

22

33

23

31

12

2

2

2













 
 
 
  
 
 
 
 
  



11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

 
 
 
 
 
 
 
 
  

11

22

33

23

31
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











 
 
 
  
 
 
 
 
  

                                       (2.4) 

In the particular case of an isotropic material, the stiffness matrix is:    

   

11 12 12

12 11 1211 11

12 12 1122 22

33 33
11 12

23 23

31 3111 12

12 12

11 12

0 0 0

0 0 0

0 0 0

1
0 0 0 ( ) 0 0

2 2
1

20 0 0 0 ( ) 0
2

2
1

0 0 0 0 0 ( )
2

c c c

c c c

c c c

c c

c c

c c

 

 

 

 

 

 

 
 

    
    
    
           
    
    
    
       

 
 

                           (2.5) 

Generally, the stiffness constants are expressed by introducing the Lamé coefficients 𝜆 and 

𝜇, from where :𝐶11 = 𝜆 + 2𝜇;  𝐶12 = 𝜆; 
1

2
(𝐶11 − 𝐶12) = 𝜇  

In the same way for the matrix of flexibility, but with 𝑆 = 𝐶−1 
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2.3 Concept of homogenization: 

The main purpose of the homogenization concept is to determine the macroscopic 

behaviour from the elementary behaviours of the different phases, constituting the studied 

material, in order to replace the heterogeneous real material with an equivalent effective 

homogeneous material. Once subjected to the same loadings, this material is supposed to 

behave in the same way as the actual material. 

This behaviour is determined on a volume element of dimension, sufficiently small 

compared to the dimensions of the considered structure. This volume element is called the 

Representative Elementary Volume (REV) of the material as shown in Figure 1. 

 

2.3.1 Representative Elementary Volume (REV) ; 

A REV for a "material point" of a given mass at the macroscopic scale is a volume of 

matter which is representative on the microscopic scale of the internal constitution of the 

material as will be presented in figure (2.2). 

The REV must meet several conditions: 

 Be large enough in relation to the size of the heterogeneities to be representative of 

the material and to be statistically equivalent from one zone to another; 

 Be small enough in relation to the dimensions of the structure under consideration so 

that it can be considered to be under uniform stress or subjected to uniform 

deformation.  

Fig.2.1: The principle of homogenization 

Material Homogeneous 

macroscopic scale 

Homogenization 

Heterogeneous material 

macroscopic scale     

RVE 
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2.3.2 Homogenization and boundary conditions:  

Homogenization in solid mechanics consists in evaluating the effective behavior of the 

composite based on a calculation carried out on a Representative Elementary Volume 

(REV), on which predefined Boundary Conditions (BCs) are applied. The apparent behavior 

resulting from the REV calculation shall not depend on the prescribed boundary conditions, 

nor the statistical realization. This will be the case when the REV is sufficiently large. 

Hence, we are aware that the REV we adopted in the present study is not very large and 

consequently there could be an effect of the boundary conditions and the statistical 

realizations, on the computed values of the effective properties. Nevertheless, in the 

performed numerical simulations, it has been checked by the authors that the effect of BCs 

and/or REV size is quantitatively limited and not significant for the conducted parametric 

studies. 

Regarding the boundary conditions prescribed on the REV, there are three types of 

boundary conditions, viz. SUBC (static uniform boundary condition), KUBC (kinetic 

uniform boundary condition) and PBC (periodic boundary condition) that can possibly be 

adopted. All these BCs verify the Hill-Mandel condition [41-42], and in that respect, are 

expressed as function of the macroscopic/average strain or stress. Hence, in the present 

work where the KUBC and PBC boundary conditions were adopted, the prescribed 

displacements BCs on the REV are function of the macroscopic strain. The effective 

properties can then be deduced by imposing particular values on the macroscopic strain. As 

more explained below, a judicious choice is for example, to set 𝜖11 = 1 and the other macro 

Fig.2.2: Choice of REV 

 

REV 
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strain components equal to zero. We then have access to the first column of the stiffness 

tensor by simply averaging over the stress field components calculated. 

 
2.4 Homogenization based on the analytical approach: 

Analytical approaches to homogenization theory can be divided into two main 

families: mean field theory and the asymptotic approach. In this chapter we are only 

interested in mean field theory. 

2.4.1 Mean field theory: 

2.4.1.1 Volume average of a stress and strain field in equilibrium on the 

REV: 

A REV of volume V in equilibrium is subjected to stresses on the boundary ∂V, these 

forces being assumed in equilibrium without volume forces. 

It is considered that the volume average of the stress field defined by:           

                                       𝝈̅ = 𝟏 𝑽⁄ ∫ 𝝈
𝑽

𝒅𝑽                                                   (2.6) 

And the volume average of strain field defined by: 
 

                            𝜀̅ = 1 𝑉⁄ ∫ 𝜀
𝑉

𝑑𝑉                                                   (2.7) 

2.4.1.2 Boundary conditions in homogeneous stresses and strains: 

   Subsequently, the solution of the problem of homogenization of the heterogeneous 

medium will be obtained either from the condition in displacement imposed on the 

boundary compatible with a uniform strain on the edge of the field, or from an imposed 

stress vector condition on the border compatible with a uniform stress field.                  

- Stress approach: 

For the case where the stress vector is imposed on the contour ∂V compatible with the 

uniform stress tensor Σ, we obtain: 

Τ = σ. n      Sur  ∂V                                                         (2.8) 

The relation between the volume average of the stress field and the constant stress σ 

is given by: 

𝜎̅ =
1

𝑉
∫ 𝜎𝑑𝑉
𝑉

= 𝜎                                                    (2.9) 
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- Strain approach: 

A field of linear displacement and function of the constant strain 𝜀 is imposed on the 

border ∂V:                                  

       𝑢(𝑥) = 𝜀. 𝑥                                                            (2.10) 

Where 𝜀 is uniform 

The relation between the volume average of the strain field and the constant strain 𝜀 

is given by: 

       
𝜀̅ =

1

𝑉
∫ 𝜀 𝑑𝑉
𝑉

= 𝜀
                                               

     (2.11) 

2.4.1.3 Periodic boundary condition at contour: 

The periodic boundary conditions on the contour of the REV and for this type of 

boundary conditions, one can also distinguish an approach in stresses and an approach in d 

deformations. 

 stress approach: 

The stress field at the point x of base cell V is considered to be of the form:       

   𝜎(𝑥) = 𝜎 + 𝜎𝑝𝑒𝑟(𝑥)                                                     (2.12) 

 Where 𝜎𝑝𝑒𝑟(𝑥) is a periodic stress field. 

 It is notable that such a stress field is in equilibrium on the edge of the domain, because the 

periodicity of the stress tensor implies the anti-periodicity of the stress vector on the edge of 

the domain. Moreover, its volume average can be fixed at the value as in the case of fixed 

boundary conditions. 

 strain approach: 

The field of displacement at the point x of the basic cell V is determined in a similar way 

by the relationship: 

         𝒖(𝒙) = 𝜺𝒙 + 𝒖𝒑𝒆𝒓(𝒙)                                                  (2.13) 

Where 𝑢𝑝𝑒𝑟(𝑥) is a periodic displacement field 

Then, the strain field at point (x) of the base cell V is given by:           

                 𝜀̅(𝑥) = 𝜀+ 𝜀𝑝𝑒𝑟(𝑥)                                                     (2.14) 
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2.4.1.4 Reuss Model: 

The Reuss model (also called rule of mixtures) assumes that the strain tensors in the 

fiber, matrix, and composite are the same ε = εf = εm[25]; so, the strain concentration 

tensors are all equal to the identity matrix  εi = I. 

2.4.1.5 Voigt Model: 

The Voigt model (also called inverse rule of mixtures) assumes that the stress tensors 

in the fiber, matrix, and composite are the same σ = σf = σm; so, the stress concentration 

tensors are all equal to the identity matrix σi = I [25]. 

2.4.2 Homogenization based on the numerical approach: 

As the analytical application of homogenization theory is very complex for cases other 

than simple cases, research has focused on its coupling with numerical methods. 

2.4.2.1 Homogenization configurations: 

The case of a nano-composite with cylindrical regular arranged fibers is considered in 

this study. The REV can be a parallelepipedic domain with only a central fiber as shown in 

figure 2.3a. This configuration (with a1 = a2 = a3) was adopted in 2D works in order to 

predict numerically, [6], and analytically, [43-44], the effective elastic behavior of an 

aluminum nano-composite. In these two studies, it was assumed that the REV possesses 

transverse isotropy in the plane orthogonal to the axis of the cylindrical heterogeneity, [43-

44]. In fact, the transverse isotropy is ensured only for hexagonal arrangement (Fig. 2.3b, 

(a1 = a2 = a3/ tan(
π

3
)  ) [25] of the cylindrical fiber expressed by equation (2.15), 

otherwise the symmetry is tetragonal.  

Ceff =

[
 
 
 
 
 
 
C11 C12 C12
C12 C22 C23
C12 C23 C22

           
0          0 0
0                0      0
0          0 0

 

0    0   0
0   0   0
0   0   0

1

2
(C22 − C23)   0    0

0     C66    0
0    0   C66]

 
 
 
 
 
 

                                   (2.15) 
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Nevertheless, the results obtained in Example 5.2 in chapter 5 with square arrangement 

(Fig. 2.3a) do not show significant changes on Ceff compared to the hexagonal arrangement 

(Fig. 2.3b), justifying thus the simplifying considerations adopted here and in [6-44]. 

The engineering elasticity constants in the case of transverse isotropy are given by [3]:          

E1 = C11 − 2C12
2 /(C22 − C23) , ν12 = ν13 = C12/(C22 + C23) 

E2 = E3 = [C11(C22 + C23) − 2C12
2 ](C22 − C23) /(C11C22 − C12

2 )

ν23 = [C11C23 − C12
2 ] /(C11C22 − C12

2 ), G12 = G13 = C66 , G23 = C44 =
1

2
(C22 − C23) = E1

E2

2(1−ν23)
 

}    

(2.16)  

      

In the following the procedure to evaluate Ceff will be explained. The matrix Ceff  links 

between the average strain ϵ̅ and stress  σ̅ : 

σ̅ = 𝐶𝑒𝑓𝑓 ϵ̅                                                      (2.17) 

 Imposing BCs that verify the Hill-Mandel condition, enables to express the 

prescribed BCs here of displacement type as a function of the imposed average strain ϵ0.  

X1 

X2 

X3 2a2 

2a3 

 

2a1 

X1 

X2 

X3 2a2 

2a3 

 

2a1 

Fig.2.3: REV’s Configurations: a) Square arrangement, b) Hexagonal arrangement  

(b) (a) 
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The effective properties can then be deduced by imposing particular values on the 

macroscopic strain.  A judicious choice is for example:  

𝛜0  = [ϵ11
0 = 1 ϵ22

0 = 0 ϵ33
0 = 0 2ϵ12

0 = 0 2ϵ23
0 = 0 2ϵ13

0 = 0]T         (2.18)   

We then have access to the first column of the stiffness tensor by simply averaging the stress 

field over the REV σ̅ =
1

V
∫ σ. dV
V

, according to: 

σ̅ = 𝐶𝑒𝑓𝑓ϵ
0                                                      (2.19) 

2.4.2.2 Boundary conditions applied to REV: 

a. For periodic boundary conditions (PBC), the boundary conditions prescribed 

on the REV’s boundaries of Figure 2.3 are: 

u(x + L/2) = u(x − L/2) + ϵ0. L, ∀x ∈ ∂ΩRVE                        (2.20) 

Where L refers to the periodicity vector, defined here as [2𝑎1 2𝑎2 2𝑎3]𝑇. 

which yield to, [3]: 

𝑢𝑖(𝑎1, 𝑥2, 𝑥3) − 𝑢𝑖(−𝑎1, 𝑥2, 𝑥3) = 2𝑎1𝜖𝑖1
0   ;    {

−𝑎2 ≤ 𝑥2 ≤ 𝑎2
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

 

         𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 2𝑎2𝜖𝑖2
0   ;    {

−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

                (2.21) 

 𝑢𝑖(𝑥1, 𝑥2, 𝑎3) − 𝑢𝑖(𝑥1, 𝑥2, −𝑎3) = 2𝑎3𝜖𝑖3
0   ;    {

−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎2 ≤ 𝑥2 ≤ 𝑎2

 

b. For kinetic uniform strain boundary conditions (KUBC), the boundary 

conditions prescribed on the REV’s boundaries of Figure 4 are: 

 

u(x) = ϵ0. x, ∀x ∈ ∂ΩRVE                        (2.22) 

which yield to, [3]: 

𝑢𝑖(±𝑎1, 𝑥2, 𝑥3) = ± 𝑎1𝜖𝑖1
0 + 𝑥2𝜖𝑖2

0  + 𝑥3𝜖𝑖3
0   ;   {

−𝑎2 ≤ 𝑥2 ≤ 𝑎2
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

 

 𝑢𝑖(𝑥1, ±𝑎2, 𝑥3) =     𝑥1𝜖𝑖1
0 ± 𝑎2𝜖𝑖2

0  + 𝑥3𝜖𝑖3
0   ;   {

−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

                (2.23) 

 𝑢𝑖(𝑥1, 𝑥2, ±𝑎3) =     𝑥1𝜖𝑖1
0 + 𝑥2𝜖𝑖2

0  ± 𝑎3𝜖𝑖3
0   ;   {

−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎2 ≤ 𝑥2 ≤ 𝑎2

 

 

To find the coefficients in C by setting a different problem for each column in (2.15), 

as follows: 
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2.4.3 Direct simulation of the microstructure: 

 1st Column of the matrix C:  

The following strain is applied to stretch the REV in the fiber direction (x1-direction), in 

order to determine the components Ci1, with i = 1, 2, and 3: 

𝜖1
0  = 1             𝜖2

0  = 𝜖3
0  = 𝛾4

0  = 𝛾5
0  = 𝛾6

0  = 0                         (2.24) 

  Thus, the displacement boundary conditions (2.21) for the REV in Figure 2.3b become: 

