

الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire

وزارة التعليم العالى و البحث العلمى

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

- جامعة زيان عاشور الجلفة

Université Ziane Achour -Djelfa

كلية علوم الطبيعة و الحياة

Faculté des Sciences de la Nature et de la Vie

قسم العلوم الفلاحية

Département des Sciences Agronomiques

.....

Projet de fin d'étude

En vue de l'obtention du Diplôme de Master en Agronomie

Spécialité: Eau et Environnement

Thème:

Contribution à une étude de la variabilité spatiale de l'Evapo- transpiration par krigeage

Présenté par :

TIACHADINE Hayet

Soutenu devant le jury :

Dr. BOUTELDJAOUI F.	Université de Djelfa	Président.
Pr. AZOUZI B.	Université de Djelfa	Promoteur.
M. ATTOU A	Université de Djelfa	Co-promoteur.
Dr. KHADRI S.	Université de Djelfa	Examinateur 1.
Dr. KHALDI A Y.	Université de Djelfa	Examinateur 2.

Année Universitaire: 2020/2021

Dédicace

A mes chers parents

En témoignage d'un amour profond, d'une profonde gratitude et de tous les sacrifices que vous avez consentis pour mon éducation et mon bonheur.

A mes sœurs et mes frères

A mes professeurs

A mes chers amis et collègues.

A tous ceux qui m'aiment et contribuent au bonheur et au bonheur de ma famille professionnel.

Remerciements

Je remercie « الله » le tout puissant et miséricordieux, qui nous a donné la force et la patience d'accomplir ce Modeste travail.

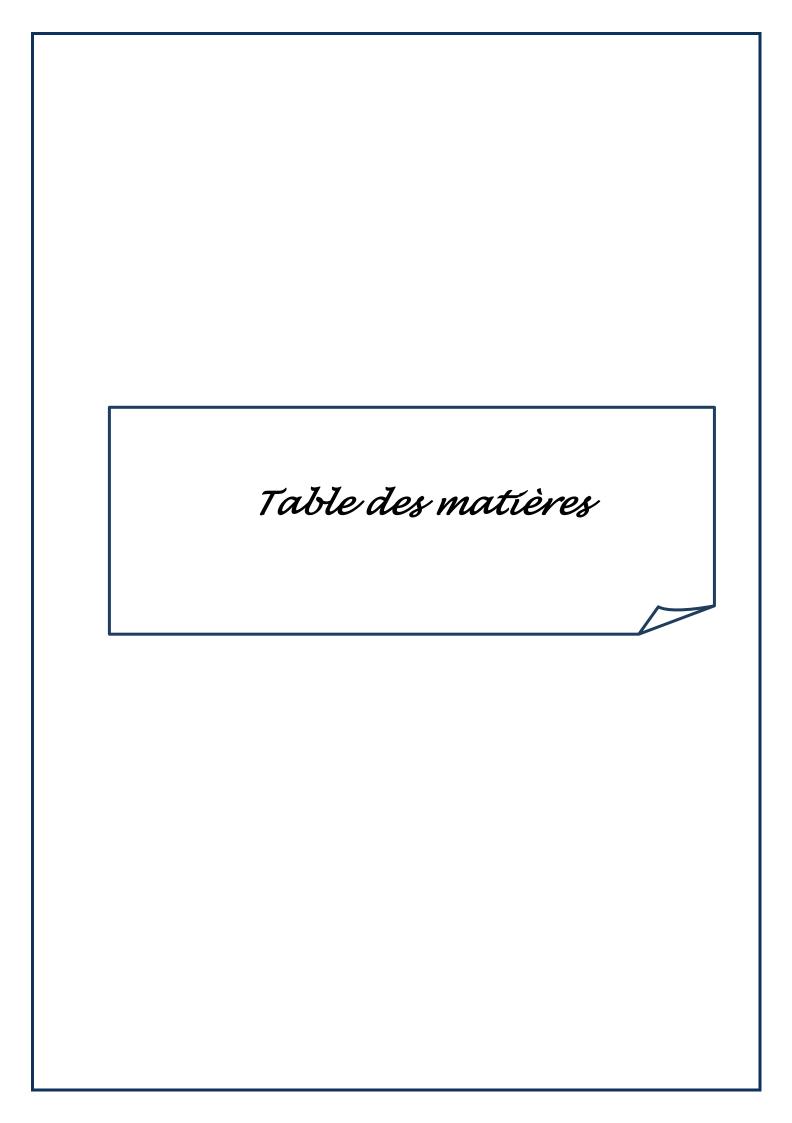
Je remercie mon promoteur le professeur **AZOUZI Bilel**, et le co-promoteur monsieur **ATTOU Alaa** pour tout le soutien, l'aide, l'orientation, la guidance qu'ils m'ont apporté lors de la réalisation de mon mémoire.

Je remercie mes parents pour le soutien inconditionnel

Mes vifs remerciements vont également aux membres du jury pour

l'intérêt qu'ils ont porté à cette recherche en acceptant d'examiner

ce travail et de l'enrichir par leurs remarques et critiques constructives.


Je n'oublie pas aussi mes amies (Chahrazed, Soria, Rima, Rahma, Yasmine,

Saadia, et Karima), et mon chère ami Karim pour leur soutien et

leurs différents conseils qui m'ont encouragé parfaitement pour atteindre mes objectifs.

A tous Merci

Tiachadine Hayet

<u>Sommaire</u>

Liste des abréviations

Liste des figures

Liste des tableaux

Introduction générale	1
Chapitre I : L'Évapotranspiration	
Introduction	4
I.1.Définition de l'évapotranspiration.	4
I.2.Les facteurs conditionnels de la mesure de l'évapotranspiration	5
I.2.1 Les facteurs climatiques (pouvoir évaporant du climat)	5
I.2.2 Les facteurs géographiques	5
I.2.3 .Les facteurs biologiques	5
I.2.4 .Les facteurs pédologiques	5
I.3.Types de l'évapotranspiration	6
I.3.1.Évapotranspiration de référence ETo	6
I.3.2.Évapotranspiration potentielle ETP.	6
I.3.3.Évapotranspiration réelle ETR	7
I.3.4.Évapotranspiration maximale ETM	7
II. Estimation de l'évapotranspiration potentielle(ETP)	8
II.1. Méthodes directes.	8
II.1.1 lysimètrique (Evapotranspiromètre)	8
II.1.2 Bacs d'évaporation	9
a. Les bacs placés au-dessus du niveau du sol "Bac class A"	9
b. le Bac Colorado (Les bacs enterrés)	10
c. Les bacs flottants	11

II.1.3. Les Evaporomètres	11
a. Evaporomètre Wild	11
b. Evaporomètre de Piche	12
c. Evaporomètre type LIVINGSTONE.	12
II.2. Méthodes indirectes	13
II.2.1. Méthodes basées sur le bilan d'eau	13
II.2.2. Méthodes empiriques	13
a. Formule de Thornthwaite 1948	13
b. Formule de Turc 1960	14
c. Formule de BLANEY_ GRIDDEL	15
II.2.3. Méthodes basées sur le bilan d'énergie	16
a. Formule de BOUCHET	16
b. Formule de BROCHET _ GERBIER	. 17
c. Formule de PENMAN-MONTEITH	. 18
III. Comparaison entre les méthodes d'estimation de l'évapotranspiration	20
Conclusion	. 21
Chapitre II : La Géostatistique	
Introduction	23
I. Notions générales relatives à l'étude géostatistique	. 23
I.1.Définition	23
I .2. Les variables régionalisées	.23
I .3. Le concept d'une fonction aléatoire.	24
II. Techniques de base de la géostatistique	25
II .1.Analyse variographique	25
II .1.1. Hypothèse de stationnarité et intrinsèque	25
II .1.1.1.Hypothèse de stationnarité	. 25
II .1.1.1. Stationnarité d'ordre 1	. 25

II .1.1.2. Stationnarité du second ordre	. 25
II .1.1.2.Stationnarité intrinsèque	26
II .1.2. Variogramme	. 26
II .1.2.1.Définition du variogramme	. 26
II .1.2.2.Propriétés du variogramme	27
II .1.2.3.Relation entre covariance et variogramme	28
II .1.2.4. Les modéles de variogramme	29
a) Effet de pépite	. 29
b) Sphérique	30
c) Gaussien	. 30
d) Exponentiel	. 30
e) Puissance	. 31
II .2.Théorie de krigeage	. 31
II .2.1.définition	. 31
II .2.2.Type de Krigeage	. 32
II .2.2.1. krigeage ordinaire (la moyenne est inconnue)	32
II .2.2.2. krigeage simple (la moyenne est connue)	. 32
II .2.2.3. krigeage universel	. 33
II .2.3. Propriétés du krigeage	. 33
Conclusion	34
Chapitre III : Présentation de la zone d'étude	
Introduction	. 36
I. Généralité sur la steppe.	. 36
I.1.Localisation et limites.	. 36
I.1.1.Les limites nord.	37
I.1.2. Limite sud	. 37
I.2. Le climat	37

I.3. Nature de sol	38
I.3.1. Les sols peu évolués	. 38
I.3.2 .Les sols évolués, calcimagnésiques	39
I.4. La Végétation	39
II. Les stations météorologiques	. 40
Conclusion	. 42
Chapitre IV : Mise en œuvre	
Introduction	45
I. La méthodologie appliquée	. 45
I.1. Choix de la région d'étude	45
I.2.Choix de la période	45
I.3.choix de la formule	45
II. Extraction des données	46
II.1. Le site de Power Data Access Viewer (DAV):	46
II.2. Les étapes de fonction de (DAV)	46
III. Applications des mesures.	49
III.1. Définition de l'Excel	49
III.2. Transfert le format CSV à format Excel.	49
III.3. Mesure l'ETP dans l'Excel.	53
Conclusion	. 53
Chapitre V: Présentation du logiciel Surfer	
I. Présentation du Surfer	. 55
I.1.Définition de logiciel	. 55
I.2.Fonctionnement de logiciel	55
I.2.1. Création de variogramme.	56
I.2.1. Création de la carte par krigeage	58

Chapitre VI: Résultats et discussion

Annexes.	
Références bibliographie	5
Conclusion générale	3
VI.3. Variographie et cartographie de l'ETP à la saison d'été	0
VI.3. Variographie et cartographie de l'ETP à la saison de printemps 6	7
VI.2. Variographie et cartographie de l'ETP à la saison d'hiver	6
VI.1. Variographie et cartographie de l'ETP à la saison d'automne 6	4

Liste des abréviations

<u>L'abréviation</u>	<u>L'explication</u>
CSV	Comma Separated values
DAV	Data Access Viewer
ЕТО	Evapotranspiration de référence
ETM	Evapotranspiration maximale
ЕТР	Evapotranspiration potentielle
ETR	Evapotranspiration réelle
FA	Fonction Aléatoire
F.A.O	L'organisation des nations unies pour l'alimentation et l'agriculture
MNT	Modèle Numérique de Terrain
VA	Variable Aléatoire
VR	Variable Régionalisé

Liste des figures

Chapitre I

Figure 1: Evaporation et évapotranspiration potentielle et réelle	8
Figure 2: Mise en œuvre de la case lysimètrique	9
Figure 3: Bac d'évaporation Classe A	10
Figure 4: Bac d'évaporation du Colorado	10
Figure 5 : Evaporomètre Wild.	11
Figure 6 : Evaporomètre de Piche	12
Figure 7: Evaporomètre à sphère poreuse type LIVINGSTONE	13
Chapitre II	
Figure 8 : Définition des variables introduites dans le calcul	27
du variogramme	
Figure 9 : Les paramètres de variogramme.	28
Figure 10 : Covariance et variogramme sous l'hypothèse stationnaire	29
Figure 11 : Model d'effet de pépite	29
Figure 12 : Model sphérique	30
Figure 13: Model gaussien.	30
Figure 14: Model exponentielle.	31
Figure 15 : Model puissance et Linéaire	31
Chapitre III	
Figure 16 : Situation géographique de la steppe algérienne	36
Figure 17 : Carte bioclimatique de l'Algérie	38
Figure 18 : Répartition des stations météorologique dans la zone de step	pe40
Chapitre IV	
Figure 19: L'interface du programme mesurer l'ETP dans l'Excel	53
Chapitre V	
Figure 20 : Logos de logiciel du Surfer	55