𝑢1(+𝑎1, 𝑥2, 𝑥3) − 𝑢1(−𝑎1, 𝑥2, 𝑥3) = 2𝑎1                                           

𝑢2(+𝑎1, 𝑥2, 𝑥3) − 𝑢2(−𝑎1, 𝑥2, 𝑥3) = 0               {
−𝑎2 ≤ 𝑥2 ≤ 𝑎2
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

 

𝑢3(+𝑎1, 𝑥2, 𝑥3) − 𝑢3(−𝑎1, 𝑥2, 𝑥3) = 0                                               

 

   𝑢𝑖(𝑥1, +𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0               {
−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

               (2.25) 

 

𝑢𝑖(𝑥1, 𝑥2, +𝑎3) − 𝑢𝑖(𝑥1, 𝑥2, −𝑎3) = 0               {
−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎2 ≤ 𝑥2 ≤ 𝑎2

       

 

  𝑢1(𝑎1, 𝑥2, 𝑥3)   = 𝑎1 

 𝑢1(0, 𝑥2, 𝑥3)     = 0  

 𝜎12(𝑎1, 𝑥2, 𝑥3) = 0  

𝜎12(0, 𝑥2, 𝑥3)   = 0 

  𝜎13(𝑎1, 𝑥2, 𝑥3) = 0   

  𝜎13(0, 𝑥2, 𝑥3)   = 0   }
  
 

  
 

                                {
0 ≤ 𝑥2 ≤ 𝑎2
0 ≤ 𝑥3 ≤ 𝑎3

 

  𝑢2(𝑥1, 𝑎2, 𝑥3)   = 0   

 𝑢2(𝑥1, 0, 𝑥3)     = 0  

 𝜎21(𝑥1, 𝑎2, 𝑥3) = 0  

𝜎21(𝑥1, 0, 𝑥3)   = 0 

  𝜎23(𝑥1, 𝑎2, 𝑥3) = 0   

  𝜎23(𝑥1, 0, 𝑥3)   = 0   }
  
 

  
 

                                {
0 ≤ 𝑥1 ≤ 𝑎1
0 ≤ 𝑥3 ≤ 𝑎3

                     (2.26) 

  𝑢3(𝑥1, 𝑥2, 𝑎3)   = 0   

 𝑢3(𝑥1, 𝑥2, 0)     = 0  

 𝜎31(𝑥1, 𝑥2, 𝑎3) = 0  

𝜎31(𝑥1, 𝑥2, 0)   = 0 

  𝜎32(𝑥1, 𝑥2, 𝑎3) = 0   

  𝜎32(𝑥1, 𝑥2, 0)   = 0   }
  
 

  
 

                                {
0 ≤ 𝑥1 ≤ 𝑎1
0 ≤ 𝑥2 ≤ 𝑎2
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These boundary conditions are very easy to apply. Symmetry boundary conditions are 

applied on the planes x1 = 0, x2 = 0, x3 = 0. Then, a uniform displacement is applied on the 

plane x1 = a1. The stress boundary conditions do not need to be applied explicitly in a 

displacement-based formulation. The displacement components in (2.26) represent strains 

that are non-zero along the x1-direction and zero along the other two directions. The stress 

boundary conditions listed in (2.26) reflect the fact that, in the coordinate system used, the 

composite material is macroscopically orthotropic and that the constituent materials are 

orthotropic too. Therefore, there is no coupling between extension and shear strains. This is 

evidenced by the zero coefficients above the diagonal in columns 4 to 6 in (2.15).     

 2nd Column of the matrix C: 

The components Ci2, with i = 1, 2, 3, are determined by setting 

𝜖2
0  = 1             𝜖1

0  = 𝜖3
0  = 𝛾4

0  = 𝛾5
0  = 𝛾6

0  = 0                              (2.27) 

Thus, the following boundary conditions on displacements can be used: 

  𝑢1(𝑎1, 𝑥2, 𝑥3)   = 0   

 𝑢1(0, 𝑥2, 𝑥3)     = 0  

 𝑢2(𝑥1, 𝑎2, 𝑥3)   = 𝑎2 

𝑢2(𝑥1, 0, 𝑥3)     = 0 

  𝑢3(𝑥1, 𝑥2, 𝑎3)   = 0   

  𝑢3(𝑥1, 𝑥2, 0)     = 0   }
  
 

  
 

                                                          (2.28) 

 

 3rd Column of the matrix C: 

The components Cα3, with α = 1, 2, 3, can be found by applying the following strain 

𝜖3
0  = 1             𝜖1

0  = 𝜖2
0  = 𝛾4

0  = 𝛾5
0  = 𝛾6

0  = 0                              (2.29) 

Thus, the following boundary conditions on displacements can be used 

  𝑢1(𝑎1, 𝑥2, 𝑥3)   = 0   

 𝑢1(0, 𝑥2, 𝑥3)     = 0  

 𝑢2(𝑥1, 𝑎2, 𝑥3)   = 0  

𝑢2(𝑥1, 0, 𝑥3)     = 0 

  𝑢3(𝑥1, 𝑥2, 𝑎3)   = 𝑎3 

  𝑢3(𝑥1, 𝑥2, 0)     = 0   }
  
 

  
 

                                                          (2.30) 

 4th  Column of the matrix C: 
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For a transversally isotropic material, according to (2.15), only the term C44 is 

expected to be different from zero and it can be determined as a function of the other 

components, so no further computation is needed. Therefore, it can be determined 

as: 

C44 =
1

2
 (C22 − C23)                                          (2.28) 

If the material is orthotropic, a procedure similar to that used for column number six 

must be used. 

 5th  Column of the matrix C: 

For a transversally isotropic material, according to (2.15), only the term C55 is 

different from zero and it is equal to C66, which can be found from column number 

six. If the material is orthotropic, a procedure similar to that used for column 

number six must be used. 

 6th  Column of the matrix C: 

Because of the lack of symmetry of the loads, in this case it is not possible to use 

boundary conditions as was done for the first three columns. Thus, the boundary 

conditions must be enforced by using coupling constraint equations (called CE in 

most FEA commercial packages). According to (2.15), only the term C66 is different 

from zero. The components Cα6 are determined by setting: 

𝛾4
0 = 𝜖12

0 + 𝜖21
0  = 1             𝜖1

0  = 𝜖2
0  = 𝜖3

0  = 𝛾4
0  = 𝛾5

0  = 0                          (2.29) 

Note that 𝜖12
0  = 1/2 is applied between x1 = ± a1 and another one-half is applied between 

x2 = ± a2. In this case, the CE applied between two periodic faces (except points in the 

edges and vertices) is given as a particular case of (2.21) as follows: 

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0                              

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 𝑎1        {
−𝑎2 ≤ 𝑥2 ≤ 𝑎2
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

                                                               

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0                          
 

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 𝑎2                              

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0          {
−𝑎1 ≤ 𝑥2 ≤ 𝑎1
−𝑎3 ≤ 𝑥3 ≤ 𝑎3

              (2.30)       

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0                            



CHAPTER 02: Generalities on Homogenization 

 

 
37 

 

 

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0                               

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0         {
−𝑎1 ≤ 𝑥1 ≤ 𝑎1
−𝑎2 ≤ 𝑥2 ≤ 𝑎2 

                                           

𝑢𝑖(𝑥1, 𝑎2, 𝑥3) − 𝑢𝑖(𝑥1, −𝑎2, 𝑥3) = 0                            
   

One way to solve homogenization problems is to use numerical simulation techniques 

on microstructure samples. In this case, the notion of REV is of paramount importance. 

Usually considered as a volume of heterogeneous material efficiently including a sampling of 

all heterogeneities, Furthermore, the response of the REV must be independent of the type 

of conditions at the limits prescribed on its edge (average stress or given average force) [45].  

To determine the homogenized properties of a heterogeneous material, it is necessary 

to calculate the mean stress and strain on the REV using (2.5) and (2.6), then (2.8) and 

(2.10) the stiffness or flexibility constants can be deduced using (2.3) and (2.4). 

 
 
 
 
 
PARAPGRAPH OF FLAW CHART 
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2.5 Homogenization flowchart: 

 

 
                                          

 

 

 

 

 

 

   

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 Fig.2.4: Homogenization flowchart 
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2.6 Conclusion: 

In this chapter, a very brief review of the behavior law and different approaches to the 

calculation of analytical and numerical homogenization were presented. Each one of these 

later was well adapted to defined problems. 

 The homogenization computation allows us to obtain an approximation of the 

effective properties for a medium described by heterogeneous properties. 
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CHAPTER 3  
XFEM coupled with multi Level-set(s) technique 

and presentation of the elaborated code 
he presence of discontinuities in the structures (inclusions, voids and cracks), poses the problem of 

their numerical representation, several solutions have been proposed among which the extended 

finite element method (X-FEM), recognized for its ability to model weak (inclusion) and strong (void 

and crack) discontinuities.  Initially, the technique used to model interfaces with XFEM elements consisted 

in representing them explicitly by parametric curves. However, very quickly, researchers began to study 

several interfaces that coalesce, which was obviously not without some difficulties in the representation of 

these interfaces. Therefore, another method had to be considered; it consists in representing the interfaces 

implicitly by a surface called Level Set. This method is of particular interest to us in our study, since it could 

allow us to modify the shape of the interface, without any restriction on the connectivity of the structural 

elements. 
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3.1 The extended finite element method (XFEM): 

3.1.1 Implementation of the XFEM method: 

The XFEM is used to represent the discontinuities independently of the finite 

element mesh by exploiting the Partition Unit Finite Element Method (PUFEM). Arbitrary-

oriented discontinuities can be modelled by enriching all discontinued elements by using 

enrichment functions that satisfy the discontinuous behaviour and adding additional nodal 

degrees of freedom (DOF). In general, the approximation of the displacement field in the 

XFEM takes the following form: 

𝐮(𝐱) = 𝐮𝐅𝐄𝐌 + 𝐮𝐄𝐧𝐫 = ∑ 𝐍𝐢(𝐱)𝐮𝐢𝐢∈Ω⏟        
𝐅𝐄𝐌

+  ∑ 𝐍𝐣(𝐱)𝐚𝐢𝐣∈Ω𝐝⏟        
𝐄𝐧𝐫𝐢𝐜𝐡𝐦𝐞𝐧𝐭

                       (3.1) 

 

3.1.2 The enrichment of inclusion: 

Inclusions are defined as heterogeneities in a matrix with different material 

properties. A practical way to represent this discontinuity created by the bi-material 

interface, across which a continuity of displacement and stress fields and a discontinuity the 

strain one, is to consider the following enrichment function: 

 𝐮𝐄𝐧𝐫 = ∑ 𝐍𝐣(𝐱)𝐣∈Ω𝐝 (𝐱)                                                 (3.2) 

Where (x) is the value of level-set at a given point or is the shortest signed-distance from 

any point in the domain of discontinuity at the interface, in order to ensure the 

correspondence between real displacement and enriched displacement at node levels, (x) 

is modified by Moës et al. [36] as follows: 

(x) -(xj) with xj corresponding to the nodes of the concerned element. The formulation 

of equation (3.1) in this case can be expressed: 

                          𝐮(𝐱) = ∑ 𝐍𝐢(𝐱)𝐮𝐢𝐢∈Ω + ∑ 𝐍𝐣(𝐱)(𝐣∈Ω𝐝
(𝐱) + (𝐱𝐣 ))𝐚𝐣                          (3.3)                    

and d
           : Elements in the whole domain and elements in the domain containing discontinuities,  respectively; 

i
N ( x )               : Conventional interpolation function; 

j
N ( x )               : The enrichment interpolation functions of the discontinuity; 

iu and 
ja           : The classic and the enriched DOF respectively. 
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3.1.3 The enrichment of void: 

In the case of the presence of a void, the equation (3.1) becomes [17]: 

 𝐮(𝐱) = 𝐕(𝐱)∑ 𝐍𝐢(𝐱)𝐮𝐢𝐢∈Ω                                              (3.4) 

V(x) is the enrichment of voids taking a value of 0 inside the void and 1 outside the void. 

3.1.4 The enrichment of crack: 

For the modelling of a crack in a homogeneous material, the enrichment is defined 

for an element completely cut by the crack (see Fig.3.1), by the enrichment Heaviside 

function of H(x) as such: 

  𝐇(𝐱) = {+𝟏 above the crack
−𝟏 below the crack

                                               (3.5)                     

In order to ensure the correspondence between real displacement and enriched 

displacement at node levels, H(x) has been modified by Moës et al. [36] to: H(x) - H(xj) 

with xj corresponding to the nodes of the concerned element. So like equation (3.1), the 

displacement field becomes:  

𝐮(𝐱) = ∑ 𝐍𝐢(𝐱)𝐮𝐢𝐢∈Ω + ∑ 𝐍𝐣(𝐱)(𝐇𝐣∈Ω𝐇
(𝐱) − 𝐇(𝐱𝐣))𝐚𝐣                      (3.6) 

It should be noted that there is a third term in the expression of u(x) which expresses 

the singularity of the fields near the end of the crack. This term paramount is the 

calculations of the local parameters such as the stress intensity factor where it is not 

necessary in this study since we do not land at these parameters at this stage (this will be 

incorporated in our code in the future work).   

 

   Nodes with Heaviside Enrichment 

        Void node 

     Inclusion node    

Void Crack  

Inclusion 

Fig 3.1: Different types of XFEM enrichments 

Domain  
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3.2 Application of the XFEM: 

 The Bubnov-Galerkin method can be used to convert the displacement 

approximation given by equation (3.1) into a system of linear equations of form:                           

      Ku f                                                             (3.7) 

With  

K: global stiffness matrix. 

u: nodal displacement vector. 

f : nodal force vector. 

By appropriately ordering degrees of freedom, the overall stiffness matrix K can be 

considered as: 

                                            K = [
kuu kua
kua kaa

]                                                     (3.8) 

Where: 

kuu : The rigidity matrix of classical elements. 

kaa : The stiffness matrix of the enriched elements. 

kua : The coupling matrix between classical and enriched stiffness components. 

The elementary stiffness matrix K for any member of k can be calculated as follows: 

                                            , =u,at

ek B CB d   


                                                         (3.9) 

With: 

C : the matrix of elastic properties. 

Bu: is the matrix of the derivatives of the classical form function. 

Ba : is the matrix of the derivatives of the enriched form function. 

The general form of  Bu and Ba is given by: 
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                                             (3.10) 
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           For inclusion                   (3.11) 
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  

          For crack                         (3.12)                

 

Similarly, f  in equation (3.8) is given by:f ′ = {fu
′     fa

′ }  

Where fu and fa are the vectors of the applied forces for the classical and enriched 

components of the displacement approximation, the vectors fu and fa are given in terms of 

applied tractions t ̅and the volume forces b as: 

fu = ∫ NiГi
td̅Г + ∫ NiΩ

bdΩ                                                 (3.13) 

  fa = ∫ NiГi
td̅Г + ∫ NiΩ

bdΩ                                              (3.14) 

             fa = ∫ NiГi
Htd̅Г + ∫ NiΩ

HbdΩ                                              (3.15) 
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3.3 The Level-Set method: 

The Level-Set method or level function method is an interface monitoring technique 

initially developed in 1987. 

In 1988, Osher and Sethian published a synthesis of expertise in interface evolution 

and hyperbolic conservation laws in an article. The simple and versatile method to compute 

and analyze the motion of an interface in two or three dimensions, one of the initial 

motivations was to develop a simple interface tracking technique that could correctly 

describe topological changes.  

The main idea of this method is to describe an interface in two or three dimensions 

by a signed function called Level-Set function. The temporal tracking of this interface is 

determined by solving a non-conservative advection equation of the scalar: the Level-Set 

equation. 

3.3.1 The coupling of the Level-Set technique with the XFEM method: 

Consider a discretization of the domain () into ne elements (of tetrahedral linear type 

in this study) thus generating nd nodes. By using the Level-Set technique, the nodes do not 

necessarily need to be located at the interface described by the level function , taking a 

zero value on that location. Hence, the mesh is independent of . Thus, the value of  at 

each point of the domain () will be of capital importance for defining the point relative 

position to the interface, during the different stages of the discretization. The Level-Set 

function used in this study is, [46]:  

𝛟(𝐱) = (
|x−xc|

a1
)
p1
+ (

|y−yc|

a2
)
p2
+ (

|z−zc|

a3
)
p3
− 1                         (3.16) 

By varying the parameters ai and pi, this function allows to describe various closed 

forms of center coordinates (xc , yc , zc), such as sphere, 3D star, polygon, cube, cylinder, 

cone, etc (see table.3.1). The coming parametric studies of the effect of the 

discontinuity/interface shape, geometrically governed by function , will demonstrate the 

large options enabled by this function. 
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Table 3.1:Deffrent forme of Level-set(s) 

  
a1=1, a2=1, a3=1 p1=2, p2=2, p3=2 a1=0.5, a2=1, 

a3=1 
p1=2, p2=2, p3=2 

  
a1=0.5, a2=1, 

a3=0.5 
p1=2, p2=2, p3=2 a1=0.5, a2=0.5, 

a3=1 
p1=2, p2=2, 

p3=10 

  
a1=0.5, a2=0.5, 

a3=1 
p1=2, p2=2, 

p3=100 
a1=1, a2=1, a3=1 p1=4, p2=4, p3=4 

  
a1=1, a2=1, a3=1 p1=10, p2=10, 

p3=10 
a1=1, a2=1, a3=1 p1=1, p2=1, p3=1 
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a1=1, a2=1, 

a3=1 
p1=0.5, p2=0.5, 

p3=0.5 
a1=1, a2=1, a3=1 p1=0.5, p2=0.5, 

p3=2 

  
a1=1, a2=1, a3=1 p1=1, p2=0.5, 

p3=1 
a1=1, a2=1, a3=1 p1=2, p2=0.5, 

p3=2 

  
a1=1, a2=1, a3=1 p1=2, p2=2, p3=2 a1=1, a2=1, a3=1 p1=2, p2=2, 

p3=100 

  
a1=1, a2=1, a3=1 p1=2, p2=2, p3=1 a1=1, a2=1, a3=1 p1=2, p2=2, p3=2 
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The unit normal at each point x in the vicinity of  is defined as a function of  by: 

                                   n(x) =
∇ϕ̃(x)

‖∇ϕ̃(x)‖
                                                           (3.17) 

With 

                                ∇ϕ̃(x)i = ∑
∂𝐍𝐣(𝐱)

∂xi

n
j=1 ϕj                                                 (3.18)   

The intersection of mesh elements with the interface is approximated, depending of 

the element orientation, either by a triangle (see figure 3.2a) or by a quadrangle (see figure 

3.2b). The first case generates a sub-tetrahedron and a prismatic sub-element, while the 

second generates two prismatic sub-elements. Each prism (in both cases) is subdivided into 

three sub-tetrahedra. The identification of these sub-elements is primordial with elements 

that are cut by the interface.  

a1=1, a2=1, a3=1 p1=2, p2=2, 
p3=100 

a1=1, a2=1, a3=1 p1=2, p2=2, 
p3=0.5 

 
 

a1=1, a2=1, a3=1 p1=2, p2=2, p3=2 a1=1, a2=1, a3=1 p1=2, p2=2, p3=2 
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As shown in figure 3.3, the vertices of these intersections are obtained using a linear 

interpolation approximation of the Level-Set  evaluated at the two nodes i and j of each 

element cut side.  Drawing x̅ from the equation (x)=0 gives the coordinates of these 

vertices:  

                                  x̅  =  f( x̅i , i , x̅j , j )                                               (3.19) 

x̅ = x̅i + ξ(x̅j − x̅i)      with     ξ =
ϕi

ϕi−ϕj
                                (3.20) 

              

 

 

 

 

 

 

Fig 3.2: Subdivision of the tetrahedron cut element: a) into 4 sub-elements, b) into 6 sub-elements. 

(b) 

Γ 

(a) 

Γ 

Fig.3.3: Description of Level-set linear interpolation. 
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3.3.2 Description of a crack by LSM: 

The Level-Set method offers an elegant way to model different kind of discontinuities 

such as cracks. The key point in modelling of cracks or any discontinuity using the Level-Set 

method, is to represent the discontinuity as a Level-Set zero-level of this function [47]. For 

crack modelling, the Level-Set function is defined as a signed distance function. As the crack 

is a discontinuity that does not completely divide the domain into two distinct parts. So, 

only a part of the domain is divided to completely characterize a crack. For that two 

functions of Level-Set are defined by: 

 A normal Level-Set (LSn) that represents the distance to the surface of the crack. 

 A tangent Level-Set (LSt) that represents the distance to the crack tip. 

The zero level of the normal Level-Set defines the surface of the crack, extended by 

continuity to the entire domain. The intersection of the zero-levels of the two Level-Set 

defines the crack tip. In addition, the sign of the tangent Level-Set is chosen so that the 

surface of the crack corresponds to the space generated by the sign of the normal Level-Set 

is chosen arbitrarily. The points x for which is negative are said to be "below" the crack, and 

those for which is positive are said to be "above" the crack [48] (Figure.3.4).  

 

 

 

LSt(x)=0 

LSt(x)< 0 LSn(x)=0 

LSn(x)> 0 

LSn(x)< 0 

LSt(x)> 0 

Crack 

Fig.3.4: 3D representation of a crack by Level-Set. 
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3.4 Presentation of the compute code without surface effect: 

In the case of study and analysis of the homogenization of cracked structures by 

XFEM, several calculation operations must be performed. The calculation time of these last 

ones becomes very important for complex problems. Therefore, it is essential to develop a 

reliable calculation code judiciously.  

In this part we present our compute code which takes into account the theories 

studied in the previous chapter. We will propose a flow chart which will explain the 

approaches of our compute code, in order to show the robustness and performance of the 

developed program. 

 

3.4.1 Flow chart of our compute code: 
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 Strain calculation 

 Stress calculation 

Localization by level set 

Fig 3.5: Flowchart of our calculation code. 
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3.4.2 Presentation of the developed program levels: 

 In this work, the X-FEM modeling method coupled with LS for homogenization 

described in the previous chapter was programmed, through the use of MATLAB® 

(R2015b) programming software, our compute program is similar in its composition with 

any FEM-based program. But with some attention will be given to enrichment and LS. This 

program consists of the following steps:  

 Data definitions (geometry mesh definition by G-mesh, insertion of material 

characteristics) 

 Construction of elementary stiffness matrix Ke 

 Location of Ke in the global matrix KG  

 Insert the boundary conditions. 

   Resolution of the System (computation field of displacement). 

 Calculation of strain and stress field. 

 Calculation field of strain and average stresses. 

 Calculate the effective parameters. 

 Results display. 

3.4.3 Design and definition of geometry and meshing parameters by G-

mesh: 

The mesh is a spatial discretization of a continuous medium. The importance of this 

operation is to discretize the geometry into elements and nodes, in our work this 

discretization was performed using G-msh. 

G-msh is a free software which allows to generate 2D and 3D finite element type 

meshes with pre / post processing tools. This software was developed by Christophe 

Geuzaineet Jean-Fran_cois Remacle in March 2003. 

Meshing geometry through the G-msh has to go through several stages. In this section 

we mention the most important. 
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 Definition of geometry: 

The G-mesh allows defining different geometries, the latter can be created by two 

methods: at the level of a text file see appendix A1 (fig.1) or at the level of the software's 

graphical interface, see appendix A1 (fig.2). 

 Selection of physical groups: 

This part is to be done in order to prepare the structure for the injection of the 

boundary conditions, it allows to consider any part of mesh (line, point, surface, volume) as 

a physical group see appendix A1 ( fig.3).  

 Mesh generation: 

In our case, the element that has chosen is tetrahedron. This element is chosen 

automatically by G-msh, to generate the mesh of this element just click on 3D see appendix 

A1 (fig.4). 

3.4.4 The numbering of elements and nodes: 

The classification of the nodes and the elements is made in qualitative form by G-msh, 

for example the figure 3.5: 

  
 

                          

 

 

 

 

 

   

After these steps the software gives a data file which will be used in compution code, 

at step: mesh with G-msh in the previous flowchart. 

 

 

11

1 

360

006  

205 

125 

2001 
 

Zoom 

Fig 3.6: Numbering of elements and nodes. 
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3.4.5 Construction of elementary stiffness matrices eK  : 

 
Because of the discontinuity, the calculation of the elementary stiffness matrix will be 

modified, this latter depends on the nature of the enriched element or not (simple). 

In a discretized field (our study case), two types of elements can appear, the elements 

which are not crossed by the crack (simple element) and the elements which are completely 

crossed by the crack where the enrichment must be brought to all nodes of these elements. 

This case requires special digital processing. 

Due to the presence of enrichments, there are additional DOF. During a crack which 

crosses an element, two DOF for each node of the element will be added. 

The presence of discontinuity in the elements which are cut by crack poses a problem 

of their numerical integration. Among the proposed solutions is to increase the number of 

integration points on either side of the discontinuity by dividing the cut element into simple 

sub-elements (figure 3.7). One evaluates thereafter the elementary matrix on the points of 

gauss of these elements. 
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The numerical integration of the elementary matrices of the elements which cut by 

the crack will be carried out on these sub-elements:  

                                               * *t

eK W B C B                                                 (3.19) 

Or: 
 

B:             The matrix of derivatives of the interpolation functions; 

Bt:            Transpose from the matrix; 

W:           Gauss point weight; 

C:            Matrix of material properties. 

 
 
 
 
 

Fig 3.7: Under splitting and distribution of gauss points. 
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3.4.6 Assembly procedure (Location of Ke): 

In our computer code, we used a vectorization assembly technique, where for each 

elementary stiffness matrix, we have: 

 

 A vector named Ie which contains the global row indices associated with the elements 
stored in Ke.  
 

 Another vector named Jg which contains the global column indices associated with 
the elements stored in Ke.  
 

 A vector named kg which contains the values of Ke.  
 

 Then after the loop of the elements one uses the Sparse instruction (contains the 
vectors mentioned below) to build the total stiffness matrix KG.  
 

We present the optimized code where we completely eliminate loops. This version 

consists in building 3 tables allowing storing all the elementary matrices as well as the 

positions in the total matrix. We denote by Kg, Ig and Jg these arrays: 

Kg(il,k)=Kk
e(il) 

Ig(il,k)= Igk
e(il) 

Jg(il,k)= Jg k
e(il) 

The three local arrays 𝐊𝐤
𝐞, 𝐈𝐤

𝐞and 𝐉𝐤
𝐞are stored in the k-th column of the global arrays 

Kg, Ig and Jg respectively. 

A natural way to build these three arrays consists in using a loop through the triangles Tk 

in which we insert the local arrays column-wise, see Figure 3.8. Once these arrays are 

determined, the matrix assembly is obtained with: 

M=sparce(Ig(:), Jg(:),Kg(:),n,n) 
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(
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k e1,2

k e1,3
k
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k e2,3
k

e3,1
k e3,2

k e3,3
k

)  

  

 

 

 

 

  

                                          

                      

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4.7 Resolution of the System: 

 In this step for the compute code we are going to notice the methods of resolution 

of the system KU=F. 
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Fig 3.9: Insertion of an element matrix in the global array. 
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 The developed computer code contains two methods to solve the system: iterative 

and direct methods. In general, direct methods are used as long as it is possible and that 

it does not cost too much in terms of computation time and consumes more RAM. 

Otherwise, failing that, the iterative methods are used such as: (minres, bicg, bicgstab, 

gmres, cgs, symmlq) these later consume less RAM and is a bit slow in terms of time.  

 
3.4.8 Calculation of strains and stresses: 

 
The computation of field of the strains and the stresses is to carry out to make a 

buckle on the elements (simple and enriched):  

 

 The following relation allows us to calculate the strain field for classical elements 

(not cut elements) : 

                                                      {𝛆} = [𝐁]{𝐮}                                                 (3.20) 
And for the stress field we have: 

{𝛔} = [𝐂]{𝛆}                                                 (3.21) 

3.4.9 Homogenization computing: 

The homogenization is the last step in the process; it aims to determine the effective 

elastic properties at the macroscopic scale by determining the relationship between 

macroscopic stresses and macroscopic deformations. 