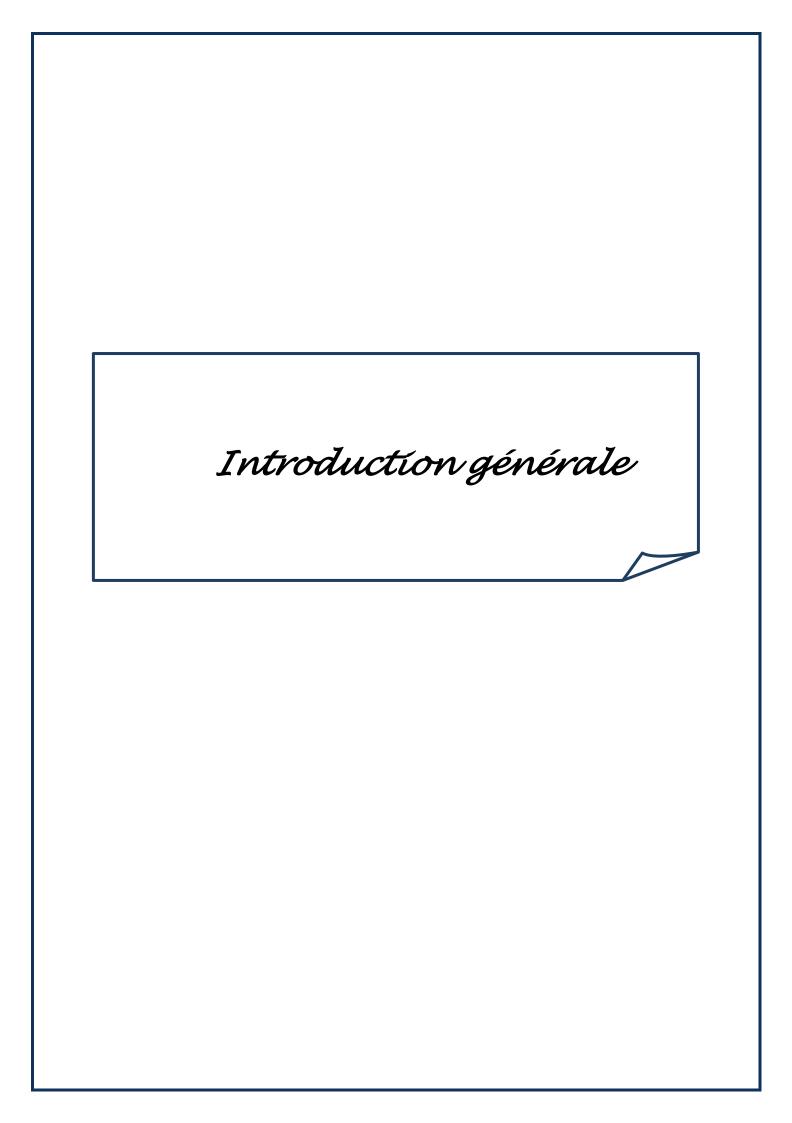

Chapitre VI

Figure 21 : Variogramme de l'ETP mesuré dans la steppe algérienne
pendant 1981_2019 (saison automne).
Figure 22 : Carte répartition spatial de l'ETP en 1981_2019 dans 65
la steppe algérienne (saison d'automne).
<i>Figure 23</i> : Carte des erreurs du d'ETP en 1981_2019 dans
la steppe algérienne (saison d'automne)
Figure 24 : Variogramme de l'ETP mesuré dans la steppe algérienne 67
pendant 1981_2019 (saison d'hiver).
Figure 25 : Carte répartition spatial de l'ETP en 1981_2019 dans
la steppe algérienne (saison d'hiver).
Figure 26: Carte des erreurs d'ETP en 1981_2019 dans la steppe
algérienne (saison d'hiver)
Figure 27 : Variogramme de l'ETP mesuré dans la steppe
algérienne pendant 1981_2019 (saison de printemps).
Figure 28 : Carte répartition spatial de l'ETP en
1981_2019 dans la steppe algérienne (saison de printemps).
Figure 29 : Variogramme de l'ETP mesuré dans la steppe
algérienne pendant 1981_2019 (saison d'été).
Figure 30 : Carte répartition spatial de l'ETP en 1981_2019 dans
la steppe algérienne (saison d'été).
Figure 31: Carte des erreurs d'ETP en 1981_2019 dans la steppe 72
algérienne (saison d'été)

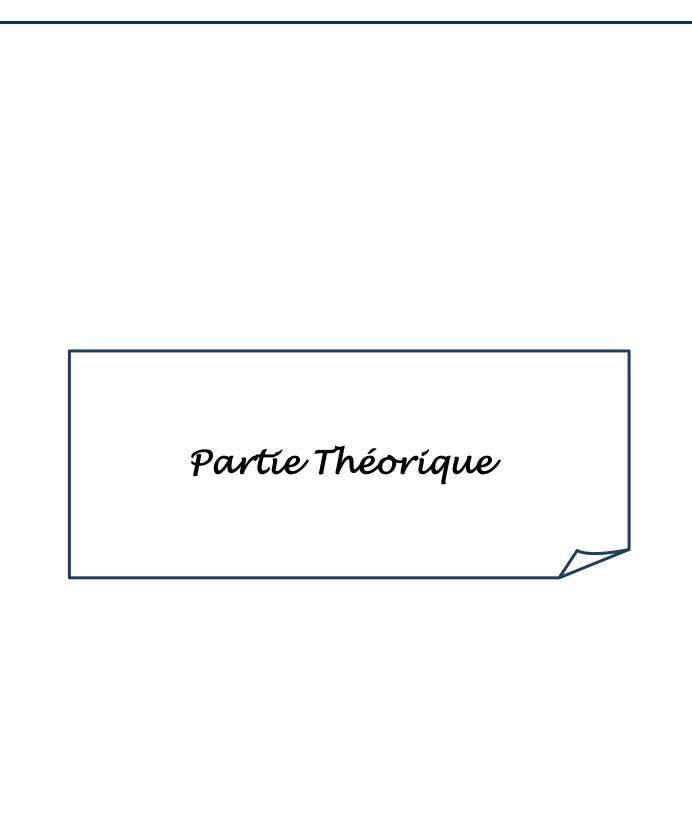
Liste des tableaux

Chapitre III

Tableau 1: Les Limites administratives de la steppe 41
Tableau 2 : les cordonnée X et Y des stations choisies
Chapitre VI
Tableau3: les paramètres du variogramme d'ETP d'automne
<i>Tableau4 :</i> les paramètres du variogramme des valeurs ETP d'hiver 66
Tableau5: Les paramètres du variogramme des valeurs ETP de printemps68
<i>Tableau6</i> : Les paramètres du variogramme des valeurs ETP d'été

Introduction Générale

L'évapotranspiration est une composante indispensable du bilan de l'eau. À titre d'exemple dans un bassin versant, d'une région marquée par l'aridité, la perte par évapotranspiration potentielle représente 60 % à 80 % de l'apport pluviométrique (HAMIMED A et RABHA M., 2008).


L'évapotranspiration joue aussi un rôle capital pour l'évaluation des aptitudes climatiques d'une région donnée ; elle est considérée comme l'indicateur du développement optimal de la végétation ; elle est à la fois cause et conséquence du climat (CALANCA P et al., 2010)et récemment elle est utilisée comme un indicateur d'intérêt dans les études concernant les changements climatiques (MJEJRA M. ,2016)

Donc, avant de mettre en place un projet d'arrosage, il faut connaître les besoins des plantes de l'eau. Pour résoudre ce problème, on a recours à la mesure l'évapotranspiration des plantes.

Dans ce mémoire, on travaille sur la connaissance de quantité d'évapotranspiration dans la région steppique algérienne, nous avons créé des cartes montrant la variation de ce processus à l'aide des méthodes d'interpolation spatiale. Parmi ces dernières, la méthode de Krigeage est la méthode la plus adaptée et la plus précise que les autres méthodes.

Pour créer nos cartes, nous avons calculé l'évapotranspiration potentielle de 50 stations à 4 saisons, en utilisant l'équation de Thornthwaite, et en choisissant la période 1981-2019 pour étudier ce phénomène. Les programmes informatiques utilisés jouent un rôle très importante pour faciliter l'étude, comme le programme Excel pour le calcul des valeurs d'ETP et le logiciel de Surfer pour la création de cartes de contour.

L'objectif de notre travail est donc de créer 4 cartes saisonnières pour la distribution spatiale de l'évapotranspiration dans les régions steppiques algériennes.

Chapitre I: L'Évapotranspiration

Chapitre I: L'Évapotranspiration

Introduction:

Pour l'agronome, la connaissance des besoins en eau des cultures est un des paramètres nécessaires à l'établissement d'un plan d'aménagement d'une région ou à la conduite d'une irrigation. Cette connaissance implique la détermination et la compréhension des variations des consommations réelles en eau des cultures dans diverses conditions (GOSSE et al., 1977). Pour exprimer ces besoins on doit mesurer l'évapotranspiration.

L'évapotranspiration potentielle est donc utilisée pour évaluer les bilans de l'eau de différentes manières. En climatologie, elle permet de déterminer le bilan hydroclimatique (P-ETP), en hydrologie elle sert de référence pour quantifier le bilan hydrologique d'un bassin versant donné et en agronomie elle donne des indications sur le stress hydrique auquel la végétation est soumise ou sur ses les besoins en eau (MJEJRA M., 2016).

Cependant, la notion d'évapotranspiration n'est pas toujours facile à déterminer à cause des deux raisons principales suivants:

1/ problème de définition : Il est généralement confondu à son niveau structurel (ET0, ETP, ETR, ETM).

2/Problème de mesure : Elle est mesurée par différents appareils ou de formules, il existe donc plusieurs méthodes d'estimation.

I.1. Définition de l'évapotranspiration:

En effet, le terme "évapotranspiration" (ET) désigne les pertes d'eau d'un couvert végétal en fonction de la réserve d'eau du sol, le stade de développement de la végétation et l'ambiance atmosphérique (AMRI R., 2013).

L'évapotranspiration réunit deux processus, à savoir l'évaporation directe de l'eau du sol et la transpiration des plantes. Elle est le plus souvent exprimée comme la hauteur moyenne d'évaporation à la surface pendant une période de temps définie. La quantité d'eau transférée du sol à l'atmosphère par évaporation et transpiration des plantes.

D'après HAMIMED A et al., (2014), Elle exprime aussi, « les échanges de masse et d'énergie entre le système sol eau-végétation et l'atmosphère »

I.2. Les facteurs conditionnels de la mesure de l'évapotranspiration:

Selon ALLEN R.G et al., (1998 et 2011) L'évapotranspiration dépend fortement de l'intervention de trois facteurs, climatiques, géographique, biologiques et pédologiques :

I.2.1 Les facteurs climatiques (pouvoir évaporant du climat): on peut citer :

- la température de l'air,
- la température de la surface terrestre,
- la vitesse et turbulence du vent,
- la durée de l'insolation ou le rayonnement solaire,
- l'humidité relative de l'air,
- pression atmosphérique.

I.2.2 Les facteurs géographiques (essentiellement la topographie): qui sont :

- l'état de la surface évaporant,
- l'altitude,
- effet du site,
- la latitude,
- la proximité de la mer,
- orographie (exposition des versants au soleil, aux vents, pentes).

I.2.3 .Les facteurs biologiques (le couvert végétal): à savoir :

- les espèces végétales (stade phrénologique de la culture considérée),
- hauteur du couvert végétal,
- résistance stomatique,
- la profondeur des racines,
- besoins ou non d'eau.

I.2.4 .Les facteurs pédologiques (les sols) : on cite :

- la capacité de rétention en eau du sol,
- la réserve utile dans le sol,

- humidité du sol,
- la texture du sol.

I.3. Types de l'évapotranspiration :

I.3.1.Évapotranspiration de référence ET0:

Le concept d'évapotranspiration de référence a été introduit par des ingénieurs et des chercheurs en irrigation à la fin des années 1970 et au début des années 1980 pour éviter les ambiguïtés qui existaient dans la définition de l'évapotranspiration potentielle (Allen et al., 1998). L'évapotranspiration de référence est définie comme « le taux d'évapotranspiration d'une culture de référence hypothétique avec une hauteur de culture supposée de 0,12 m, une résistance de surface fixe de 70 sm 1 et un albédo de 0,23, ressemblant étroitement à l'évapotranspiration d'une vaste surface de verdure herbe de hauteur uniforme, en croissance active, bien arrosée et ombrageant complètement le sol" (XU C.Y et al 2006)

D'autre définition; Il est comme le niveau d'évapotranspiration d'une pelouse de grande surface avec une hauteur uniforme (entre 8 et 15 cm), une croissance active, une couverture complète du sol et un approvisionnement en eau inconditionnel.