Then the effective parameters can be calculated after applying equation (2.25) and the 

following formula:    

𝜎̅22 = 𝐶12 = 𝜆𝑒𝑓𝑓 

𝐶11−𝐶12

2
=
𝜎 11−𝜎 12

2
=
(𝜆𝑒𝑓𝑓+2𝜇𝑒𝑓𝑓)−𝜆𝑒𝑓𝑓

2

𝑘𝑒𝑓𝑓 = 𝜆𝑒𝑓𝑓 + (
2

3
)𝜇𝑒𝑓𝑓 }

 
 

 
 

                                             (3.21) 

Where: 

𝜎̅ : Medium stress 

𝜆𝑒𝑓𝑓 and 𝜇𝑒𝑓𝑓 : Effective lamé constants 

𝑘𝑒𝑓𝑓 : Effective compressibility modulus 
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3.5 Conclusion: 

The extended finite element method is a modern modelling method that gives a 

numerical solution, which effectively makes sense of discontinuities. The representation of 

these later is based on the Level-Set technique; this description is then used to enrich the 

displacement field. The success of discontinuities representation using the level-set method 

allows it to be coupled with other methods (e.g. LSM coupling with XFEM). 

For the second part, all the steps were put into practice by a computer code created 

within our research team from the LDMM research lab, from the University of Djelfa. 

Our compute code will be tested through several validation and application examples 

in the next chapter. 
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CHAPTER 4  
Validation of the code and 

parametric studies in displacement 
analysis and homogenization without 

surface effect  
n this chapter, we are interested in the validation and application examples in 

order to prove the efficiency and the robustness of our numerical simulation 

tool without surface effect. Firstly, the obtained results for several validation tests 

are compared to those evaluated analytically and those obtained by using the free 

software “Caste3M2018” based on the Finite Element Method (FEM). After that 

and as a parametric study in homogenization context, several cases of 

Representative Elementary Volume (REV) are then studied, to get the evolution 

of the bulk compressibility modulus according to the void flattening ratio and 

according to its size when the void became a crack.   
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4.1 Validation of the calculation code: 

In this part, we are interested in some examples of validation, in order to 

prove the efficiency and the robustness of the elaborated software of 

computation. This is possible by comparing the obtained results with the 

analytical solution when it is available, otherwise with those obtained by standard 

software based on FEM. In all presented simulations, the meshing was realized by 

the free software Gmsh (version 4.4.1) [49] with 4-nodes tetrahedron linear 

element. The mesh size varies from he = 1/21 for a cube (from 71299 to 53320 

elements and from 285196 to 213280 nodes) to he = 1/50 for a cylinder (115897 

elements and 463588 nodes), as well in the developed software as in standard 

FEM. 

4.1.1 Spherical inclusion in cube subjected to axial tensile 

load: 

In this example, the geometrical characteristics and the mechanical 

properties are grouping in table 1. As shown in Figure 4.1. This cube is subjected 

to a static loading q in the z-axis, and the analytical solution of the displacement 

field of this problem is given in the reference [50]. 

 

Table 4.1: Mechanical properties and Geometrical characteristics for example 1 

 
 
 
 
 
 
 
 
 
 

Mechanical properties 

E1 (Young’s modulus of matrix) 

E2  (Young’s modulus of inclusion) 

v1 (Poisson's ratio of matrix)  

v2 (Poisson's ratio of  inclusion) 

q  (Static loading) 

1 GPa 

10 GPa 

0.25 

0.32 

20 N/m2 

Geometrical characteristics 

L (Cube side)  

R (Inclusion radius)  

1 m 
0.2 m 
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Figure 4.2 shows the evolution of the radial displacement component Ur at 

the z-axis, which is quasi-linear in each phase (matrix or inclusion) with 

continuity at the interface and a discontinuity of its gradient (strain), according to 

the adopted interface conditions. A good correlation between the obtained results 

and the analytical solution is observed.  

4.1.2 Semi-circular surface crack in a cube under tension:   

The second example concern an aluminium alloy cube containing an 

emergent semi-circular crack subjected to a tensile loading q along the z 

Fig.4.1: (a) Description of the physical problem, (b) Level-set within mesh. 
 

L 

L 
L 

R 

(a) (b) 

q 

Fig.4.2: Evolution of the radial displacement Ur along the z-axis. 
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X 10-7 
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direction, as shown in Figure 4.3. The dimensions and the mechanical properties 

are shown in the table 4.2. The aim of this example is to follow the evolution of 

displacement along the y-axis. The obtained results are regrouped in Figure 4.4. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mechanical properties 

E  (Young’s modulus of cube)  

v  (Poisson's ratio of cube)  

q  (Static loading) 

70 GPa 

0.32 

20 N/m2 

Geometrical characteristics 

L  (Cube side)  

r  (Crack radius)  

1 m 
0.25 m 

Table 4.2: Mechanical properties and Geometrical characteristics for example 
2 

 

PROPERTY VALUE 

E1(GPA) 

E2(GPA) 

E(GPA) 

V1 

V2 

V 

Q (N/M
2
) 

 

1 

10 

70 

0.3 

0.25 

0.32 

20 

 

 Table 1: Material prepites  

q 

Crack 

Fig.4.3: (a) Cube containing a semi-circular surface crack, (b) Level-set within mesh for 
XFEM, (c) Mesh for FEM.  

 

(a) (b) (c) 

 

 y(m) 

Uz(m) 

Fig.4.4: Evolution of displacement along the y-axis by X-FEM and FEM.   
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The comparison of the two results shows an excellent agreement between them, 

as shown in Figure 4.4. Thus, it gives a good judgment on the accuracy and 

robustness of our software. It is important to note that the emergent position of 

the crack has increased the displacement at the boundary level that contains the 

crack. 

4.1.3  Crossing crack into cube under tension: 

  We consider the same mechanical properties and Geometrical 

characteristics in the table 4.2 but in this case with a Crossing crack. The obtained 

results are presented in the figure 4.6. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

q 

Fig 4.5: Cube containing a Crossing crack. 
 

Fig 4.6: Evolution of displacement along the y-axis by X-FEM and FEM.   
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From Figure 4.6, a concordance between the results obtained by X-FEM and 

FEM is remarked; it also noticed that the maximum values of displacement are on 

the crack plan. 

4.1.4 Annular surface crack into a cylinder under tension: 

  For the third validation example, an aluminium cylinder of geometrical 

dimensions h = 1m and  R = 0.564m and the same mechanical properties of the 

previous example, which contains an annular crack, and subjected to a tensile 

loading q in the z direction, as shown in Figure 4.7. The obtained results give the 

variation of the displacement component Uz along the x-axis as presented in 

Figure 4.8. It is easily noticed that there is a good concordance between the two 

calculating tools. This testifies again to the efficiency of the developed code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig.4.7: Cylinder containing an annular surface. 
crack  

q 

h 
R 

Crack 
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4.1.5 Elliptical crack forms into a cylinder under tension: 

The geometry of this example is the same as the previous example with an 

elliptical crack of lower radius R1 = 0.25m and upper radius R2 = 0.5 (figure 

4.9). In this example, we are interested in the evolution of the displacement field 

at the level of the axes of the ellipse (major axis and minor axis). The obtained 

results are presented in figure 4.10 . 

 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 

 

 
x(m) 

 
Uz(m) 

Fig.4.8: Evolution of displacement along the x-axis. 
;   

Fig. 4.9: Cylinder containing a crack in elliptical form subjected to a tensile loading. 
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From the results, we always notice the agreement between the results found with 

the two methods XFEM and FEM. 

4.2 Parametric study for homogenization: 

4.2.1 Flattened cylindrical void with respect to a crossing crack:   

This example is concerned with a cube containing a flattened cylindrical 

void (of elliptical section), with a variable flattening rate a (small axis / major 

axis) and a constant surface fraction (major axis / cube side) f = 0.4, as shown in 

Figure 4.11. The matrix is in aluminium with the same mechanical properties of 

the table 4.2. We are interested to the evolution of the dimensionless 

compressibility modulus Kad defined as Kad = Keff / KM, with KM is the 

compressibility modulus of the matrix and Keff  is the effective compressibility 

modulus of the composite.  

The results presented in Figure 4.12 show an increase in dimensionless 

compressibility modulus Kad with the increasing of the coefficient a followed by 

stabilization for large values to get a similarity with crack case. This augmentation 

is due to the decrease of the volume fraction in the zone of high values of a. 

Fig. 4.10: Evolution of displacement along the y-axis by X-FEM and FEM.  
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     4.2.2 Flattened spherical void with respect to a circular crack:   

In this example, the same cube of the previous example contains a 

flattened spherical void with respect to a circular crack, with a variable flattening 

rate a, and a constant surface fraction f = 0.4, as shown in Figure 4.13. We are 

interested to the evolution of Kad versus a. The results are shown in Figure 4.14, 

in which the same remarks observed in the previous example are found.  

 

Fig.4.11: Flattening of a cylinder in a RVE. 
 

Crossing crack 

 

Flattened cylinder  
Void in cylindrical form 

Uniform  
strain 𝜺   

Fig.4.12: Evolution of Kad of a flattened cylinder with respect to a crossing crack. 

Fig.4.13: Flattening of a sphere in a RVE.  
 

Uniform  
strain 𝜺   

Flattened sphere 
Void in spherical form Circular crack 



CHAPTER 4: Validation of the code and parametric studies in displacement 
analysis and homogenization without surface effect 

 
 

 
72 

 

 

      4.2.3 Influence of the size effect of the crack: 

In this part, the effect of crack size on the Kad coefficient is analysed. To do 

this, we assumed the case of a cube with similar proprieties as the previous 

example, where six (06) radius are tested r(m) = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} of 

the supposedly circular crack (Figure.4.15). 

 

 

 

 
 

 

 

 

 

 

 

Fig.4.14: Evolution of Kad of a flattening sphere with respect to a crack. 
 

 

 

 

𝜺 
 

r =  {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

Crack 

Fig.4.15: Geometry of the problem. 
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Figure 4.16 shows the evolution of Kad as a function of the crack radius 

variation. It is noted that there is an inverse proportion between the 

dimensionless compressibility modulus and the size of the crack, because when 

the radius of the crack increases the Kad decreases, that means that the crack affects 

negatively the rigidity of the structure, which is physically expected.  

4.3 Conclusion: 

Through the treated examples in this chapter, it has been shown that the 

X-FEM is able to treat the cracked structures in view of its concordance with the 

validation examples carried out. Under the context of a linear homogenization, 

the objective is to evaluate the effective parameter, in particular the effective 

compressibility modulus Keff, for a Representative Elementary Volume (REV) 

containing voids and cracks, under the effect of a few parameters which 

addressed, the effect of the defect shape, its size and the effect of void flattening. 

This last effect concerns voids of two different forms (cylindrical and spherical), 

where it shows by accentuating more and more flattening, an effective behavior 

approaching to the crack of comparable size. This again testifies to the accuracy of 

this approach and the robustness of the developed code. 

 

Fig.4.16: Evolution of Kad versus the crack radius.  
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CHAPTER 5  
Homogenization of nanocomposite materials 

with surface effect  
n this chapter we are interested in the problem of homogenization of medium containing 

heterogeneities (nanoinclusions, nanovoids and/or nano-cracks) with surface energy effects 

which is numerically addressed within Matlab® code, by XFEM/FEM combined with the 

Level-set technique, for various forms of nanoheterogeneities in a full 3D context. It is noted 

that this part of our study is considered as a generalization of a previous work of our research 

team limited to 2D framework carried out by Kired et al. [5]. The developed simulation tool is 

first validated by comparison with analytical and 2D numerical results from the literature, 

before being used to perform 3D numerical investigations accounting for the real 3D spherical 

and cylindrical shapes of the nanoheterogeneities in presence. The limit case of flattened or 

crack-like 3D nanovoids with surface energy compared to purely nano-cracks is also 

emphasized. Furthermore, the numerical simulations enable us to assess the slight effect of the 

adopted shape of the surrounding medium and the type of applied boundary conditions on the 

computed effective properties.  

SUMMRY 

I 

5.1 Theoretical model 76 

5.2 Flow chart of elaborated code with surface effect 82 

5.3 Applications and numerical results 84 

5.3.1 Cylindrical inclusion submitted to an Eigen-strai 84 

5.3.3 Spherical void with coherent interface and different surrounding material 
shapes 

96 

5.3.4 Effect of flattening of nanovoids 99 

5.3.4.1 Spherical void flattened to a penny shaped crack 99 

5.3.4.2 Cylindrical void flattened to a through straight crack 102 

5.3.4.3 Mesh refinement effect for flattening problem 105 

5.4 Conclusion 106 



 

CHAPTER 5: Homogenization of nanocomposite materials with surface effect 

 
 

 
76 

 

5.1  Theoretical model: 

In this section, the mathematical modeling of a multiphase medium (Figure. 5.1) with 

coherent interfaces is given in an elastic framework, in both strong and weak formulations. 

 
 

We consider an elastic 3D medium () composed of several isotropic phases (i) 

separated by coherent interfaces i ( = ∪ i) (see figure 5.1). This medium is in equilibrium 

under applied loading and kinetic constraints. The strong mathematical formulation of this 

problem utilizes the volume and surface equilibrium equations: 

                                                         𝐝𝐢𝐯(𝛔(𝐢)) + 𝐛 = 𝟎   in  (𝐢)                                                                (5.1) 

                                           𝐝𝐢𝐯𝐬𝛔
(𝐢)

𝐬 = −⟦𝐭⟧ = (𝛔 (𝟐) − 𝛔 (𝟏))𝐧(𝟏)   on  (𝐢)                                                (5.2) 

With the boundary conditions: 

{
𝛔. 𝐧 = −𝐅   𝐨𝐧 𝛛𝐅

𝐮 = 𝐮̅   𝐨𝐧 𝛛𝐮
                                            (5.3) 

where 𝛛𝐅 ∪  𝛛𝐮 = 𝛛  et  𝛛𝐅 ∩  𝛛𝐮 = ∅ 

The interface equilibrium equation (Eq. 5.2) used here is the Laplace-Young model [1] for 

coherent interface where the traction vector t is discontinuous (see equation (5.2)) and the 

displacement is continuous: 

Fig.5.1: Multiphase domain with coherent open and close interfaces. 