C'est l'évapotranspiration maximale d'un gazon à ras couvrant complètement le sol, bien alimenté en eau, en phase active de croissance et situé au sein d'une parcelle suffisamment étendue (PENMAN H L. ,1948).

I.3.2.Évapotranspiration potentielle ETP:

Fait référence à l'évapotranspiration des cultures (au stade de développement maximal des nutriments) qui ont une alimentation en eau et une capacité de rétention du sol suffisantes. C'est la limite maximale de l'évapotranspiration.

C'est un phénomène climatique continu dans l'espace et dans le temps. Ce paramètre est utilisé au niveau des recherches; sur l'utilisation de l'eau pour les besoins en irrigation. L'importance des quantités d'eau est fonction de l'ETP où le déficit en eau des plantes en est fonction (DUBOST D ,1992).

Notez que dans la définition de l'évapotranspiration potentielle, le taux d'évapotranspiration n'est pas lié à une culture spécifique, et il existe de nombreux types de cultures horticoles et agronomiques qui correspondent à la description des cultures vertes courtes (XU C.Y et al 2006).

I.3.3.Évapotranspiration réelle ETR:

C'est la valeur de l'évapotranspiration dans le cas d'une alimentation en eau insuffisante de la plante. En pratique, la détermination de l'évapotranspiration réelle (ETR) avec une précision suffisante est un problème commun à ceux qui, à titres divers (agronomes, hydrologues, météorologistes), s'occupent des problèmes de gestion des ressources en eau, des liaisons entre consommation en eau et production végétale (Bouchet et Robelin, 1969; Peuch et al. 1976) et la dépendance de cette ETR à l'égard des facteurs climatiques et des caractéristiques de régulation des couverts végétaux (KATERJI N et PERRIER A., 1983).

C'est la valeur réelle de l'évapotranspiration ETR, qui est inférieure à l'évapotranspiration potentielle de l'ETP car le sol n'est pas en permanence dans sa capacité de rétention.

I.3.4. Évapotranspiration maximale ETM:

Quand la plante produit le maximum de matière sèche donnant un rendement maximum. Aussi l'évapotranspiration maximale est mesurée expérimentalement par les cases lysimétriques et comparée à l'E.T.P (CHARLES R., 1975).

Lorsque la plante produit la plus grande quantité de matière sèche, le rendement est le plus élevé. Lorsque l'eau n'est plus le facteur limitant du niveau d'absorption racinaire, la régulation stomatique a le plus petit effet et l'évapotranspiration au plus grand.

- * L'évapotranspiration maximale dépend de:
- -La culture considérée.
- -Stade phénologique,
- -Conditions météorologiques observées.

Figure 1: Evaporation et évapotranspiration potentielle et réelle (KHADRI S., 2021).

II. Estimation de l'évapotranspiration potentielle(ETP):

Généralement, les méthodes d'estimation de l'évapotranspiration peuvent être classées dans deux catégories :

- Les méthodes directe : « instruments et appareils »
- Les méthodes indirectes « utilisation des formules ».

II.1. Méthodes directes:

II.1.1 lysimètrique (Evapotranspiromètre):

La mesure de l'évapotranspiration est une mesure très complexe et nécessite la mise en place d'équipements répondant à des normes spécifiques. Parmi les méthodes directes utilisées, il existe une méthode au lysimètre. L'équipement est une cuve cylindrique d'un diamètre d'environ 1 m et d'une hauteur d'environ 2 m. Il mesure la consommation d'eau des plantes pendant la croissance.

Il s'agit d'une cuve en terre dont on mesure les entrées (les précipitations) et les sorties par un orifice pratiqué au fond de la cuve. Cuve dans laquelle un sol avec drainage est mis en place, dans le but d'étudier les mouvements de l'eau et des sels minéraux en relation avec la production de la culture considérée. Ces lysimètres sont appelés évapotranspiromètres lorsqu'il sont utilisés pour mesurer l'évapotranspiration potentielle d'un couvert végétal dense, bien alimenté en eau (MISSOUMI S., 2004).

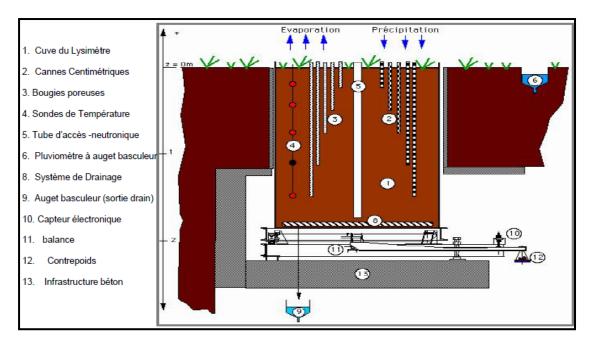


Figure 2: Mise en œuvre de la case lysimètrique (BOUDJERADA I., 2015).

II.1.2 Bacs d'évaporation :

Malgré l'intérêt évident de leur normalisation, les bacs d'évaporation utilisés dans les divers pays sont de formes, de dimensions et de caractéristiques différentes, car les spécialistes ne sont pas d'accord sur le meilleur type à employer.

On peut classer ces appareils en trois catégories suivant qu'ils sont disposes a la surface du sol, enterrés dans celle-ci ou installes de façon a flotter sur une nappe d'eau (BOUDJERADA I., 2015).

a. Les bacs placés au-dessus du niveau du sol "Bac class A":

Ce bac a un diamètre de 121.9cm et une profondeur de 25.4cm. La profondeur de l'eau y est maintenue entre 17.5 et 20cm. Il est réalisé en fer galvanisé non peint et posé sur un caillebotis à environ 15cm au dessus du niveau du sol. Il présente l'avantage de la facilité d'installation, et les mesures ne sont pas faussées par le rejaillissement des gouttes de pluie sur le terrain environnant lors de fortes averses; par contre il est très sensible aux variations de la température de l'air et aux effets de l'insolation.(MISSOUMI S., 2004)

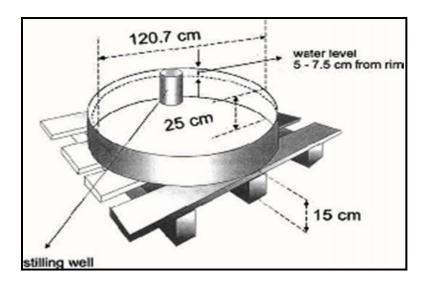


Figure 3: Bac d'évaporation Classe A (BOUDJERADA I., 2015).

b. le Bac Colorado (Les bacs enterrés) :

Il se présente sous la forme d'un parallélépipède, dont la section droite est un carré de 0.914m de coté; sa profondeur est de 0.462m; il est enterré dans le sol de manière que ses arêtes supérieures soient à 0.10m au dessus de la surface de celui-ci. Le plan d'eau dans le bac est maintenu à peu près au niveau du sol (MISSOUMI S., 2004).

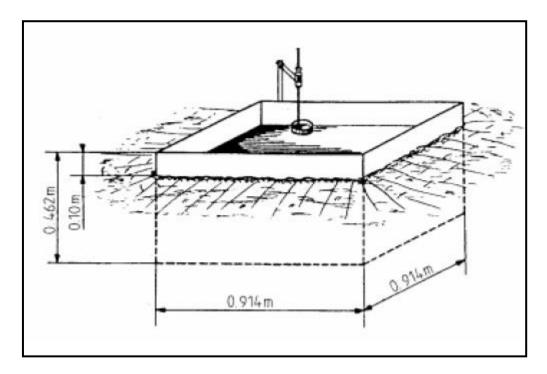


Figure 4: Bac d'évaporation du Colorado (d'après REMENIERAS, 1970).

c. Les bacs flottants :

Ces bacs sont particulièrement utilises quand on veut étudier l'évaporation de grandes surfaces d'eau (lacs ou rivières). Leur installation peut être difficile (problèmes d'amarrage et de stabilité sur un plan d'eau de niveau variable).

Les mesures sont évidemment moins aisées qu'a terre et sont trop souvent faussées les jours ou' il y a de grand vent par l'eau introduite dans le bac par les vagues ou déverse sous l'action des mouvements de roulis (REMENIERAS G.,1963).

II.1.3. Les Evaporomètres :

a. Evaporomètre Wild:

Il est constitué par une balance du type "pèse-lettres" dont le plateau supporte un petit bassin contenant de l'eau (surface : 250 cm2 ; profondeur : 35 mm), on note ou on enregistre les variations de poids du bassin.

Il présente deux principaux inconvénients : le volume d'eau est très faible et le rôle thermique des parois est prépondérant, le vent peut faire osciller le bassin et fausser les mesures (REMENIERAS G.,1963).

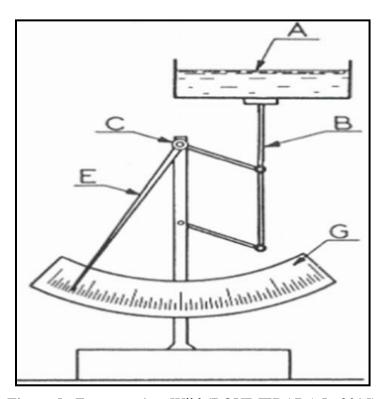


Figure 5: Evaporomètre Wild (BOUDJERADA I., 2015).

b. Evaporomètre de Piche :

Cet appareil est installé généralement sous abris, il est constitué par un tube cylindrique en verre de 25cm de long et 1.5cm de diamètre. Ce tube gradué est fermé à sa partie supérieure, tandis que son ouverture inférieure est obturée par une feuille circulaire de papier filtre normalisé de 30mm de diamètre, maintenue par un ressort.

L'appareil ayant été rempli d'eau distillée, celle-ci est évaporée progressivement par la feuille de papier filtre; la diminution du niveau de l'eau dans le tube permet de calculer le taux d'évaporation (en mm par 24 heures par exemple), le processus d'évaporation est ici lié essentiellement au déficit hygrométrique de l'air, et l'appareil ne prend peut être pas assez en compte l'influence de l'insolation (MISSOUMI S., 2004).

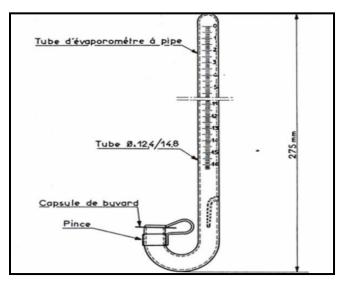


Figure 6 : Evaporomètre de Piche (BOUDJERADA I., 2015).

c. Evaporomètre type LIVINGSTONE:

Figure 7 donne, à titre d'exemple, le schéma de l'évaporomètre de LIVINGSTONE, c'est une sphère creuse de porcelaine poreuse d'environ 5cm de diamètre et d'un centimètre d'épaisseur. Elle est remplie d'eau distillée provenant d'un réservoir gradué qui assure en permanence l'alimentation de la sphère et permet la mesure du volume évaporé (MISSOUMI S., 2004).

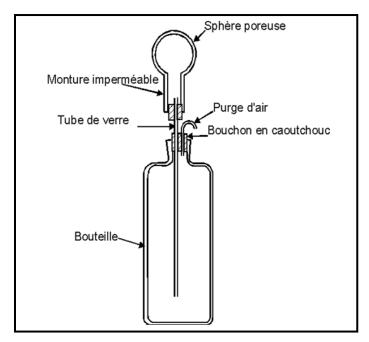


Figure 7 : Evaporomètre à sphère poreuse type LIVINGSTONE (d'après REMENIERAS, 1970).

II.2. Méthodes indirectes :

II.2.1. Méthodes basées sur le bilan d'eau :

L'évapotranspiration peut être considérée comme le terme résiduel du bilan du sol après que tous les autres termes aient été mesurés et l'on peut ainsi écrire (MOSTEFAOUI A., 1985):

$$\Delta s = P + I - ET \pm D \pm R$$

Avec:

 Δs : Variation du stock d'eau du sol;

P: pluie;

I: irrigation;

ET: évapotranspiration en mm;

D: drainage;

R: ruissellement.