Ω𝟏 Ω𝟐 

Ω𝟑 

Γ𝟏 

𝐧(𝟏)
    

𝛛Γ𝟐 

𝐧(𝟐)
    

𝒏
  

𝛛Ω𝑭 𝑭 

𝒖 = 𝒖̅ 

𝛛Ω𝒖 
𝐦     

Γ𝟐 
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𝐮(𝟐) − 𝐮(𝟏) = ⟦𝐮⟧ = 𝟎  on  (𝐢)                                        (5.4) 

In equations (5.2) and (5.4), superscripts (5.2) and (5.1) refer to the two sides of the 

interface  
(𝐢). For more details about the Laplace-Young model and the modelling of 

interfaces, the reader can consult the references [51], [52]. 

The weak formulation reduce to finding the solution in displacement u belonging to 

𝒟 = {𝐮 = 𝐮̅ on ∂Ωu , 𝐮 ∈  H1( Ω(i))}, such as [5-6]: 

 

               

(5.5)  

 

Knowing that  δ𝐮 ∈  {𝛅𝐮 = 𝟎 on ∂Ωu , 𝛅𝐮 ∈  H1( Ω(i))}. 

By projecting the second term of equation (5.5) on both sides of    
(𝐢), and invoking the 

Laplace-Young Model given by equation (5.2), it yields  

∫ 𝛔(𝐮). 𝐧. 𝛅𝐮dΓ
𝚪

= ∫ (𝛔 (𝟐) − 𝛔 (𝟏))𝐧(𝟏). 𝛅𝐮dΓ
𝚪

= ∫ 𝐝𝐢𝐯𝐬(𝛔𝐬). 𝛅𝐮dΓ𝚪
         (5.6)  

Given that 𝛔𝐬 and 𝛅𝐮 are continuously differentiable and the symmetry of 𝛔𝐬, we can use the 

divergence operator property 

𝐝𝐢𝐯𝐬(𝛔𝐬. 𝛅𝐮) = 𝐝𝐢𝐯𝐬(𝛔𝐬
𝐓). 𝛅𝐮 + 𝛔𝐬

𝐓: ∇s(𝛅𝐮) ⇒ 

∫ 𝐝𝐢𝐯𝐬(𝛔𝐬). 𝛅𝐮dΓ𝚪
 =  ∫ 𝐝𝐢𝐯𝐬(𝛔𝐬. 𝛅𝐮)dΓ𝚪

− ∫ 𝛔𝐬: ∇s(𝛅𝐮)𝚪
dΓ  (5.7) 

Let we define P as the surface projection matrix in term of the unit normal n at every point x 

of  as:  

𝐏(𝐱) = 𝐈 − 𝐧(𝐱)⊗ 𝐧(𝐱)                                           (5.8) 

Thus, this symmetric matrix acts as the identity one for surface quantities, which allows us to 

write these equalities:  

                                    𝐝𝐢𝐯𝐬(𝛔𝐬. 𝛅𝐮) = 𝐝𝐢𝐯𝐬(𝐏𝛔𝐬𝐏𝛅𝐮) = 𝐝𝐢𝐯𝐬(𝐏𝛔𝐬𝛅𝐮𝐬) = 𝐝𝐢𝐯𝐬(𝛔𝐬𝛅𝐮𝐬)              (5.9) 

∫ 𝛔(𝐢)(𝐮)
𝛀(𝐢)

: 𝛜(𝐢)(𝛅𝐮)dΩ + ∫ 𝛔(𝐢)(𝐮).
𝚪(𝐢)

𝐧(𝐢). 𝛅𝐮dΓ − ∫ 𝐛. 𝛅𝐮
𝛀(𝐢)

dΩ −

∫ 𝐅. 𝛅𝐮
𝛛𝛀𝐅

(𝐢) dA = 𝟎           
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𝛔𝐬: ∇s(𝛅𝐮) = (𝐏𝛔𝐬𝐏): (∇s(𝛅𝐮)𝐏) = (𝐏𝛔𝐬): (𝐏∇s(𝛅𝐮)𝐏) 

                                                                    = 𝛔𝐬:
1

2
[𝐏∇s(𝛅𝐮)𝐏 + (𝐏∇s(𝛅𝐮)𝐏)

T] = 𝛔𝐬: 𝛜𝐬             (5.10) 

By applying the Stokes’ theorem and the equation (5.9), the first integral of the right-hand of 

equation (5.7) is reduced by one dimension as fellow [6], 

 ∫ 𝐝𝐢𝐯𝐬(𝛔𝐬𝛅𝐮)dΓΓ
= ∫ 𝐝𝐢𝐯𝐬(𝛔𝐬𝛅𝐮𝐬)dΓΓ

= ∫ 𝛔𝐬𝐦.𝛅𝐮𝐬dl∂Γ
= ∫ 𝐅̂. 𝛅𝐮𝐬dl∂Γ

= ∫ 𝐅̂. 𝐏𝛅𝐮dl
∂Γ

            

(5.11) 

This integral only occurs when the interface  is open and an external force 𝐅̂ acts on its 

external boundary contour ∂Γ of outward normal m (see figure 5.1) otherwise it is equal to 

zero.  

By using the equation (5.10) for the second integral of the right-hand of equation (5.7) and the 

equation (5.11), the weak formulation (5.5) becomes  

∫ 𝛔(𝐮): 𝛜(𝛅𝐮)𝐝𝛀
𝛀

+ ∫ 𝛔𝐬(𝐮): 𝛜𝐬(𝛅𝐮)dΓΓI
= ∫ 𝐛. 𝛅𝐮

𝛀
dΩ + ∫ 𝐅. 𝛅𝐮

𝛛𝛀𝐅
dA + ∫ 𝐅̂. 𝐏𝛅𝐮dl

∂Γ
            

(5.12) 

Introducing the bulk and surface constitutive laws, one can write [5-6]: 

                      (5.13)  

ℂ and ℂs are the isotropic elastic fourth order tensors of the volume  (Union of all Ω(𝐢)) and 

of surface/interface  (Union of all (𝐢))  domains, respectively. The stress 0 is such that 0 = 

0P where 0 represents a residual surface tension at the interface, and 𝛜∗ is the eigenstrain 

applied to *(as part of ). The components of ℂs are defined using the relation [6]: 

ℂijkl
s = λsPijPkl + μs(PikPjl + PilPjk)                                         (5.14) 

where s and s  are the Lamé’s constants of the interface/surface.  

𝛔(𝐮) =  ℂ: (𝛜(𝐮) − 𝛜∗)   on  Ω, and 𝛔𝐬 = 𝛔𝟎 + ℂ
𝐬: 𝛜𝐬   on  , 
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Introducing equations (5.13) into equation (5.12), the weak variational formulation is finally 

expressed as, 

∫ 𝛜(𝛅𝐮)
𝛀

: ℂ: 𝛜(𝐮)𝐝𝛀 + ∫ 𝐏𝛜(𝛅𝐮)𝐏
ΓI

: ℂ𝐬: 𝐏𝛜(𝐮)𝐏dΓ = ∫ 𝛅𝐮. 𝐛
𝛀

dΩ + ∫ 𝛅𝐮. 𝐅
𝛛𝛀𝐅

dA +

∫ 𝐅̂. 𝐏𝛅𝐮dl
∂Γ

+ ∫ 𝐏𝛜(𝛅𝐮)𝐏
ΓI

: 𝛔𝟎dΓ + ∫ 𝛜(𝛅𝐮)
Ω

: ℂ: 𝛜∗dΩ                                                    (5.15) 

 

In the case where the surface energy is not considered, as in our previous study [54], all 

surface terms of the above equation vanish and the weak form of the problem is simplified to: 

                             

(5.16) 

 

 Substituting the displacement approximation of equations (5.20-5.22) in the variational 

form of equation (5.15), leads to the following system of linear algebraic equations: 

(𝐊 + 𝐊𝐬)𝐮 = 𝐟                                                    (5.25) 

The global stiffness matrices K and Ks are composed of elementary matrices KIJ and Ks
IJ related 

to the Ith and Jth nodes of the element (I and J varying from 1 to 4 for a tetrahedral linear 

element). They are expressed as: 

 

                                      KIJ = ∫ 𝐁𝐈
𝐓 𝐂(𝐢) 𝐁𝐉 dΩ Ω

                                                              (5.26) 

KIJ
s = ∫ 𝐁𝐈

𝐓𝐌𝐩
𝐓 𝐂𝐬 𝐌𝐩 𝐁𝐉 dΓ Γ

                                                           (5.27) 

From equation (5.15), the global force vector is given by: 

𝐟 = ∫ 𝐍𝐓 𝐛 dΩ 
Ω

+ ∫ 𝐍𝐓 𝐅
𝛛𝛀𝐅

dA + ∫ 𝐁𝐓  𝐂(𝐢) 𝛜∗dΩ 
Ω

+ ∫ 𝐍𝐓 𝐏𝐅̂dl
∂Γ

+ ∫ 𝐁𝐓
ΓI

𝐌𝐩
𝐓 𝛔𝟎dΓ                  

(5.28) 

Based on Voigt notation, we can write: 

∫ 𝛜(𝛅𝐮)
𝛀

: ℂ: 𝛜(𝐮)𝐝𝛀 =

∫ 𝛅𝐮. 𝐛
𝛀

dΩ + ∫ 𝛅𝐮. 𝐅
𝛛𝛀𝐅

dA + ∫ 𝛜(𝛅𝐮)
Ω

: ℂ: 𝛜∗dΩ       
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 𝐂(i) =

[
 
 
 
 
 
 
(λ(i) + 2μ(i)) λ(i) λ(i)

λ(i) (λ(i) + 2μ(i)) λ(i)

λ(i) λ(i) (λ(i) + 2μ(i))

0        0      0
0       0     0
0       0     0

 0                0                      0
0              0                     0
0              0                     0

 

μ(i)   0 0

0     μ(i) 0

0  0 μ(i)]
 
 
 
 
 
 

             (5.29) 

λ(i)and μ(i) are the bulk Lamé’s constants of the isotropic ith phase of the composite. Strain 

and stress tensors can be also write as vectors:  

𝛜 = [ϵ11 ϵ22 ϵ33 2ϵ12 2ϵ23 2ϵ13]
T,     𝛔 = [σ11 σ22 σ33 σ12 σ23 σ13]T   (5.30) 

Knowing that 𝐂s is symmetric and based on equation (5.14), one can write [11]: 

 C11
s = (λs + 2μs)P11P11;      C12

s = λsP11P22 + 2μsP12P12;      C13
s = λsP11P33 + 2μsP13P13; 

 C14
s = (λs + 2μs)P11P12;      C15

s = λsP11P23 + 2μsP12P13;      C16
s = (λs + 2μs)P11P13; 

 C22
s = (λs + 2μs)P22P22;     C23

s = λsP22P33 + 2μsP23P23;      C24
s = (λs + 2μs)P22P12;            (5.31) 

C25
s = (λs + 2μs)P22P23;      C26

s = λsP22P13 + 2μsP12P23;      C33
s = (λs + 2μs)P33P33;           

C34
s = λsP12P33 + 2μsP13P23;      C35

s = (λs + 2μs)P33P23;      C36
s = (λs + 2μs)P33P13;               

C44
s = λsP12P12 + μs(P11P22 + P12P12);      C45

s = λsP12P23 + μs(P12P23 + P22P13); 

C46
s = λsP12P13 + μs(P11P23 + P12P13);     C55

s = λsP23P23 + μs(P22P33 + P23P23); 

C56
s = λsP13P23 + μs(P12P33 + P13P23);     C66

s = λsP13P13 + μs(P11P33 + P13P13); 

The 𝐌p Matrix is given by: 

𝐌p =

[
 
 
 
 
 

P11P11 P12P12 P13P13
P12P12 P22P22 P23P23
P13P13 P23P23 P33P33

 
       P11P12                  P12P13                  P11P13        
      P12P22                  P22P23                  P12P23        
      P13P23         P23P33          P13P33        

2P11P12 2P12P22 2P13P23
2P12P13 2P22P23 2P23P33
2P11P13 2P12P23 2P13P33

P12P12 + P11P22 P22P13 + P12P23 P12P13 + P11P23
P23P23 + P22P33 P13P23 + P12P33 P13P23 + P12P33
P12P13 + P11P23 P13P23 + P12P33 P13P13 + P11P33 ]

 
 
 
 
 

  (5.32) 

The matrix B is given in the case of a not-cut element by its conventional form: 
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𝐁I =

[
 
 
 
 
 
 
 
 
 
 
∂NI

∂x1
0 0

0
∂NI

∂x2
0

0 0
∂NI

∂x3
∂NI

∂x2

∂NI

∂x1
0

0
∂NI

∂x3

∂NI

∂x2
∂NI

∂x3
0

∂NI

∂x1]
 
 
 
 
 
 
 
 
 
 

                                                              (5.33) 

For non-cut linear tetrahedral element, the shape functions NI are linear, of the form 

1

6V
(αI + βIx1 + γIx2 + δIx3), for which the derivatives and therefore the different components 

of the matrix B are constant. V is the element volume and the coefficients α, β, γ and δ are 

dependent of the coordinates of the element vertices. This allows to evaluate analytically all 

volume integrals (on Ω or i) given by equations (5.26-5.27).  

This conventional matrix B will also be used for all elements cut by a void since the 

displacement is not enriched in this case. Moreover, the volume integrals will be evaluated 

numerically using 8 Gauss points for each sub-tetrahedron situated outside the void. However, 

for elements cut by inclusion, the matrix B is completed by other columns corresponding to 

the additional displacement DOFs (see equation (5.20)): 

𝐁I =

[
 
 
 
 
 
 
 
 
 
 
∂NI

∂x1
0 0

0
∂NI

∂x2
0

0 0
∂NI

∂x3
∂NI

∂x2

∂NI

∂x1
0

0
∂NI

∂x3

∂NI

∂x2
∂NI

∂x3
0

∂NI

∂x1

    

∂N̂I

∂x1
0 0

0
∂N̂I

∂x2
0

0 0
∂N̂I

∂x3

∂N̂I

∂x2

∂N̂I

∂x1
0

0
∂N̂I

∂x3

∂N̂I

∂x2

∂N̂I

∂x3
0

∂N̂I

∂x1]
 
 
 
 
 
 
 
 
 
 

                                                              (5.34) 

With N̂I = ψNI  
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In this case, the volume integrals are evaluated numerically using 8 gauss points for each 

sub-tetrahedron. The material associated with each gauss point x is assigned according to the 

sign of the discrete Level-Set function obtained by linear interpolation: ϕ (x)  = ∑Niϕi .  