II.2.2. Méthodes empiriques :

a. Formule de Thornthwaite 1948 :

Formule de THORNTHWAITE botaniste et climatologue américain, a introduit la notion d'évapotranspiration potentielle. Sa formule, qui n'est pratiquement plus utilisée pour l'estimation des besoins en eau d'irrigation, a permis de cartographier les

valeurs de l'ETP à l'échelle mondiale et de classer le climat. Elle s'appuie sur des données facilement accessibles : la température moyenne de l'air sous abri et la durée théorique de l'insolation qui dépend de la saison et de la latitude (THORNTHWAITE C., 1948).

Par un ajustement statistique de données d'ETPm, déterminée: sur des cases lysimétriques. Aux données climatiques de température, Thornthwaite a obtenu la formule empirique suivante (JACQUES H. et DURAND., 1970) :

$$ETP = 16 \left(\frac{10 \times t^a}{I} \right) \times K \left(\frac{mm}{mois} \right)$$

Où t est la température moyenne mensuelle (°C), a : est fonction de l'indice thermique mensuel & K : coefficient d'ajustement mensuel. (voir l'Annexe 1)

$$i = (\frac{t}{5})^{1.514}$$

I : l'indice annuel égal a la somme de douze (12) indices mensuels ci- dessous & i : numéro de mois. Formule approchée de a :

$$a = 1.6 \times \frac{I}{100} + 0.5$$
 Avec $I = \sum_{l=0}^{12} i$

b. Formule de Turc 1960 :

A partir d'une étude statistiques de bilans hydriques sur des cases lysimétrique, TURC a proposé une formule de calcul de l'ETP qui prend deux formes en fonction de l'humidité relative moyenne (Hr) (JACQUES H. et DURAND., 1970) :

*Si Hr < 50%, on a :

$$Etp = 0.40 \times \frac{T}{T+15} \times (Ig + 50) \times \left(1 + \frac{50 - Hr}{70}\right)$$
 (mm/mois)

Avec $\left(1 + \frac{50 - Hr}{70}\right)$ est un facteur correctif n'est pas applicable qu'aux calculs mensuels ; de plus il est réservé aux climat arides ou semi-arides où l'on peut avoir un humidité relative au dessous de 50%. Turc note encore que ce facteur n'intervient que très rarement dans les pays méditerranées, il est fréquentent faible ou nul (TELIBI A., 2004).

*Si Hr > 50%, on a:

$$ETP = 0.40 \times \frac{T}{T+15} \times (Ig + 50) \text{ (mm/mois)}$$

ETP: évapotranspiration potentielle en mm/mois;

T : température moyenne mensuelle mesurée sous abri en c°;

Ig: moyenne mensuel de radiation globale en cal/cm²;

Hr: humidité relative moyenne mensuelle en %.

La constante 0.40 est le résultat du produit $0.013 \times j$, donc pour le mois 31 jour on a : $0.13 \times 31 = 0.403$, pour le mois de 30 jour : $0.013 \times 30 = 0.39$, et pour le mois de Février, 0.40 est remplace par 0.37.

Outre le calcul mensuel, la formule de TURC peut être utilisée pour des calculs décadaires, dont la formule devient :

$$ETP = 0.13 \times \frac{T}{T+15} \times (Ig + 50)$$
 (mm/10 jours)

Cette formule de décade évalue l'ETP avec une erreur inférieure à 15%.

Dans les régions où *Ig* n'est pas connu, on pourra le déterminer en appliquant la formule complémentaire de Turc (PERRIER A., 1975).

$$Ig = IgA\left(0.18 + 0.62.\frac{h}{H}\right)$$
 (cal/cm²/jour)

IgA : radiation maximale théorique, grandeur atmosphérique qui ne dépend que de latitude du lieu et de l'époque de l'année ;

h : durée d'insolation effective du mois considérée ;

H : durée astronomique du jour en heures par mois.

c. Formule de BLANEY GRIDDEL:

En expérimentant en zones arides et semi-arides, ces deux auteurs en 1945 aux U.S.A, proposèrent après différentes études pour suivies depuis 1931. Une relation de la forme (BLANEY et CRIDDEL., 1952) :

$$ETP = K \times P(0.46T + 8.13)$$
 (mm/mois)

Avec:

ETP: évapotranspiration potentielle mensuelle en mm;

T : température moyenne mensuelle en c° ;

P : pourcentage d'éclairement pendant le mois considère, il est fonction de la latitude.

K : coefficient fonction de la culture et de la zone climatique, son importance n'est pas négligeable puisqu'il varie entre 1.20 et 0.50. On l'obtient à l'aide de la formule $K = \frac{E}{F.(114-H)}$ où :

E: évaporation en mm/mois;

F : force évaporant qui est en réalité la température moyenne et le rapport d'éclairement ;

H: humidité relative de l'aire en %.

Cet ETP est considère de référence car elle varie pour chaque type de culture et exige un grand nombre de mesures expérimentales sur terrain pour le calcule de K.

II.2.3. Méthodes basées sur le bilan d'énergie:

a. Formule de BOUCHET:

L'évapotranspiration de BOUCHET en 1960 est dite encore du Piche corrigé.

L'auteur applique la méthode du bilan énergétique à une surface évaporant (pastille de Piche) et aboutit à la formule suivante(ABDELKADER M., 1996).

$$ETP = \alpha Ep(1 + \lambda(\theta))$$
 (mm/jour)

Avec:

ETP: évapotranspiration journalière en mm/jour;

Ep: évaporation mesurée au Piche (mm);

 θ : Moyenne entre le température moyenne et le point de rosée (c°);

 α : Coefficient faisant intervenir, entre autres éléments, les caractéristiques de l'évapomètre, et que ETP mesurée (gazon) ou calculée (Penman). On l'obtient par la relation suivante : $\alpha = \frac{ETP(Penman)}{(1+\lambda(\theta))}$.

 $(1 + \lambda(\theta))$: est un coefficient pour les différentes valeur de θ . θ Peut être remplace, lorsqu'on ne connaît pas les valeurs de point de rosée par : $\frac{3.tn+tx}{4}$

tn: température minimale (c°);

tx: température maximale (c°).

La formule de Bouchet peut aussi s'écrire :

$$ETP = K.Ep$$

Où K : facteur correctif de l'évaporation Piche.

b. Formule de BROCHET GERBIER:

D'après BROCHET P et GERBIER N (1975), par rapport à la formule de BOUCHET l'importance relative du Piche est réduite au profit de la durée d'insolation. Les autres en 1975 aboutissent à la formule :

$$ETP = m.Rg + n.Ep$$
 (mm/periode)

Ou encore:

$$ETP = m.Ig_a \left(0.18 + 0.62 \frac{h}{H} \right) + n.Ep$$

Avec:

ETP: évapotranspiration potentielle en mm;

Rg: rayonnement globale (cal/cm²/min);

Ep: évaporation mesurée au Piche (mm);

m et n : sont des constantes pour un site donné et pour chaque décade.

Une deuxième expression de faire un calcule lorsque l'on ne dispose pas de mesures d'évaporation ou Piche :

$$ETP = nRg + PE(t.tn + \delta)$$

Il faut alors connaître trois éléments supplémentaires :

T: température moyenne (c°);

tn: moyenne des minimums (c°);

v : vitesse du vent (p = F(t,v));

 δ : dépend de la zone climatique, (δ = -1, 0.5 ou +1).

c. Formule de PENMAN-MONTEITH:

La formule générale de l'équation de PENMAN (1948) s'écrit comme suite (CHOURGHAL N., 2003) :

$$ET_{\circ} = \frac{\Delta}{\Delta + \gamma} (\text{Rn} - \text{G}) + \frac{\gamma}{\Delta + \gamma} \times \text{Ea} \text{ (mm/jour)}$$

Avec:

ET_a: Evapotranspiration pour la culture de référence (mm/jour);

 Δ : Dérive de la courbe de (pression température) saturante (kp^ac⁻¹);

Rn: Rayonnement net (mm/j);

 γ : Constante psychrométrique (kp^a c^{-1});

G: flux de chaleur dans le sol exprimé en mm/j;

Ea : est apportée en (*) qui le terme aérodynamique, décrit sous différentes formes, la plus commune est la suivante :

$$Ea = f(u)(ed - ea) \dots *$$

$$f(u) = (a + bu)0.26$$

ed: pression de vapeur saturante (KPa);

ea : pression de vapeur saturante à la température du point de rosée (KPa).

Les valeurs de a et b sont empiriques et décrites par PENMAN (1948), u est la vitesse du vent (m/s) à une hauteur de référence généralement de 2m.

La forme originale de l'équation de PENMAN-MONTEITH recommandée par la F.A.O, s'écrit (BRUC W et STANLY V., 1974):

$$ET = \frac{0.408 \times \Delta \times (Rn - G) + \gamma \times \frac{900}{t + 273} \times u_2 \times (ea - ed)}{\Delta + \gamma \times (1 + 0.34 \times u_2)}$$

Où:

ET: évapotranspiration (mm/j);

Rn: radiation nette ($MJm^{-2}j^{-1}$);

G: flux de chaleur du sol $(MJm^{-2}j^{-1})$;

T : température moyenne journalière (°C) ;

ea : pression saturante de vapeur d'eau (KPa) ;

 Δ : pente de la courbe de la pression de vapeur (KPa° C^{-1});

 γ : constante psychométrique (KPa° C^{-1}).

Pour un jour donné "J", la macro-commande donne les valeurs de la température maximale "tmax", de la température minimale "tmin", de la vitesse du vent à 2 mètres du sol " u_2 ", du rayonnement extraterrestre "Ra", de la durée d'insolation effective "n", de durée astronomique possible d'insolation "N". Ensuite la macro-commande calcule :

- Le déficit hygrométrique : ea ed avec $ea = \frac{e(tmax) e(tmin)}{2}$, ea=e(tdew) et $e(t) = 0.6108 \times \exp(\frac{17.27t}{t+237.3})$ (KPa)
- L'humidité relative maximale de l'air "RHmax", minimale "RHmin", et moyenne "RHmoy" : $RH max/min = \frac{100 \times ea}{e(tmax.tmin)}$ (%)
- La radiation solaire d'onde courte " R_s ": $R_s = \left(0.25 + 0.50 \frac{n}{N}\right) \cdot R_a$ (MJ/m²j)
- Radiation solaire diffus " R_{so} ": $R_{so} = (0.75 + 2.10^{-5}.z). R_A$ (MJ/m²j)
- Radiation solaire relative " R_s/R_{so} "
- Radiation solaire nette " R_n " : $R_n = R_{ns} R_{nl}$ (MJ/m²j), avec " R_{ns} " c'est la radiation nette d'onde courte : $R_{ns} = (1-a)$. R_s ;"a" étant l'albédo , et " R_{nl} "est la radiation nette d'onde longue : $R_{nl} = \sigma$. $T_{moy}^4 (1 0.34\sqrt{e_a})(1.35.\frac{R_s}{R_{so}} 0.35)$, σ est la constante Stefan-Boltzman (4.903 × 10^{-5} MJ/ $K^{-4}m^{-2}j^{-1}$), T_{moy} est la temperature moyenne en °K.
- Constant psychométrique " γ ", $\gamma = 0.665 \times 10^{-3} \times P$ (kPa/°C), avec P la pression atmosphérique : $P = 101.3(\frac{293 0.0065z}{293})^{5.26}$ (kPa).

• La pente de la courbe de la fonction reliant la pression de vapeur saturante et la température : $\Delta = \frac{4098 \times [0.6108 \times \exp(\frac{17.27t}{t+237.3})]}{(t+237.3)^2}$ (kPa/°C).

III. Comparaison entre les méthodes d'estimation de l'évapotranspiration :

C'est mieux d'utiliser les appareils qui calculer l'évapotranspiration facilement comme (l'évapotranspiromètre, le lysimètre, bac d'évaporation, ...etc), mais les mesures sont difficiles à obtenir en routine et elles « sont couteuses et rares et ne permettent pas encore des analyses géographiques fines » (AMMAR A.M, et HLAOUI Z., 2012).