For the surface integrals given by equations (5.27-5.28) which concern only the 

elements cut by the interface, evaluated on the surfaces surrounded by red dotted line in figure 

5.2, the matrix B of equation (5.33) is used, since at the interface ϕ = 0 =>  ψ = 0 in equation 

(5.22). This cancels the enrichment on the additional degree of freedom given by the second 

term of the displacement field expressed by equation (5.20). The additional stiffness terms in 

this case concern only the contribution of the surface integrals and correspond to the 

conventional degrees of freedom. As for the volume integrals for a non-cut element, the 

surface integrals are analytically evaluated.   

5.2  Flowchart of elaborated code with surface effect: 

In this part we introduce the flowchart of elaborated code with surface effect. 
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5.3 Applications and numerical results: 

In this section, various examples are treated in order to validate the developed 3D code, and 

to show its merits compared to 2D works, by comparison of the obtained results with those of 

literature. Numerical convergence tests are also performed so as to find the right mesh density, 

and to assess the stability of the numerical procedure. Assuming that for all treated examples 

both the residual surface tension and the applied load on the external interface boundaries are 

null (τ0 = 0 , 𝐅̂ = 0). 

5.3.1 Cylindrical inclusion submitted to an Eigen-strain: 

In this application, a cylindrical inclusion subjected to an Eigen-strain ϵ∗is embedded in 

an infinite medium, for which the interface between both phases being an imperfect coherent 

one. As the analytical solution is available for this problem, it provides a validation test 

regarding the evaluation of the size effect of nano-heterogeneity and the influence of the 

surface energy. It allows also to assess the effect of the longitudinal dimension on the predicted 

values since the analytical solution was developed in a plane strain framework. Finally, a 

convergence analysis of the implemented approach is proposed here. 

The exact analytical solution of the strain and displacement fields was given by Sharma 

et al. [55]: 

 

   𝝐𝒓𝒓(𝒓) = 𝜖𝜃𝜃(𝑟) = 𝐴, 0 ≤ 𝑟 ≤ 𝑅0                                                               (5.35)   

{
𝛜𝐫𝐫(𝐫) = −A

R0
2

r2

𝛜𝛉𝛉(𝐫) = +A
R0
2

r2
                 

 

        ,   r ≥ R0                                                           (5.36) 

   𝐮𝐫(𝐫) = {
Ar   ,   0 ≤ r ≤ R0

A
R0
2

r
 ,        r ≥ R0   

                                                                       (5.37) 

 

with 

𝐀 =
3K′Mϵ∗− τ0 R0⁄  

2μM+3K′M+K′S R0⁄
                                                                                (5.38)  
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In the former expressions, R0 is the radius of the cylinder, 

𝐾′𝑀 =  2(𝜆𝑀 + 𝜇𝑀 ) 3 = (𝐶11 + 𝐶12)/3⁄  and 𝐾𝑠′ = (𝜆𝑆 + 2𝜇𝑆 ) are the bulk and the surface elastic 

moduli of the matrix and the interface, respectively, and 𝜖∗=𝜖22
∗ =𝜖33

∗ , 𝜖11
∗ =𝜖12

∗ =𝜖23
∗ =𝜖13

∗ =0 are the 

components of the 𝝐∗ tensor. In order to model this problem, a finite matrix cube enveloping 

the inclusion is considered (see figure 5.3), on which displacement boundary conditions are 

imposed according to the exact solution given by equation (5.37), to simulate an infinite 

medium.    

The mechanical properties of the matrix and the fiber are identical, and equal to those 

of aluminum alloy E=3MPa and 𝜈 =  0.3 . Regarding the interface parameters, three situations 

are considered according to atomic arrangement of aluminum: Ks′   positive, negative or null. 

The surface parameters used, obtained by Miller et Shenoy [2] are listed in table 5.1. 

Table 5.1: Surface elastic constants 

Surface 𝛌𝐬 𝛍𝐬 𝐊𝐬
′  

Al[111] 6.842 N/m -0.375 N/m 12.932 

Al[100] 3.48912 N/m -6.2178 N/m -5.457 

Fig.5.3: Cylindrical fiber into cubic matrix: a) Geometrical configuration; b) Level-set crossing the mesh. 
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In order to quantify the size effect due to the nanofiber as the contribution of the surface 

energy Es to the total energy (the sum of surface energy Es and bulk energy Eb), an indicator , 

proposed by Yvonnet et al. [6], is calculated versus the radius R0. This indicator is defined as: 

𝛃 =
|Es|

|Es|+|Eb|
                                                                       (5.39) 

It can be evaluated numerically in two ways: 

𝛃 =
|∫ 𝛔𝐬(𝐮):ΓI

𝛜𝐬(𝐮)dΓ|

|∫ 𝛔𝐬(𝐮):ΓI
𝛜𝐬(𝐮)dΓ|+|∫ 𝛔(𝐮):Ω 𝛜(𝐮)dΩ|

                                               (5.40) 

𝛃 =
|𝐮 𝐊𝐬 𝐮|

|𝐮 𝐊𝐬 𝐮|+|𝐮 𝐊 𝐮|
                                                                 (5.41) 

In this study, the second expression is adopted as it didn’t require to evaluate stresses 

and strains. This expression is also be useful for defining a semi-analytic evaluation of 𝛽 using 

the analytic expression of the vector 𝐮 given by equation (5.37) coupled with matrices Ks and K 

obtained numerically:  

𝛃𝐒𝐞𝐦𝐢−𝐚𝐧𝐚𝐥𝐲 =
|𝐮𝐚𝐧𝐚𝐥𝐲 𝐊𝐬 𝐮𝐚𝐧𝐚𝐥𝐲|

|𝐮𝐚𝐧𝐚𝐥𝐲 𝐊𝐬 𝐮𝐚𝐧𝐚𝐥𝐲|+|𝐮𝐚𝐧𝐚𝐥𝐲 𝐊 𝐮𝐚𝐧𝐚𝐥𝐲|
                                                (5.42) 

 

 

Fig.5.4: Indicator   versus fiber size. Fig.5.5: Indicator   versus thickness. 
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The obtained results, with a volume fraction f=0.2 are confronted to the semi-analytical 

solution as well as the solutions obtained by Yvonnet et al. [6] treating this problem in 2D 

plane strain context. As the energetic indicator 𝛽 is of quadratic dependence to displacement 

(see equations 5.40 - 5.41), only low mesh density of 35×35×35 nodes are needed to get 

accurate results as shown in figure 5.4, proving the effectiveness of the present approach. 

The 3D nature of the developed code allows varying the thickness t of the matrix along 

the fiber axis, in order to assess the effect of the longitudinal dimension. Hence, 𝛽 is evaluated 

for R0 = 1 nm and f = 0.2 by varying the thickness from L/5 to 5L (L being the side of the 

cube). It comes from Figure 5.5 that there is no effect of the longitudinal dimension for the 

treated problem. 

Based on the analytical solution, a convergence analysis is proposed in order to show the 

accuracy and the stability of the present approach and consequently the efficiency of the 

developed code for R0 = 2 nm and f = 0.2. For this purpose, the relative energy norm error is 

evaluated by considering the analytical solution as the reference one as:  

𝐄𝐫𝐫𝐞𝐥 =
‖ 𝐄𝐭𝐨𝐭

𝐡 −𝐄𝐭𝐨𝐭‖

‖𝐄𝐭𝐨𝐭‖
=

√(𝐮𝐡−𝐮𝐚𝐧𝐚𝐥𝐲) (𝐊𝐬+ 𝐊 )(𝐮
𝐡−𝐮𝐚𝐧𝐚𝐥𝐲) 

√𝐮𝐚𝐧𝐚𝐥𝐲 (𝐊𝐬+ 𝐊 )𝐮𝐚𝐧𝐚𝐥𝐲 
                                    (5.43) 

Fig.5.6: Relative energy error norm for the cylindrical inclusion problem: (a) versus number of elements; 

 (b) versus the dimensionless mesh size 

(a)                                                                                           (b)                                                                              
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This error is first plotted versus the number of meshing elements in figure 5.6a. This figure 

shows that the error is stable and small (less than 1% for 𝐾𝑠′ = 0 and less than 3% for 𝐾𝑠′ ≠ 0) 

from a refinement of approximately 700000 elements corresponding to approximately 120000 

(505050) nodes. Then, the error is plotted versus the element size ℎ̅ = ℎ/𝐿  in a Log-Log 

representation in figure 5.5b. Based on its definition, the optimal convergence rate expected 

for relative error energy norm is r = 1 (in h^1). Figure 8b shows that for 𝐾𝑠′ = 0  (in the absence 

of the surface effects), this expected value is approached in a stable way especially by refining 

the mesh (r=1.16 as an average value and r=0.99 for the first three points on its curve in figure 

5.6b, corresponding to the most refined meshes). However for 𝐾𝑠′ > 0, the solution converges 

within a non-optimal rate (r=0.73) but remains stable by refining the mesh (for the three most 

refined meshes, the rate still constant: r=0.73). Concerning 𝐾𝑠′ < 0, the proposed approach 

leads also to a convergent solution without an optimal rate (r=1.40), but in a very unstable way 

in particular by refining the mesh (r=0.30!! for the three most refined meshes).  

From these findings, we can say that in the absence of the surface energy and despite the 

intervention of XFEM on the system of equations (5.34) by enriching the additional DOFs, the 

convergence rate optimality is very little affected and its value is very close to that of the 

conventional FEM, especially when meshes are refined. This result has also been obtained by 

[19] during its tests. This can be explained by the fact that in this case the discontinuity of 

material parameters within the bimaterial elements (those cut by the interface) is taken into 

account by the XFEM enrichment. Whereas with the presence of the surface energy ( 𝐾𝑠′ > 0  

and 𝐾𝑠′ < 0), the stiffness discontinuity caused by the interface parameters according to the 

stress jump given by the Laplace-Young model, is no longer taken into account, which 

considerably affects the optimality of convergence. Moreover, and contrary to the case 𝐾𝑠′ > 0, 

the instability of convergence observed for the case 𝐾𝑠′ < 0 is undoubtedly due to the addition 

of negative terms of surface stiffness to the diagonal elements of the global stiffness, thus 

affecting the diagonal dominance and therefore the conditioning of the system. This remark 

concerning the ill-conditioning of the system in the case of  𝐾𝑠′ < 0 has also been mentioned by 
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both Gao et al. [66] using conventional FEM and Yvonnet et al. [6] using XFEM. This proves 

again that this issue appears to be due to the surface terms (especially when it is of negative 

sign) for which the XFEM enrichment is not active (see the last paragraph of section 3). Note 

that such situation is observed increase for example 5.4.4, which has led us to be limited to 

𝐾𝑠
′ = 0  and 𝐾𝑠′ > 0, despite the use of specific iterative solvers such as those recommended by 

[6-7] for this case, namely "the biconjugate gradients methods" (bicg and bicgstab under 

Matlab). It is worth also noting that a solution was sought in order to overcome the problem of 

ill-conditioning. Unfortunately, the only procedure we found in the literature, whose 

numerical implementation is relatively simple and efficient, deals with 2D domains such as in 

[56] where the Stable Generalized FEM was used. 

5.3.2 Effective behavior of REV containing cylindrical void: 

Several objectives are aimed through the study of the present example. As in the 

previous one, the validation of the proposed 3D approach is sought first by comparing the 

obtained results with the analytical solution and with other numerical results from the 

literature. Secondly, several parametric studies will be conducted concerning the effects of the 

nano-heterogeneity (nanovoid here) size, its volume fraction and its interface elastic 

parameters, on the effective stiffness in different directions (longitudinal and transversal), the 

longitudinal being parallel to the void axis. Finally, particular attention will be paid to the 

effective stiffness and the orthotropic rate of the nano-porious material, in two specific 

situations, namely below the nano-scale and by amplifying the surface elastic constants, where 

unexpected observations will be detected.   

In this application, the same scheme of the previous example was adopted with a void 

instead of inclusion. The cube, now called REV in homogenization context, is subject to 

Periodic Boundary Conditions (PBC) along the x2 axis (perpendicular to the void axis). This 

problem was also treated by Yvonnet et al. [6] in 2D with an aluminum alloy matrix whose 

mechanical properties are  EM = 70GPa and νM = 0.32. The surface elastic constants and the 

volume fraction are identical to those of Example 5.4.1. The obtained results by Quang and He 
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[43-44] analytically as well as those obtained by Yvonnet et al. [6] numerically will be used to 

validate the present work.  

 

We are interested in evaluating the transverse effective bulk modulus, defined by [13] as 

𝑘∗ = (𝐶22 + 𝐶23)/2, versus R0 ranging from 1nm to 50nm. In the second stage, this same 

modulus is evaluated, by varying the volume fraction f from 0 to 0.6 for R0=1nm. All 

computations are made by considering both REV configurations (figure 2.3a and figure 2.3b) 

and a mesh density about 505060 nodes to evaluate the dimensionless transverse effective 

modulus 𝐾𝑎𝑑 = 𝑘𝑒𝑓𝑓
∗ 𝑘𝑀

∗⁄  because of its linear dependence to displacement. The different results 

are grouped in figures 5.7 and 5.8. 

 

 

Fig.5.7: Dimensionless transverse bulk modulus versus void radius: a) with the first REV’s configuration;  

b) with the second REV’s configuration. 