Au coté des formules d'estimation de l'ETP, La méthode de THORNTHWAITE est mieux adaptée aux zones tempérées humides ; en climat tempéré sec elle a tendance à sous-estimer les valeurs d'évapotranspiration. Par contre la formule de TURC est applicable dans la plupart des zones climatiques. Elle a une précision de10% dans la zone sèche ainsi elle surestime la valeur d'évapotranspiration de plus de 20% en zone humide. Les deux méthodes ne tiennent pas compte de l'effet du vent (TELIBI A., 2004).

Formule de BLANEY-CRIDDEL très utilisée pour la région méditerranéenne elle a été appliquée en zone aride et semi-aride.

La méthode du PENMAN demande un calibrage local de la fonction de vent pour avoir des résultats satisfaisants. Elle est la mieux adaptée tant pour les climats humides que pour les climats tempérés. La F.A.O. recommande la méthode de PENMAN- MONTEITH comme méthode standard d'évaluation de l'évapotranspiration (Allen R. et al. 98) in [31]

Il est difficile de choisir la meilleure méthode pour estimer l'évapotranspiration. D'une part, les équations existantes sont multiples, d'autre part, les données de mesure ne sont pas toujours disponibles

Conclusion:

L'évapotranspiration potentielle semble être un facteur important dans le bilan hydrique. Par conséquent, la précision de son estimation est toujours très utile, car l'évapotranspiration dépendra de la demande en eau de la culture, et donc du système d'irrigation nécessaire au développement normal de la culture.

Pour notre étude, la méthode de l'équation de Thornthwaite, à cause de sa simplicité et de la disponibilité de ses données, a été choisie pour calculer l'évapotranspiration.

Chapitre II: La géostatistique

Introduction:

Dans les statistiques spatiales, les données sont collectées à des emplacements déterminés (en particulier des emplacements géographiques) afin que ces informations spatiales puissent être utilisées dans la modélisation statistique. La géostatistique est donc un domaine des statistiques spatiales.

Elle est née dans le contexte très particulier de l'estimation des réserves minérales de Georges Matheron, qui a posé les bases des variables de régionalisation et de leurs estimations publiées en 1965.

Parmi les objectifs principaux de la géostatistique on a l'interpolation et la prédiction spatiale, moyennent un outil puissant connu sous le nom de **krigeage**.

I. Notions générales relatives à l'étude géostatistique :

I.1.Définition:

Au cours des années 60, G. Matheron développe la théorie des variables régionalisées. L'application de cette théorie aux sciences de la terre (ex.: estimation des gisements à partir de données fragmentaires) est communément appelée géostatistique (FLAMAND R., 2000).

Donc, la géostatistique est une application de la théorie des fonctions aléatoires à des données localisées dans un espace géographique. Les méthodes géostatistiques, telles le krigeage, ont été initialement proposées en exploration minière et pétrolière et elles ont retrouvé leur place en statistiques il y a plus d'une décennie (WACKERNAGEL H., 2004).

A ce stade, la géostatistique a été appliquée avec succès à différents domaines comme l'exploitation minière, la géophysique, la géochimie, l'hydrologie, la géotechnique, les études d'environnement, l'agronomie, etc (BENZIAN I F., 2009).

I .2. Les variables régionalisées :

Quand une variable est distribuée dans un espace, elle est dite « régionalisée ». Ce type de variable est souvent une caractéristique d'un certain phénomène. Les teneurs en métaux, par exemple, sont caractéristiques d'une minéralisation. Le phénomène représenté par une VR est appelé une « régionalisation ».Les VR ne sont pas spécifiques du domaine minier. La plupart des variables étudiées en sciences de la terre peuvent être considérées comme étant des variables régionalisées (BENZIAN I F,. 2009).

La géostatistique est construite autour du concept de variables régionalisées, c'est-àdire la fonction z (x) dans le domaine de l'espace géographique D (peut inclure l'intervalle de l'axe du temps), où x est le vecteur de coordonnées spatiales et z est la valeur d'intérêt.

$$Z=(Z(x), x \in D)$$

Elle se rencontre sous deux aspects contradictoires ou complémentaires

(FLAMAND R., 2000):

- a) un aspect aléatoire manifestant une haute irrégularité et des variations imprévisibles d'un point à l'autre ;
- b) un aspect structuré reflétant à sa manière les caractéristiques structurales du phénomène régionalisé.

Les buts principaux de la théorie des VR sont :

- a) sur le plan théorique, exprimer les caractéristiques structurales sous une forme mathématique adéquate ;
- b) sur le plan pratique, résoudre le problème de l'estimation d'une VR à partir d'un échantillonnage fragmentaire.

I .3. Le concept d'une fonction aléatoire:

D'après BENZIAN I F(2009), une VA est une variable qui prend un certain nombre de valeurs numériques conformément à une certaine distribution de probabilité

Cette définition d'une FA exprime les aspects aléatoire et structuré d'une VR :

- Localement. au point x1. $Z(x_1)$ est une VA;

-Z(x) est une aussi FA dans le sens ou pour chaque paire de points x_1 et x_1 +h. les VA correspondantes $Z(x_1)$ et $Z(x_1+h)$ ne sont pas, en général, indépendantes mais liées par une corrélation exprimant la structure spatiale de la VR initiale z(x).

II. Techniques de base de la géostatistique :

II .1. Analyse variographique:

L'analyse variographique est une étape initiale du krigeage, ce qui permet de l'estimer. Cette analyse est en fait une étude du comportement spatial des variables de régionalisation vérifiées.

II .1.1. Hypothèse de stationnarité et intrinsèque

Comme Delhomme(1978) le fait remarquer, pour pouvoir appliquer les résultats de la théorie des FA, il faut pouvoir reconstituer la loi de la FA en question, ou du moins ses premiers moments : c'est ce qu'on appelle l'inférence statistique (FLAMAND R., 2000)

L'inférence statistique requiert alors l'introduction d'hypothèses supplémentaires sur la FA. Ces hypothèses devant être malgré tout suffisamment faibles pour couvrir le plus grand nombre de problèmes pratiques possible.

II .1.1.1. Hypothèse de stationnarité

II .1.1.1. Stationnarité d'ordre 1 :

Si l'on s'attend à ce que E[Z(x)] existe et soit constant sur tout le domaine, alors la fonction aléatoire Z(x) est dite d'ordre l stationnaire.

$$E[Z(x)]=m$$

II .1.1.2. Stationnarité du second ordre :

La stationnarité au second ordre ou stationnarité faible n'impose plus de conditions sur la loi de probabilité, mais seulement sur la moyenne et la covariance. Ces indicateurs doivent être invariants par translation.

Sachant que l'on décompose Z(s) en une composante déterministe et une composante aléatoire.

$$Z(x) = m(x) + R(x)$$

La stationnarité au second ordre requiert les conditions suivantes :

$$\Sigma [Z(x)] = m(x) \forall s.$$

L'invariance de l'espérance par translation entraîne la constance de la composante déterministe.

$$m(x+h) = m(x) = m \forall s ;$$

_ La variance est constante :

$$\sum [(\mathbf{Z}(\mathbf{x})-\mathbf{m})^2] = \sigma^2;$$

La covariance ne dépend que du décalage spatial :

Cov
$$[Z(x+h),Z(x)] = \Sigma [(Z(x+h)-m)(Z(x)-m)] = C(h)$$

En pratique, cette hypothèse de stationnarité s'avère souvent trop forte. La limite la plus importante vient de ce que la moyenne peut changer sur le territoire d'intérêt, et que la variance peut ne pas être bornée lorsque cette aire d'intérêt croit. C'est Georges Matheron qui a tiré les conséquences de ces limites de la stationnarité faible en proposant la notion, encore plus faible, de la stationnarité intrinsèque (MATHERON et al. 1965).

II .1.1.2. Stationnarité intrinsèque

L'hypothèse de la stationnarité intrinsèque est la suivante :

$$\Sigma[(Z(x+h)-Z(x))^2]=0$$

Les accroissements peuvent être stationnaires sans que le processus lui-même le soit.

On peut alors définir une nouvelle fonction, appelée variogramme, fondée sur les différences entre valeurs et valeurs décalées, et qui ne dépend que du décalage :

$$\gamma(h) = \frac{1}{2n} \sum [Z(x+h) - Z(xi)]^2$$

La stationnarité à l'ordre 2 entraîne la stationnarité intrinsèque, mais l'inverse n'est pas vrai. Une fonction aléatoire peut permettre le calcul d'un variogramme sans qu'il en soit de même pour la covariance et la fonction d'autocorrélation.

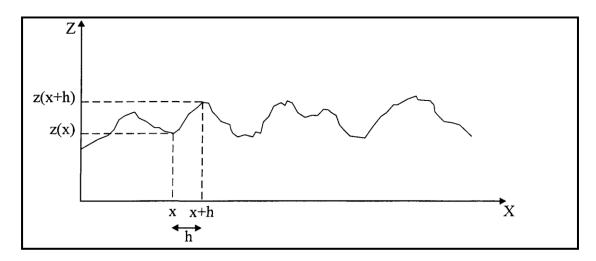
II .1.2. Variogramme:

II .1.2.1.Défénition de variogramme :

En géostatistique, l'outil de base est le variogramme (appelé parfois le demivariogramme). C'est une fonction représentant les variations du demi-écart quadratique moyen de la variable régionalisée, z, entre deux points distants d'une longueur h *(Figure8)*.

Le variogramme d'une fonction aléatoire intrinsèque est :

$$y(h) = \frac{1}{2} var[Z(x+h)-Z(x)]$$


Par ailleurs, comme on a supposé que :

$$\Sigma[Z(x+h)-Z(x)]=0$$

On peut également écrire cette expression sous la forme :

$$y(h) = \frac{1}{2} \Sigma [(Z(x+h)-Z(x))^2]$$

En supposant l'hypothèse intrinsèque vérifiée, on estimera cette fonction y(h) à partir des couples de points expérimentaux disponibles sur l'unique réalisation accessible.

Figure8: Définition des variables introduites dans le calcul du variogramme (d'après Gentier, 1987).

II .1.2.2. Propriétés du variogramme :

Le variogramme est une fonction paire avec une valeur positive. Il s'agit généralement d'une fonction croissante bornée. La *Figure9* su montre une courbe typique de la fonction de variation en fonction de la distance h. Par conséquent, pour le modèle de variogramme montrant le seuil, il ya :

- **Portée "a" :** est la distance à partir de laquelle le variogramme reste dans un intervalle de 5 % autour de son palier.
- Palier : la limite du variogramme à l'infini. $\sigma 2 = \text{Co} + \text{C}$: Variance de la variable aléatoire (Var(Z(x)).
- Effet de pépite "C0": Variation à très courte échelle, erreurs de localisation, erreurs d'analyse et précision analytique.

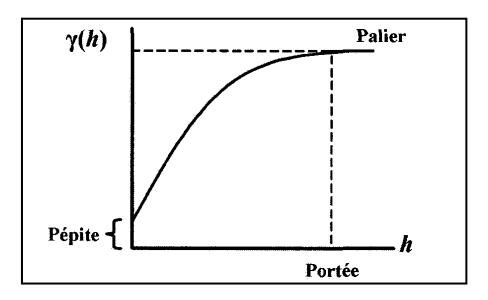
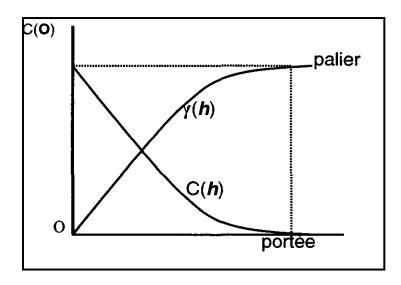



Figure 9 : Les paramètres de variogramme

II .1.2.3. Relation entre covariance et variogramme

Lorsque le variogramme montre un palier, il est facile d'établir la relation entre la valeur du variogramme à la distance h et la covariance de deux observations indépendantes de h.

$$\gamma(h) = \sigma^2 - cov(h)$$

Figure 10: Covariance et variogramme sous l'hypothèse stationnaire (AZOUZI B., 2021)

II .1.2.4. Les modèles de variogramme :

Différents modèles théoriques ont été développés pour considérer les caractéristiques du comportement du variogramme. Les composants sont définis par le palier C et les paramètres possibles de portée a et de formes. Il y a une différence entre le modèle sans palier et le modèle avec palier. Les composants γi les plus couramment utilisés sont :

a) Effet de pépite :

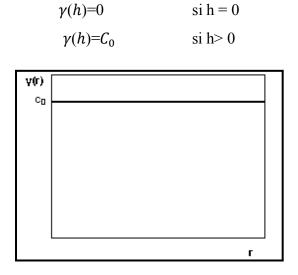


Figure 11: Model d'effet de pépite (BAILLARGEON S., 2005).

b) Sphérique :

$$\gamma(h) = \left[1.5 \frac{h}{a} - 0.5 \left(\frac{h}{a}\right)^3\right] \qquad \text{si } 0 < h < a$$

$$\gamma(h) = C \qquad \text{si } h \ge a$$

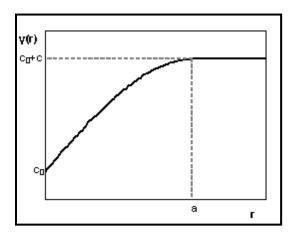


Figure 12: Model sphérique (BAILLARGEON S., 2005)

c) Gaussien:

$$\gamma(h) = [1 - \exp(-3(\frac{h^2}{a}))]$$

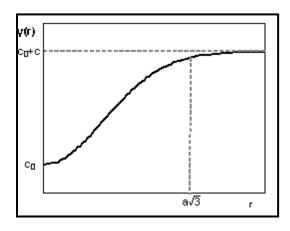


Figure 13: Model gaussien (BAILLARGEON S., 2005)

d) Exponentiel:

$$\gamma(h) = \left[1 - \exp\left(-3\left(\frac{h}{a}\right)\right]\right]$$

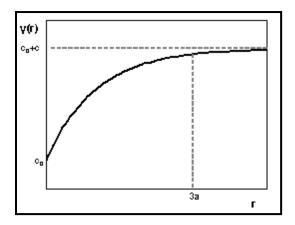


Figure 14: Model exponentielle (BAILLARGEON S., 2005).

e) Puissance:

$$\gamma(h) = C h^b$$
 $0 < b < 2$

(Model linéaire : b = 1)

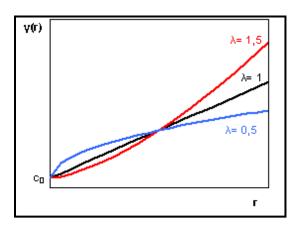


Figure 15: Model puissance et Linéaire (BAILLARGEON S., 2005)

II .2. Théorie de krigeage :

II .2.1.Définition:

Le terme krigeage vient de Georges Matheron et fait référence aux travaux pionniers de l'ingénieur sud-africain Danie Krige. Le krigeage est une méthode d'interpolation très puissante, Il est un processus géostatistique avancé qui génère des régions estimées sur la base d'un ensemble de points dispersés avec des valeurs z.

Le Krigeage est la méthode optimale, au sens statistique du terme, d'estimation. On peut l'utiliser autant pour l'interpolation que l'extrapolation (GRATTON Y., 2002).

II .2.2. Type de Krigeage:

Il existe trois méthodes de krigeage : ordinaire, simple, et universel.

II .2.2.1. krigeage ordinaire (la moyenne est inconnue) :

Le krigeage ordinaire est une opération répétée à chaque nœud x0 de la grille régulière couvrant le domaine de recherche. Pour un ensemble de n points de données x dans le voisinage centré sur le point x_0 de la grille d'estimation, nous pouvons construire pour minimiser la variance d'estimation. Par conséquent, le système peut trouver N pondérateurs λi .

Ces derniers sont appelés pondératateurs de Krigeage, qui donne la plus petite variance estimée possible, appelée la variance de Krigeage. Où λi est le pondérateurs attribué au point de données et μ est le paramètre Lagrange qui apparaît pour des raisons algébriques. Le côté gauche du système contient la covariance entre les points de données et le côté droit contient la covariance entre chaque point de données et le point estimé x_0 . Une fois le système résolu, les informations sont transmises des points de données adjacents au point x_0 en calculant la moyenne pondérée.

$$Z^*_0 = \Sigma \lambda i Z_i$$

En effectuant une multiplication matricielle, on peut réécrire le système comme suit :

$$\begin{vmatrix} y_{11} & y_{12} & y_{1n} & 1 \\ y_{21} & y_{22} & y_{2n} & 1 \\ y_{n1} & y_{n2} & y_{nn} & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix} \begin{vmatrix} h_1 \\ h_2 \\ h_n \\ u \end{vmatrix} = \begin{vmatrix} y_{10} \\ y_{20} \\ y_{n0} \\ 1 \end{vmatrix}$$

La variance d'estimation du krigeage ordinaire est :

$$\operatorname{Var}\left(\left.Z^{*}_{0}-Z\right)=\Sigma\lambda i\,\gamma(xi-x_{0})+\mathrm{u}\right.$$

II .2.2.2. krigeage simple (la moyenne est connue) :

Parfois on connaît la moyenne "m" du champ à estimer ou du moins on en possède un estimé fiable. On peut alors former un estimateur sans biais :

$$Z_0 = \sum \lambda i Z_i + (1 - \sum \lambda i) m$$

Le système matriciel de krigeage simple :

$$\begin{vmatrix} \mathbb{Y}_{11} & \mathbb{Y}_{12} & \mathbb{Y}_{1n} \\ \mathbb{Y}_{21} & \mathbb{Y}_{22} & \mathbb{Y}_{2n} \\ \mathbb{Y}_{n1} & \mathbb{Y}_{n2} & \mathbb{Y}_{nn} \end{vmatrix} \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_n \end{vmatrix} = \begin{vmatrix} \mathbb{Y}_{10} \\ \mathbb{Y}_{20} \\ \mathbb{Y}_{n0} \end{vmatrix}$$

Son variance d'estimation est :

$$\text{Var} (Z^*_0 - Z) = \text{Var} (Z_i) - \sum \lambda i \gamma (xi - x_0)$$

II .2.2.3. krigeage universel:

Le krigeage universel suppose qu'il existe une tendance écrasante dans les données (comme le vent dominant) et peut être modélisé par une fonction déterministe (polynôme). Le polynôme est soustrait des points mesurés à l'origine et l'autocorrélation est modélisée sur la base d'erreurs aléatoires. Une fois que le modèle correspond à l'erreur aléatoire, le polynôme est réinséré dans la prédiction avant de faire la prédiction afin que les résultats soient significatifs. Ce n'est que lorsque vous savez qu'il existe une tendance dans les données et que vous pouvez en fournir une base scientifique, que vous pouvez utiliser le krigeage général.

Le modèle de base du krigeage universel est :

$$Z(s) = \sum_{j=0}^{p} f_i(s) \beta_j + \delta(s),$$
 sed

 f_i : Fonction de la position S(x,y);

 β_i : Paramètres inconnus;

 $\delta(s)$: Fonction aléatoire stationnaire intrinsèque d'espérance nulle et de structure de dépendance connue.

II .2.3. Propriétés du krigeage:

Le krigeage semble être la méthode d'interpolation la plus intéressante, et ce, pour plusieurs raisons. Premièrement, comme avec les méthodes barycentriques et la régression locale, l'utilisateur du krigeage a le choix d'interpoler localement ou globalement. De plus, puisqu'il s'agit d'une méthode stochastique, le krigeage permet d'estimer des erreurs de prévisions. Le krigeage possède également plus d'extensions multivariables que les autres catégories de méthodes. Ce- pendant, ce qui distingue vraiment le krigeage des autres méthodes introduites précédemment est qu'il est le seul à tenir compte de la structure de dépendance spatiale des données. Ainsi, on peut

s'attendre à ce que le krigeage génère les prévisions spatiales les plus justes. De plus, l'estimation des erreurs qu'il produit est plus fiable que celles produites par les autres méthodes stochastiques, car les postulats de base du krigeage modélisent mieux la réalité pour des données à référence spatiale. Le krigeage ressort donc gagnant de la comparaison théorique avec les autres méthodes d'interpolation.

Conclusion:

L'analyse spatiale géostatistique fournit des informations impossibles à obtenir avec les méthodes de d'analyse quantitative du morphologique classique, et ça par l'utilisation de tous les outils de l'analyse géostatistique (la variographie et le krigeage).

Chapitre III : Présentation de la zone d'étude

Chapitre III : Présentation de la zone d'étude

Introduction:

Dans ce chapitre on s'intéresse à la steppe algérienne, elle s'appelle aussi les hautes plateaux. Elles sont connues par des zones semi humides, avec un été généralement sec et un hiver extrêmement froid.

La steppe algérienne est composée de deux grands groupes : steppes algérooranaises et les hautes plaines du Constantinois.

I. Généralité sur la steppe:

Le terme steppe désigne des immenses étendues plus ou moins arides à relief peu élevé, dépourvues d'arbres et recouvertes d'une formation végétale basse, ouverte et clairsemée, dominées essentiellement par des espèces pérennes. (Le houerou ,1995)

D'après OULBACHIR K(2010), La steppe algérienne constitue une vaste région formant un ruban de 1000 km de long sur 300 km de large, réduite à moins de 150 km à l'Est. Elle s'étend entre l'Atlas Tellien au Nord et l'Atlas Saharien au Sud et couvre une superficie globale de 20 millions d'hectares. Elle est limitée au Nord par l'isohyète 400 mm qui coïncide avec l'extension des cultures céréalières en sec et au Sud, par l'isohyète 100 mm qui représente la limite méridionale de l'extension de l'alfa (Stipa tenacissima).

I.1.Localisation et limites:

Les diverses œuvres exécutées dans les espaces steppiques indiquent que les limites de la steppe sont généralement basées sur des normes bioclimatiques.

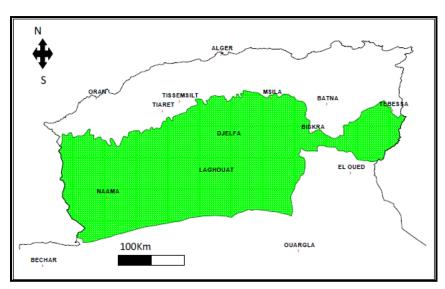


Figure 16: Situation géographique de la steppe algérienne (NEDJRAOUI et BÉDRANI, 2008)

I.1.1.Les limites nord:

La steppe commence avec le tracé de l'isohyète 400 millimètres de précipitations. A l'Ouest et au centre, le tracé de l'isohyète suit le flanc Sud de l'atlas tellien. Elle se compose de trois ensembles s'étendant successivement au Sud du tell (OULBACHIR K., 2010) :

- Les Hautes plaines Algéro-oranaises.
- L'atlas saharien (Monts des Ksours, Djebel Amour, Monts des Ouled Nail).
- Les piémonts Sud de L'Atlas saharien.

A l'Est, par contre, l'isohyète décrit une courbe vers le Sud-est, passant par le flanc Sud des monts du Hodna, et contournant les Aurès par le Sud. L'isohyète remonte ensuite vers le Nord-est, sur le flanc Nord du Nemamcha et au niveau des Hautes Plaines de Tébessa.

I.1.2. Limite sud:

La limite sud de la steppe est la limite avec une pluviométrie annuelle moyenne de 100 mm, et le point de départ du désert du Sahara est ici.

I.2. Le climat :

En générale l'étage bioclimatique qui caractérise la steppe algérienne va d'un semiaride inférieur frais au Nord à l'aride inférieur tempéré au Sud.

Le climat de la zone steppique appartient au type méditerranéen, en particulier les faibles précipitations, montrant une grande variabilité inter mensuelle et inter annuelle, et le type continental présente des conditions thermiques relativement uniformes et de grandes différences.

D'après NEDJIMI et GUIT (2012), la pluviométrie moyenne annuelle est faible (entre 100 et 400 mm/an) et sa répartition est irrégulière dans le temps et dans l'espace. Les pluies se caractérisent par leur brutalité (averses) et leurs aspects orageux.

Par ailleurs, il est à noter que pour la vitalité du végétal la répartition des pluies est plus importante que celle de la quantité annuelle des précipitations. Il s'agit de l'eau utile, soit celle disponible durant son cycle de développement (DJEBILI S., 1984)

En Algérie, l'influence du Sahara imprime à la steppe un climat sec et chaud, à amplitude très exagérée par suite du relief et des barrières naturelles constituées par l'Atlas tellien vis-à-vis des influences maritimes provenant du Nord et du Nord Ouest. Ces montagnes et ces hautes plaines sont parcourues en hiver par des courants de vent glaciaux et en été par des courants secs et chauds. Le sirocco, vent chaud et sec, fréquent dans ces espaces, exerce une influence néfaste (OULBACHIR K., 2010).