 

(a)                                                                                 (b) 
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Figure 5.7 shows first that the effect of surface energy decreases with fiber size. The 

second observation concerns the good agreement between the different results. It is also noted 

that against the analytical solution, the 3D approach using the second configuration of the REV 

offers a slight improvement compared with other approximations including those of Yvonnet et 

al. [4]. The same remarks can be observed for figure 5.8 concerning the evolution of Kad versus 

the volume fraction, which decreases when this latter increases.  

The 3D aspect of the present study makes it possible to extend the analysis to the third 

dimension, namely stiffness along the void axis x1. For this purpose, the longitudinal effective 

modulus defined as 𝑛∗ = 𝐶11 is also quantified in dimensionless way by 𝑛𝑎𝑑 = 𝑛𝑒𝑓𝑓
∗ 𝑛𝑀

∗⁄  . This 

parameter is given analytically by Quang and He [44]. The obtained results, by using the 

second configuration of REV, are shown in figure 5.9. 

Fig.5.8: Dimensionless transverse bulk modulus with respect to volume fraction: a) with the first 

REV configuration; b) with the second REV configuration. 

 

(a)                                                                                 (b) 
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The agreement of the obtained results with the analytical solution is remarkable, thus 

testifying the quality of the results provided by the present numerical simulation tool. Like the 

Kad parameter, nad is influenced by the surface energy, especially for the low values of R0.  

We also observe that, regarding the curves corresponding to 𝐾𝑠′ > 0, the evolution of 

both Kad and nad has the tendency to reach the unit value. This means that the nanoporous 

medium is expected to be stiffer transversely and longitudinally than its matrix if R0 decreases 

below 1nm. The results of this theoretical test, for different volume fractions, are drawn in 

figure 5.10. These results show the existence of a critical value of R0 = 0.04 nm for Kad and R0 

= 0.13 nm for nad, below which the composite is stiffer than its parent material, and this for all 

values of the volume fraction. 

Such results are very important from a technological point of view for the development 

of new materials that can be lighter and stiffer in the same time. However, the low values of R0 

may question the applicability of mathematical models based on solid mechanics theory (used 

here) for such near-atomic scales. This gives to these results rather a theoretical aspect. To 

avoid this kind of situation and to remain within the validity of the adopted models, one will 

not seek the gain in weight and in strength by size reduction but by proportional increase of the 

Fig.5.9: Dimensionless effective longitudinal bulk modulus: a) with respect to void size; 

b) with respect to volume fraction. 

 

(a)                                                                                  (b)                                                                              
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impact of the surface energy. This is achieved by gradually amplifying the surface elastic 

constants of the interface. Note that a similar amplification procedure is also used in 

Chatzigeorgiou et al. [57] when predicting the effective behavior of nano composites 

analytically. 

This test concerns an REV of R0 =1nm with amplification of 𝐾𝑠′ of the former case n 

times. The evolution of the parameters Kad and nad versus the factor n is presented in figure 

5.11a and 5.11b, respectively. These figures show, as expected, an increase of Kad and nad by a 

factor n exceeding the unit value at approximately n = 24 for Kad and n = 8 for nad for all values 

of volume fraction.  

 
 

Fig.5.10: Dimensionless effective bulk moduli below nanoscale: (a) transverse modulus; (b) longitudinal 

modulus. 

(a)                                                                                       (b)                                                                              
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Note that other effective moduli given in [13] and engineering constants expressed by 

the relations (5.37) that can be evaluated with the present calculation tool have been omitted 

for the sake of brevity. However, special attention is paid to an important parameter 

characterizing the 3D behavior of this REV, namely the orthotropic ratio E1/E2 since E2=E3. 

This ratio is numerically evaluated as a function of R0 and is displayed in figure 5.12. Like for 

all the quantities evaluated above, the orthotropic ratio is affected by the surface energy and has 

the tendency to reach the unit value for 𝐾𝑠′ > 0, which may be called a pseudo-isotropy or 

quasi-isotropy (E1=E2) if R0 decreases below 1nm. The results of this theoretical test are 

plotted in figure 5.12a. These results show a range of R0 values corresponding to pseudo-

isotropy (E1=E2). These values are between 0.038nm and 0.076nm depending on the volume 

fraction varying between 0.1 and 0.6.    

Fig.5.11: Dimensionless effective bulk moduli with amplifying surface characteristics: (a) transverse 

modulus; (b) longitudinal modulus 

(a)                                                                                       (b)                                                                              
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Such results are very important from a technological point of view for the development 

of new materials that can work in contact with fluids. For these materials, the porosity is 

insured only in the direction of the cylindrical void axes (the axis x1 here) while maintaining an 

identical tensile stiffness in three directions (longitudinal and transversal).  

A similar amplification procedure used above is employed for an REV of R0 =1nm with 

amplification of 𝐾𝑠
′ n times. The evolution of the ratio E1/E2 versus the factor n is presented in 

figure 5.12b. This figure shows, as expected, a decrease of the ratio E1/E2 with the factor n by 

crossing the unit value (the pseudo-isotropy) for each value of the volume fraction. The factor 

n allowing to get a pseudo-isotropy is found approximately between 13.40 and 25.58 for a 

volume fraction varying from 0.1 to 0.6, respectively.  

As found by Kired et al. [58], these results open the door for the research of novel 

materials whose surface behavior is accentuated, with the aim of obtaining unexpected as well 

as interesting characteristics such as a pseudo-isotropy or stiffness superior to that of the parent 

material. 

Fig.5.12: Orthotropic ratio for theoretical situations: (a) below nanoscale; (b) with amplifying surface 

characteristics. 

(a)                                                                                           (b)                                                                              
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5.3.3 Spherical void with coherent interface and different surrounding 

material shapes:  

To further validate and show the robustness of this work, this example is addressed in 

order to assess the effect of the shape of the surrounding medium (matrix) embedding 

nanovoid with coherent interface, and the effect of boundary conditions type applied to REV, 

on the accuracy of predictions compared to the analytical solution. In this example, the 

surrounding medium is supposed first of cylindrical shape containing spherical void, in 

accordance with the case studied by Yvonnet et al. [6] with 2D axisymmetric modeling (see 

Figure 5.13a).  The analytical solution adopted for this problem will be that developed by 

Duan et al. [16], considering that the matrix is also of spherical shape which ensures an 

isotropic behavior of the composite. Hence, it should be noted that with a cylindrical matrix, 

the effective behavior is just approximated by isotropy. The analytical solution expresses the 

effective compressibility modulus 𝑘𝑒𝑓𝑓 = 𝜆𝑒𝑓𝑓 + (3/2) 𝜇𝑒𝑓𝑓 = (𝐶11 + 𝐶12 + 𝐶13)/3 as follows [16]: 

 

𝐤𝐞𝐟𝐟 =
3kI(3 kM+4 f kM)

3[3(1−f)kI+3 f kM+2 μM(2+kr
S−f kr

S)]
+

2 μM[4fμM kr
S+3 kM(2−2f+ kr

S)]

3[3(1−f)kI+3 kM+2 μM(2+kr
S−f kr

S)]
                  (5.44) 
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Fig.5.13: Spherical void with coherent interface:  (a) Into cylindrical matrix; (b) Into cubic matrix; (c) Into 

spherical matrix.  
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In Eq. (5.44) 𝒌𝒓𝒔 = 𝒌𝒔/(𝑹𝟎𝝁
𝑴), the superscripts S, M and I denote the interface, the matrix and 

the inhomogeneity, respectively.  

 
 

For the same elastic constants of the matrix and of the interface used in example 5.4.2, 

the evolution of 𝐾𝑎𝑑 = 𝑘𝑒𝑓𝑓 𝑘𝑀⁄   is evaluated as a function of the void radius R0 for f  = 0.5 by 

the present approach and compared with that obtained numerically by Yvonnet et al. [6], and 

analytically by Duan et al. [16]. This elastic modulus will also be evaluated as a function of f for 

R0 = 1nm. It should be mentioned that the non-cubic form of the REV employed here does not 

make it possible to use periodic boundary conditions. Therefore, a uniform strain boundary 

conditions, given by equations (5.43) with 𝜖22
0 = 1, will be used.  

Other matrix forms can be tested, such as the spherical shape (to get closer to the 

isotropic behavior) and the cubic form with periodic boundary conditions (to test the effect of 

the latter). These two configurations are described in Figure 5.13b and 5.13c. The different 

results are grouped in Figures 5.14-5.16. 

Figures 5.14-5.16 show overall a remarkable agreement between the different results 

obtained with the different types of matrices; cylindrical, cubic and spherical, with a better 

Fig.5.14: Dimensionless effective bulk modulus for different REV configurations and Ks
’ >0: a) with 

respect to void size; b) with respect to volume fraction. 

(b) (a) 
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precision for the last type compared to the analytical solution especially for the curves giving 

kad versus R0. This is expected since the analytical solution provided by Duan et al. [59] 

assumes the matrix is spherical. Thus, the effect of the shape of the matrix as well as the type of 

the boundary conditions applied on REV can be significant only with respect to the size void, 

especially when the embedded void is large enough (see Figures 5.14a, 5.15a, 5.16a).     

 

  

 

Fig.5.15: Dimensionless effective bulk modulus for different REV’s configurations and Ks
’ <0: a) 

with respect to void size; b) with respect to volume fraction. 

(a) (b) 

Fig.5.16: Dimensionless effective bulk modulus for different REV’s configurations and Ks
’ =0;  

a) with respect to void size; b) with respect to volume fraction. 

(a) (b) 
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5.3.4 Effect of flattening of nanovoids: 

The aim of this part is first to analyze the effect of the flattening of voids on the effective 

behavior of nanoporous materials with taking into account the surface energy contribution of 

the coherent interface. The second objective of this application is to show the link between an 

extremely flat void and a crack of similar size with regard to the computed effective property. 

Another goal through this example is to assess the influence of the surface energy when the 

nanovoid is successively flattened. Finally, a convergence speed test is carried out here in order 

to show the interest regarding the numerical cost of replacing very flat voids by cracks, 

modeled by using the Heaviside-type enrichment in XFEM. 

 In this example, the effective behaviour of REVs containing flattened spherical void, 

flattened cylindrical void, penny shaped crack or through straight crack is analyzed for the same 

mechanical properties as in example 5.4.2. The instability of the numerical results due to ill-

conditioning system of equations for 𝐾𝑠′ < 0, leads us to consider only the cases 𝐾𝑠′ > 0 and 

𝐾𝑠
′ = 0. In the case of a crack, the displacement field is described by the equation (3.5-3.6) [24, 

41, 60]. 

5.3.4.1 Spherical void flattened to a penny shaped crack: 

The first case concerns a cube containing a spherical void gradually flattening along the 

x1 direction (see Figure 6.17). For this case we define a flattening coefficient of the ellipsoid 

Fapl (major axis/small axis) and a surface fraction fS (the projection area of the ellipsoid 

according to x1 / the area of the cube face of normal x1). This cube is subjected to six periodic 

conditions according to equations (2.21), which are applied independently; three longitudinal 

strains (ϵ11
0 , ϵ22

0 , ϵ33
0 ) along the principal axes (x1, x2, x3) and three angular strains (ϵ12

0 , ϵ23
0 , ϵ13

0 ) in 

the three principal planes. For geometric reasons, including strong flattening (Fapl >10), the 

mesh density should be densified in order to avoid elements doubly cut by the interface. For 

this intensive computation, a mesh exceeding 3 million elements is adopted here, so that to 

ensure the results reliability. 
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 The numerical values of the dimensionless effective matrix C*
eff =Ceff/EM (EM is the 

Young’s modulus of the composite matrix) as a function of the flattening parameterized by Fapl 

for fS = 0.3 are presented as follows:  

For Ks = 0 
Fapl = 1

Ceff
∗ =

[
 
 
 
 
 
 
 
 
1.201 0.568 0.568 0 0 0

1.201 0.569 0 0 0

1.201 0 0 0

0.296 0 0

Sym. 0.296 0

0.296]
 
 
 
 
 
 
 
 

⟹ 

Fapl = 5/3

[
 
 
 
 
 
 
 
 
1.224 0.596 0.596 0 0 0

1.315 0.633 0 0 0

1.316 0 0 0

0.326 0 0

Sym. 0.331 0

0.331]
 
 
 
 
 
 
 
 

⟹
 

Fapl = 5

[
 
 
 
 
 
 
 
 
1.216 0.584 0.585 0 0 0

1.386 0.654 0 0 0

1.386 0 0 0

0.353 0 0

Sym. 0.363 0

0.363]
 
 
 
 
 
 
 
 

⟹ 

Fapl = 20

[
 
 
 
 
 
 
 
 
1.180 0.575 0.575 0 0 0

1.394 0.644 0 0 0

1.394 0 0 0

0.375 0 0

Sym. 0.368 0

0.368]
 
 
 
 
 
 
 
 

       

For Ks>0 

Fapl = 1

Ceff
∗ =

[
 
 
 
 
 
 
 
 
1.072 0.457 0.457 0 0 0

1.072 0.457 0 0 0

1.072 0 0 0

0.288 0 0

Sym. 0.288 0

0.288]
 
 
 
 
 
 
 
 

⟹ 

Fapl = 5/3

[
 
 
 
 
 
 
 
 
1.130 0.516 0.516 0 0 0

1.219 0.541 0 0 0

1.219 0 0 0

0.332 0 0

Sym. 0.316 0

0.316]
 
 
 
 
 
 
 
 

⟹
 

Fapl = 5

[
 
 
 
 
 
 
 
 
1.177 0.557 0.557 0 0 0

1.343 0.608 0 0 0

1.343 0 0 0

0.367 0 0

Sym. 0.345 0

0.345]
 
 
 
 
 
 
 
 

⟹ 

Fapl = 20

[
 
 
 
 
 
 
 
 
1.214 0.573 0.573 0 0 0

1.378 0.625 0 0 0

1.378 0 0 0

0.377 0 0

Sym. 0.365 0

0.365]
 
 
 
 
 
 
 
 

 

 

From these results, we note that the effective behavior of the REV is transformed with 

the flattening from cubic symmetry to tetragonal symmetry, which can be schematized in the 

following way: 

               

Fig.5.17: Progressive flattening of spherical void in an REV subjected to periodic conditions.  