La température moyenne annuelle est comprise entre 13°C (Aflou) et 15°C (Ain Sefra). La moyenne des minima du mois le plus froid varie entre -1,8 °C (El-Bayadh) et 1,9°C (Tébessa). La moyenne des maxima du mois le plus chaud varie entre 37,6°C à Ain Sefra et 33,1°C à Arris. L'amplitude thermique saisonnière étant très grande, dépasse 37°C à Ain Sefra. Le climat est donc caractérisé par sa continentalité (Ibid).

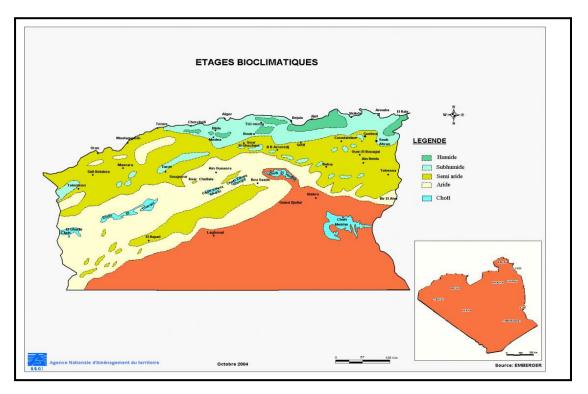


Figure 17: Carte bioclimatique de l'Algérie (source ANAT, 2004).

I.3. Nature de sol:

La steppe a un sol peu profond, une faible teneur en matière organique et est très sensible à l'érosion et à la dégradation. A cause de la rareté de l'humus favorable à la dégradation, ils sont fragiles et de couleur grise. Les bons sols sont utilisés pour faire pousser des céréales au hasard, et peuvent être trouvés dans les dépressions, les lits de rivières asséchés, les dayas et les piémonts de montagne, car leur emplacement permet l'accumulation d'éléments fins et d'eau.

Les principaux types de sols steppique peuvent être résumés comme : les sols évolués calcimagnésiques, et les sols peu évolués.

I.3.1. Les sols peu évolués :

Selon OULBACHIR K (2010), ce type des sols regroupent :

- a)Les sols d'origine alluviale : Ils situés dans les lits d'oueds, les zones d'épandage et les dayas. Une partie de ces sols est cultivée en céréales, l'autre partie présente un faciès post-cultural à armoise champêtre et *Peganum harmala*.
- b) Les sols d'origine éolienne : Ils se localisent au niveau des formations éoliennes fixées par la végétation : *nebkhas*, *micronebkhas*, champ de sable, placage de sable, dunes. Ces sols sont colonisés par des psammophytes telles que *Tamarix africana* et *Aristida pungens*.

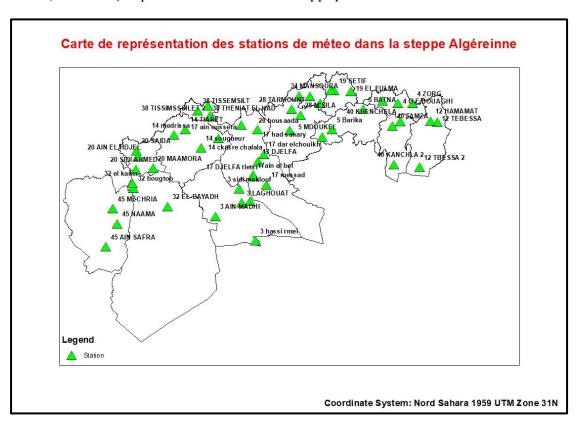
I.3.2 .Les sols évolués, calcimagnésiques :

De leur part les sols évolués, calcimagnésiques regroupent (OULBACHIR K., 2010):

- a) Les rendzines : sur les versants des djebels ; ce sont des sols bruns calcaires à accumulation calcaire. Ils représentent le type le plus répandu dans l'écosystème steppique. Ils couvrent les glacis polygéniques du quaternaire ancien et moyen. Ils portent une végétation steppique très variée : *Stipa tenacissima*, *Artemisia herba alba* et *Helianthemum hirtum*.
- b) Les sols calcimorphes à encroûtement gypseux: ils occupent des zones où les grès alternent avec les marnes et les argiles versicolores. La surface du sol présente un réseau polygonal blanc grisâtre. La végétation est composée de gypsophytes : Frankenia thymifolia ; Herniaria fontanesi ...etc.
- c) Les sols halomorphes : sont localisés dans les grandes dépressions (chotts), dans les sebkhas et certains mekmènes. Ils sont colonisés par une végétation halophile.

I.4. La Végétation :

D'après NEDJRAOUI (2004), Les steppes algériennes sont dominées par 4 grands types de formations végétales:


- a)- Les steppes à alfa (4 millions d'ha en 1975) présentent une forte amplitude écologique. La productivité pastorale moyenne de ce type de steppe varie de 60 à 150 UF/ha selon le recouvrement et le cortège floristique. La valeur pastorale peu importante (10 à 20/100 en moyenne) permet une charge de 4 à 6 hectares par mouton.
- b)- Les steppes à armoise blanche recouvrent 3 millions d'hectares (en aire potentielle). L'armoise ayant une valeur fourragère importante de 0,45 à 0,70 UF/kg MS, les steppes à armoise blanche sont souvent considérées comme les meilleurs parcours, 1 à 3 ha/mouton.

- c)- Les steppes à sparte couvrent 2 millions d'hectares. *Lygeum spartum* ne présente qu'un faible intérêt pastoral (0,3 à 0,4 UF/kg MS). La productivité, relativement élevée (110 kg MS/ha/an), des espèces annuelles et petites vivaces, confère à ces types de parcours une production pastorale importante de 100 à 190 UF/ha/an et une charge de 2 à 5 ha/mouton.
- d)- Les steppes à remt (*Arthrophytum scoparium*) forment des parcours qui présentent un intérêt assez faible sur le plan pastoral. La valeur énergétique du remt est de 0,2 UF/kgMS. La production moyenne annuelle varie de 40 et 80 kg MS/ha et la productivité pastorale est comprise entre 25 et 50 UF/ha/an avec une charge pastorale de 10 à 12 ha/mouton.

II. Les stations météorologiques :

Dans notre domaine de recherche, on se propose de réaliser des cartes d'évapotranspirations potentielles (ETP) au niveau des steppes algériennes. On a Choisi 50 stations météorologiques, aléatoirement dans la zone d'étude (*Figure 18*), regroupant les wilayas steppiques (*Tableau 1*).

Le (*Tableau 2*) représente les 50 stations steppique avec les cordonnées X et Y.

Figure 18: Répartition des stations météorologique dans la zone de steppe.

Tableau 1 : Les Limites administratives de la steppe: (le cadre administrative, la steppe algérienne s'étend sur 14 wilayas)

Les wilayas de l'Est	Les wilayas de centre	Les wilayas de l'Ouest
Tébessa	Djelfa	El Bayadh
Oum El Bouaghi	Laghouat	Naâma
Bordj Bou Arreridj	M'Sila	Tiaret
Sétif	Tissemsilt	Saida
Batna		
Khenchela		

Tableau 2 : les cordonnée X et Y des stations choisie

Station	Code	X (m)	Y (m)
Ain Madhi		429373,846	3702542,74
Hassi R'Mel	605630	526177,111	3643561,55
Ksar El Hirane	60403	512960,429	3738880,8
Laghouat	605450	493517,528	3735547,97
Sidi Makhlouf	60401	487080,396	3768817,53
Oum el Bouaghi	604210	871178,881	3976227,17
Ain Kercha		832978,888	3981370,74
Zorg		906524,508	3975560,97
Barika	604710	711778,727	3912130,78
Batna	604680	787554,959	3960885,41
M'doukal		687761,679	3894951,77
Tébessa2		922711,722	3821664,18
Tébessa	604750	965980,303	3930618,28
Hammamet		949449,156	3933113,28
Ksar Chellala	605140	437158,65	3891004,6
Medrissa	80701	329807,179	3899042,75
Sougueur	10901	394994,359	3868102,01
Tiaret	605110	357341,657	3912988,86
Ain el Bell	60502	520230,434	3802095,16
Ain Oussara	11205	491832,565	3922951,93
Dar Chioukh	170503	546640,242	3853200,57
Djelfa	604981	532069,695	3835395,12
Djelfa Tletsi	605350	522997,325	3798775
Had-Sahary	11102	531801,554	3911914,06
Messaad	60602	553467,753	3778939,8

Sétif	604450	716732,445	4006605,09
El Eulma	1	757308,766	4004376,01
Ain Arnat	1	707737,875	4006386,26
Saida	605360	239453,046	3861223,41
Sidi Ahmed		238165,442	3815738,52
Maamora		279622,592	3819102,91
Ain El Hadjar		242706,928	3846697,94
Bou Saada	605150	609063,209	3910300,33
M'Sila	604670	635774,36	3947274,8
Tarmount		613864,04	3961389,05
Bougtoub	81502	231433,473	3770409,61
El Kheither	81504	229853,481	3782667,45
El-Bayadh	605500	314557,099	3726252,86
Bordj Bou Arreridj 2		683539,791	3975877,44
Bordj Bou Arreridj	604440	658512,096	3992036,69
Mansoura		631457,698	3993808,17
Tissemsilt		386997,241	3958049,91
Theniet El Had		411528,832	3969973,07
Tissemsilt 2		416716,595	3945519,2
Tamza		857090,408	3921171,48
Khenchela	604760	876671,471	3931979,21
Khenchela 2		860759,413	3827943,61
Ain Sefra		164540,119	3629246,51
Mecheria		181622,124	3720863,54
Naama	605570	192566,824	3684969,99

Conclusion:

Dans ce chapitre, on indique les propriétés et les caractéristique intéressante de notre région d'étude (la situation géographique, le climat, le sol, la végétation), et on a choisi des stations qui inclure tout l'espace étudié.

Partie Expérimentale

Chapitre IV : Mise en œuvre

Chapitre IV: Mise en œuvre

Introduction:

D'après le premier chapitre, nous avons appris les formules d'estimation de l'ETP. Dans ce chapitre, nous suivons les étapes de mesures de l'évapotranspiration potentielle, et la méthodologie utilisée pour extraire les données nécessaires selon la

formule choisie

I. La méthodologie appliquée :

I.1. Choix de la région d'étude:

Comme mentionné, on a choisi 50 stations météorologique aléatoire dans la zone de steppe algérienne (voir le Chapitre III).

I.2. Choix de la période :

On peut dire que le secteur agricole en Algérie a été libéré au début des années 1980, et jusqu'à présent on peut dire qu'il a suscité un intérêt et une recherche accrus pour le développement de ce domaine. Le choix du temps d'étude est basé sur cette

raison, ce qui nous a conduits à choisir la période de 1981 à 2019.

I.3.choix de formule :

Il existe de nombreuses méthodes qui peuvent être utilisées, mais l'avantage de celle de Thornthwaite est qu'elle est simple et robuste à différentes latitudes (Voir chapitrel). C'est la formule la plus connue et la plus utilisée au monde. Par conséquent, la formule de Thornthwaite peut estimer l'évapotranspiration potentielle mensuelle du lieu en fonction de la température moyenne mensuelle et de la latitude du lieu. Si l'estimation est exprimée en mm, la formule de Thornthwaite peut s'écrire :

$$ETP = 16 \left(\frac{10 \times t^a}{L} \right) \times K \ (mm/mois)$$

ETP: en mm

T: température moyenne (C°)

I: indice thermique annuel, $I = \sum_{i=1}^{12} i$

i: indice thermique mensuel, $i = (\frac{t}{5})^{1.514}$

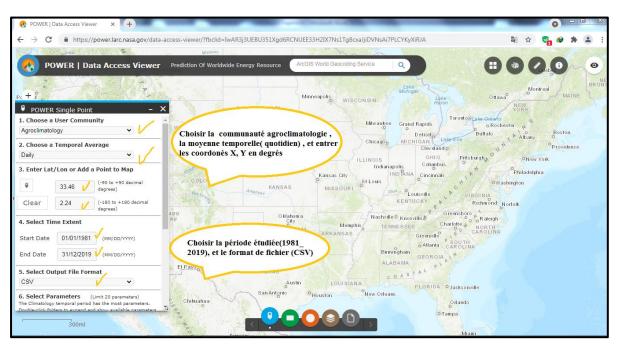
a : simplification apporté par Serra, $a = 1.6 \times \frac{I}{100} + 0.5$

K : coefficient d'ajustement mensuel (voir l'Annexe 1).