Flattened sphere 
Spherical void  Penny shaped crack 

x1 

x3 

x2 

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0

⬚ 𝐶11 𝐶12 0 0 0

⬚ ⬚ 𝐶11 0 0 0

⬚ ⬚ ⬚ 𝐶44 0 0

⬚ 𝑆𝑦𝑚. ⬚ ⬚ 𝐶44 0

⬚ ⬚ ⬚ ⬚ ⬚ 𝐶44]
 
 
 
 
 
 

               

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0

⬚ 𝐶22 𝐶23 0 0 0

⬚ ⬚ 𝐶22 0 0 0

⬚ ⬚ ⬚ 𝐶44 0 0

⬚ 𝑆𝑦𝑚. ⬚ ⬚ 𝐶55 0

⬚ ⬚ ⬚ ⬚ ⬚ 𝐶55]
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To follow the evolution of the effective behavior versus the flattening, we were 

interested in two linear invariants proposed by Ahmed [41], which are base independent. These 

invariants are also employed in several other studies [60,61]. They are defined as [26,62]: 

𝐴1 = 𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶44 + 𝐶55 + 𝐶66)                                            (5.45) 

                          𝐴2 = 𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶12 + 𝐶13 + 𝐶23) = 9𝑘                              (5.46) 

According to their respective definitions, it is noted that the invariant A1 corresponds to 

longitudinal stiffness associated with shear stiffness, while A2 reflects the compressibility 

stiffness which comprises longitudinal stiffness contributions combined to transverse ones. 

These invariants are evaluated in dimensionless form as A*
i = Ai/EM for different surface 

fractions fS= {0.3, 0.4, 0.5, 0.6} of the flattened nanovoid. The obtained results are grouped 

together in figure 5.18.  

Several observations can be drawn from this figure: 

- The invariant A1 is systematically lower than A2, since the shear stiffness is generally lower 

than the normal transverse one.  

- The surface energy favorably influences different stiffnesses comprised in invariants A1 and A2 

for different values of surface fraction. 

- The different invariants decrease with the surface fraction, corresponding to a relative 

increase of the defect/flaw size compared to the REV. 
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- All the invariants evolve with the flattening to join those of a crack, and this for all the surface 

fractions, which implies the vanishing of the surface energy with the flattening.  

All the invariants increase constantly with the flattening until reaching those of a crack, with 

the exception of the A2 for 𝐾𝑠′ > 0, which progresses with the flattening up to a maximum, 

located above that of a crack, then regresses to join that of a crack. This means that the surface 

energy affects the invariant A2, related only to tensile, more than A1 which is associated with 

both tensile and shear.     

5.3.4.2 Cylindrical void flattened to a through straight crack: 

The second case is a cube containing a cylindrical void gradually flattened to have an 

elliptical section (see figure 5.18). A flattening coefficient of the ellipse Fapl is defined as          

major axis/small axis and a surface fraction fS is also defined as the projection area of void / the 

Fig.5.18: Dimensionless linear invariants versus flattening coefficient for different surface fractions.  

Convergence test 

localisation 
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area of the cube face. Like for the previous example, this cube is subjected to six periodic 

conditions according to equations (2.21), which are applied independently; three longitudinal 

strains (ϵ11
0 , ϵ22

0 , ϵ33
0 ) and three angular strains (ϵ12

0 , ϵ23
0 , ϵ13

0 ). 

  

The numerical values of the dimensionless effective matrix C*
eff as a function of the 

flattening parameterized by Fapl for fS = 0.3 are presented as follows:  

For Ks = 0 

Fapl = 1

Ceff
∗ =

[
 
 
 
 
 
 
 
 
1.358 0.614 0.614 0 0 0

1.232 0.563 0 0 0

1.231 0 0 0

0.327 0 0

Sym. 0.314 0

0.314]
 
 
 
 
 
 
 
 

⟹

Fapl = 5/3

[
 
 
 
 
 
 
 
 
1.242 0.613 0.596 0 0 0

1.389 0.656 0 0 0

1.350 0 0 0

0.345 0 0

Sym. 0.325 0

0.348]
 
 
 
 
 
 
 
 

⟹
 

Fapl = 5

[
 
 
 
 
 
 
 
 
1.222 0.582 0.583 0 0 0

1.391 0.652 0 0 0

1.397 0 0 0

0.367 0 0

Sym. 0.335 0

0.363]
 
 
 
 
 
 
 
 

⟹ 

Fapl = 20

[
 
 
 
 
 
 
 
 
1.243 0.582 0.579 0 0 0

1.371 0.626 0 0 0

1.376 0 0 0

0.360 0 0

Sym. 0.361 0

0.371]
 
 
 
 
 
 
 
 

        

    

For Ks>0 
Fapl = 1

Ceff
∗ =

[
 
 
 
 
 
 
 
 
1.266 0.525 0.526 0 0 0

1.141 0.500 0 0 0

1.141 0 0 0

0.301 0 0

Sym. 0.329 0

0.329]
 
 
 
 
 
 
 
 

⟹

Fapl = 5/3

[
 
 
 
 
 
 
 
 
1.180 0.553 0.549 0 0 0

1.322 0.584 0 0 0

1.278 0 0 0

0.343 0 0

Sym. 0.354 0

0.329]
 
 
 
 
 
 
 
 

⟹
 

Fapl = 5

[
 
 
 
 
 
 
 
 
1.213 0.572 0.575 0 0 0

1.368 0.621 0 0 0

1.366 0 0 0

0.365 0 0

Sym. 0.372 0

0.352]
 
 
 
 
 
 
 
 

⟹ 

Fapl = 20

[
 
 
 
 
 
 
 
 
1.255 0.592 0.558 0 0 0

1.375 0.629 0 0 0

1.337 0 0 0

0.366 0 0

Sym. 0.367 0

0.370]
 
 
 
 
 
 
 
 

 

 

From these results, we note that the behavior of the REV is transformed with the 

flattening from tetragonal symmetry to orthotropic symmetry, which can be schematized in the 

following way: 

Fig.5.19: Progressive flattening of cylindrical void in an REV subjected to periodic conditions.  

Cylindrical void  Flattened cylinder Crossing crack 

x2 

x3 

x1 
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 In order to follow the evolution of the effective behavior as a function of the flattening 

for different surface fractions fS= {0.3, 0.4, 0.5, 0.6}, the linear invariants in dimensionless 

form described above were studied. The results obtained are reported together in figure 5.19. 

 Very similar remarks to those made for the flattening sphere of the above example can 

be made again, given the great qualitative similarity between the respective curves of figures 

5.18 and 5.20. The difference is only of quantitative kind given the lower stiffness for the 

flattened cylinder especially for the invariant A2. This is due to the relatively small volume of 

the flattened sphere compared to the flattened cylinder for the same surface fraction. 

5.3.4.3 Mesh refinement effect for flattening problem: 

 As mentioned above, the problem of void flattening, especially for high ratio, requires a 

very refined mesh in order to obtain an acceptable numerical convergence. To demonstrate the 

efficiency in this type of intensive calculation, and in the absence of an exact solution to 

calculate the invariants A1 and A2, a convergence test between the case of a very flat void (Fapl = 

20) and a crack, versus the density of the mesh is presented in figure 5.21. For the sake of 

brevity, the test is limited to the case fs = 0.3, surrounded by red circles in figures 5.17 and 

5.18. Figure 5.21 shows the interest of such intensive computation since the different 

parameters converge only after 2.5 million elements for the sphere flattening and 3 million 

elements for the cylinder flattening. It should also be noted that the calculation for the crack 

stabilizes much earlier than the flattened voids (at around 0.2 million elements). The interest 

of replacing voids that are extremely flattened by cracks of comparable size is thus 

demonstrated. This last remark once points out also the interest of using the XFEM with 

enrichments given by equations (3.5-3.6) for cracked medium. 

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0

⬚ 𝐶22 𝐶23 0 0 0

⬚ ⬚ 𝐶22 0 0 0

⬚ ⬚ ⬚ 𝐶44 0 0

⬚ 𝑆𝑦𝑚. ⬚ ⬚ 𝐶55 0

⬚ ⬚ ⬚ ⬚ ⬚ 𝐶55]
 
 
 
 
 
 

               

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0

⬚ 𝐶22 𝐶23 0 0 0

⬚ ⬚ 𝐶33 0 0 0

⬚ ⬚ ⬚ 𝐶44 0 0

⬚ 𝑆𝑦𝑚. ⬚ ⬚ 𝐶55 0

⬚ ⬚ ⬚ ⬚ ⬚ 𝐶66]
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Figu.5.20: Dimensionless linear invariants versus flattening coefficient for different surface fractions. 

Convergence test 

localisation 

Fig.5.21: Convergence test for fs = 0.3 and Fapl = 20: (a) For flattened sphere; (b) For flattened cylinder. 

(a)                                                                             (b)                                                                              
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5.4 Conclusion: 

Through the examples treated in this chapter, it was developed a 3D modeling tool for 

structural analysis based on XFEM/FEM combined with the Level-Set technique, dedicated in 

particular to numerical homogenization. This tool enables to study the effective properties of 

mediums containing nanoinclusions, voids and/or nanocracks. 

Most of the treated problems aim to validate the developed numerical simulation code 

through the comparison of the obtained results with analytical and numerically ones from the 

literature. These comparisons have led overall to a very good agreement. The desire to 

highlight the contribution that the 3D aspect of this work can provide compared to other 

studies is constantly present in the various discussed simulations, citing among these, the 

analysis of the normal stiffness along the longitudinal axe of cylindrical nanovoids contained in a 

nanoporous material, which is rarely analyzed in literature. This allowed us to also study 3D 

pseudo-isotropy of such material. 

The last examples addressed in this chapter concern the flattening of three-dimensional 

nanovoids with and without the surface energy effect. The purpose of these tests is to verify the 

correspondence, in terms of effective behavior, between the extremely flattened voids and 

cracks of comparable shape and size, as well as the impact of the surface energy for this limiting 

case.  
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Concluding remarks and outlook 

In this work, it was possible to develop a 3D modelling tool for structural 

analysis based on XFEM/FEM combined with the Level-Set technique, dedicated 

in particular to numerical homogenization. This tool enables to study the effective 

properties of mediums containing inclusions, voids and/or cracks. 

Most of the treated problems aim to validate the developed numerical 

simulation code through the comparison of the obtained results with analytical 

and numerical ones for displacement filed and homogenization analysis from the 

literature. These comparisons have led overall to a very good agreement. The 

desire to highlight the contribution that the 3D aspect of this work can provide 

compared to other studies is constantly present in the various discussed 

simulations, citing among these, the analysis of the normal stiffness along the 

longitudinal axe of cylindrical nano voids contained in a nanoporous material, 

which is rarely analysed in literature. This allowed us also to study 3D pseudo-

isotropy of such material.  

The last examples addressed in the chapter 4 and 5 concerns the flattening 

of three-dimensional nanovoids with and without the surface energy effect. The 

purpose of these tests is to verify the correspondence, in terms of effective 

behavior, between the extremely flattened voids and cracks of comparable shape 

and size, as well as the impact of the surface energy for this limiting case. In which 

results are as interesting as they are comparable to those obtained here. 

Among the obtained results from the various simulations carried out in chapter 4 

and 5, one can point out the following:   
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 The obtained results were compared with those obtained using 

Caste3M2018 based on conventional FEM. The good agreement observed 

between the two methods was more than satisfactory, attesting to the accuracy 

and the effectiveness of the present approach.  

 3D evaluation of the impact of nanofiber surface energy on the effective 

properties of the composite as a function of nanofiber size, at the same time 

validated the plane strain (2D) modelling of the problem in this case with a wider 

choice of the REV’s thickness (taken comparable to the transverse dimensions in 

this study). 

 Existence of a theoretical size (below nanoscale) for which the composite 

containing axial voids, initially isotropic transverse or orthotropic, becomes 

lighter, stiffer and/or pseudo-isotropic (the same normal stiffness along the three 

principal directions). This unusual effective behavior can also be obtained if the 

elastic properties of the interface are amplified over defined ratio.  

 The low effect of the shape of the matrix as well as the type of the 

boundary conditions applied on REV on the predicted effective behaviour of 

nanostructures. 

 The progressive vanishing of the surface energy effect with the flattening of 

voids to disappear completely when they become cracks.  

 Numerically evidencing that the effective behavior of nanoporous material 

joins that of cracked one with crack of comparable size, by flattening the nano-

void. 

 Regardless the presence of surface energy, the flattening of a spherical 

nano void transforms the REV behavior from cubic symmetry to tetragonal 

symmetry. While the flattening of a cylindrical nano void transforms the effective 

behavior from tetragonal symmetry to orthotropic symmetry.  

 Reliability of the present approach as well as the present code proved by 

efficiency tests of numerical convergence.  



Concluding remarks and outlook 

 

 
110 

 

 The numerical efficiency that is much better when simulating a crack 

compared to the simulation of flattened voids, thus proving the utility of the 

XFEM through the Heaviside-type enrichment on the additional degrees of 

freedom. 

In the last part of this work in chapter 6, a new development was carried 

out concerning the interaction energy effect on the effective behaviour of 

composites containing nanovoids without and within the surface energy. After 

some validation tests, this part were dedicated to quantify the interaction energy 

effect on REVs containing voids randomized distributed with several 

configuration (three different organizing ways). All these studies are tested for 

tow voids shapes (spherical and cylindrical). The obtained results show that the 

interaction energy has an important role on symmetry kind, the rigidity, the 

manufacturing procedure simplicity of the studied nanocomposites. 

As outlook of this work, one can imagine some suites:  

 The interaction energy between voids and inclusions with presence of 

cracks. 

 The interaction energy effect of nanostructures containing multiple 

random cracks.  

 The study of other shapes of nanovoids (cone, cube, torus, a like- 

star…etc.). 

 The extension of number of realizations over to 40 by using machine with 

higher properties.     
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Appendix A1: Some pictures of the developed code interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Definition geometry using text file. 

                 Fig.2: Definition of geometry at the level of the graphical interface of G-msh 
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Fig.3: Selection of physical groups. 

Fig.4: Mesh generation 
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Appendix A2: Flowchart for the different adapted configurations of the randomized 

distributions of voids.     
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