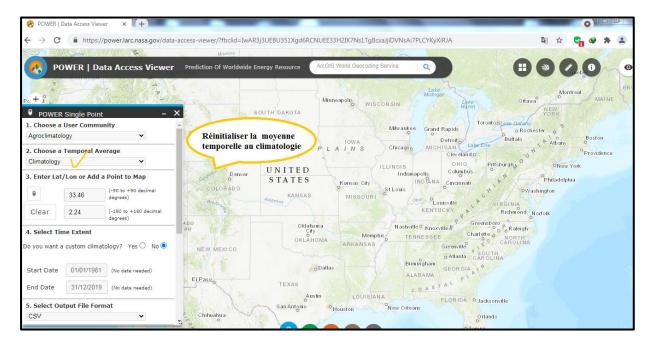
II. Extraction des données :

Avant de faire les mesures de l'évapotranspiration potentielle ETP, on doit extraire les données utilisée dans la formule Thornthwaite de chaque station.

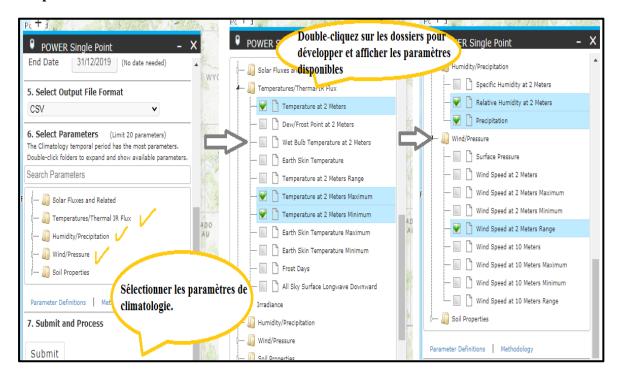
Le POWER Data Access Viewer (DAV) est un site qui permet l'extraction des données climatiques à l'aide des cordonnées géographiques.

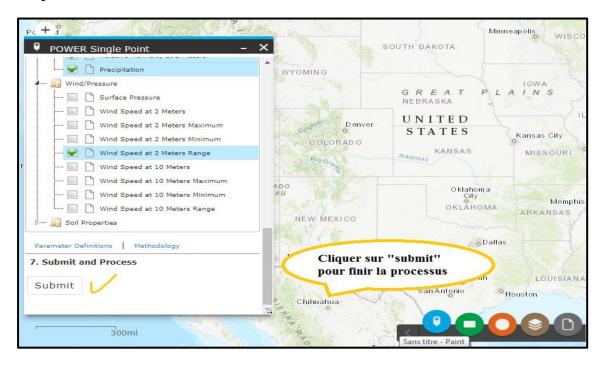

II.1.Le site de POWER Data Access Viewer (DAV):

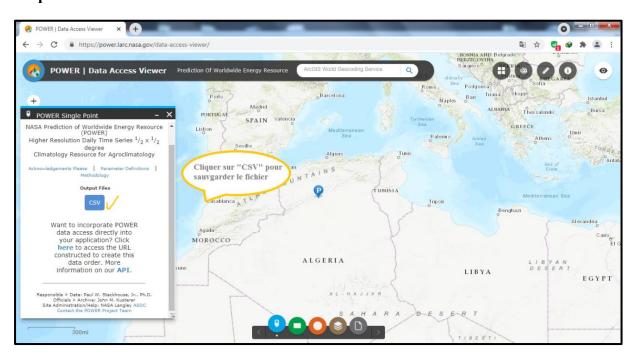
L'application de cartographie Web POWER Data Access Viewer (DAV) contient des paramètres géospatialement activés solaires, météorologiques et liés aux nuages, formulés pour évaluer et concevoir des systèmes d'énergie renouvelable. Le POWER DAV est une application basée sur des widgets réactifs qui s'exécute sur tous les appareils (PC, ordinateur portable, tablette, smartphone) et toutes les plateformes (Apple, Android et Windows). Cette conception permet aux utilisateurs d'accéder aux données POWER au bureau ou sur le terrain. Le POWER Data Archive est mis à disposition via une série de services extensibles et intégrés au-delà de l'application de cartographie Web. POWER fournit divers ensembles de données textuelles, tabulaires, géospatiales et fichiers que les utilisateurs peuvent télécharger et/ou intégrer dans des logiciels et applications personnalisés pour un traitement, une analyse et une visualisation ultérieurs (Anonyme., Page consultée le 26 septembre 2021).


II.2. Les étapes de fonction de (DAV):

Dans ce site, nous suivons ces étapes pour extraire les données climatiques relatives à la méthode de Thornthwaite dans les 50 stations :


Etape 1:


Etape 2:


Etape 3:

Etape 4:

Etape 5:

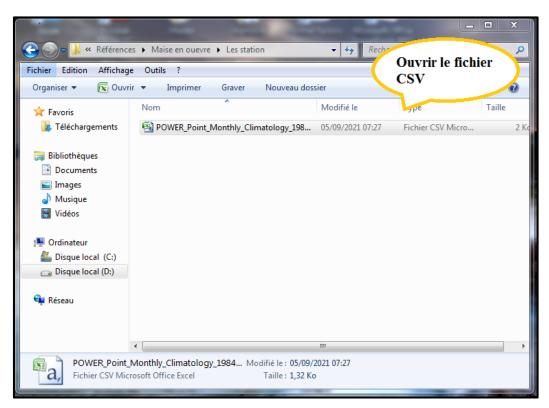
^{*}Nous répétons le même processus afin d'obtenir des donnée climatiques pour chaque station.

III. Applications des mesures:

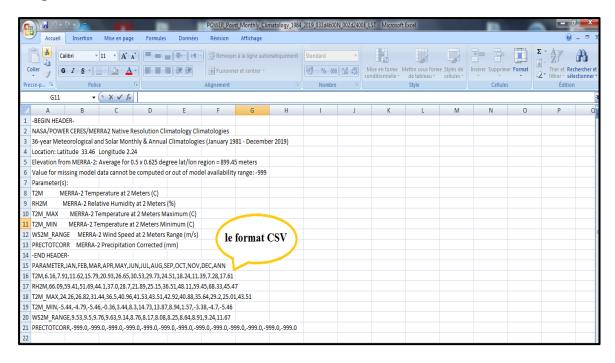
A l'aide des logiciels de calcul, l'opération de mesure de l'ETP est rendu facile, parmi ces logiciels il ya Microsoft Excel.

III.1. Définition de l'Excel:

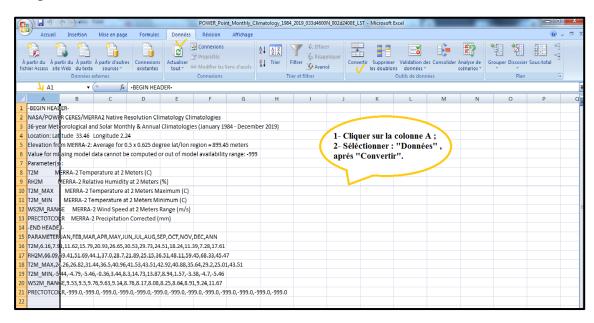
Excel est un logiciel de la suite Microsoft Office qui permet de créer des tableaux, des calculs automatiques, des horaires, des graphiques et des bases de données. Ce type de logiciel est appelé « tableur ».

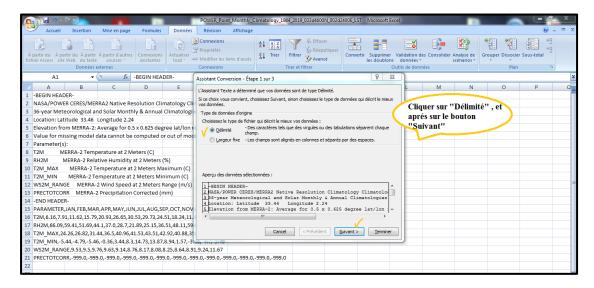

Alors, on a deux avantages principaux de l'office Excel, cela:

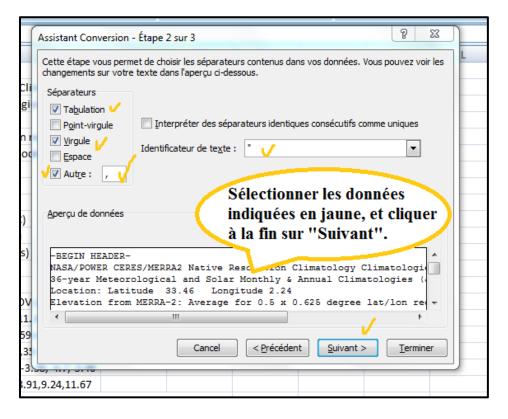
- * il facilite la création de divers tableaux et l'intégration de calcul. Par conséquent, les valeurs du tableau seront automatiquement mises à jour en fonction de votre saisie et de vos calculs.
- *Excel permet également de générer des graphiques (histogrammes, camemberts, etc.) pour mieux visualiser les valeurs et les interpréter.

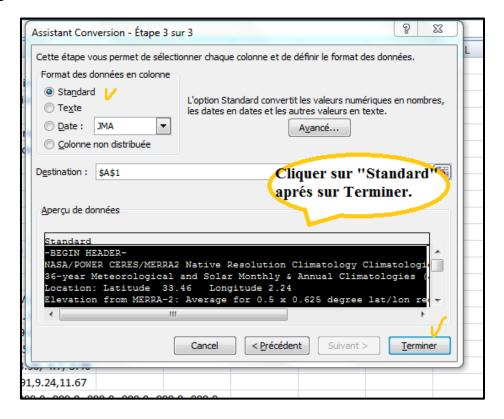

III.2. Transfert le format CSV à format Excel:

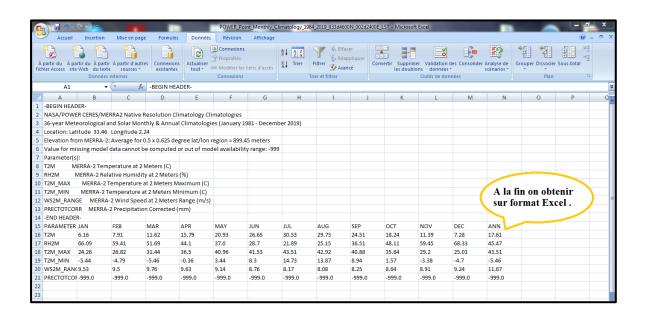
Dans les étapes précédentes, nous avons enregistré le fichier des données climatiques sous forme « CSV », et pour le convertir au format Excel, nous procédons comme suit :


Etape1:


Etape 2:


Etape 3:


Etape 4:


Etape 5:

Etape 6:

Etape 7:

- *Après cette étape, nous avons enregistré sous-fichier et renommer « Stations 1 ».
- * Nous appliquons les mêmes étapes sur les fichiers CSV des autres stations.

III.3. Mesure l'ETP dans l'Excel:

Avant atteindre un résultat final qui exprime l'ETP, nous avons collecté les données dans la période 1981_2019 pour chaque station et les avons incluses dans l'Excel, à la fin nous avons créé un programme algorithmique dans l'Excel qui contient un ensemble des fonctions dont le but d'incarner mathématiquement la loi ETP.

Nous avons calculé l'ETP des 50 stations pour chaque mois, pendant la période 1981-2019. Ensuite, nous avons fait le calcul de la moyenne Dans l'Excel pour chaque saison et nous avons enregistré le fichier (voir Annexes 2, 3, 4. et 5).

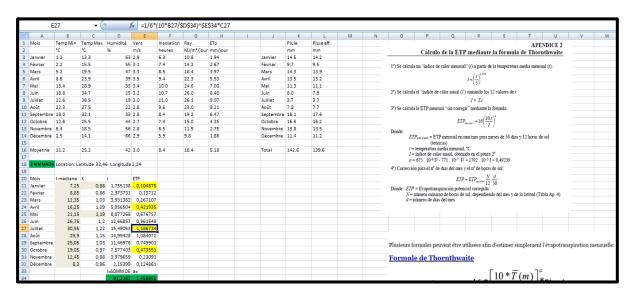


Figure 19: L'interface du programme pour mesurer l'ETP dans l'Excel.

Conclusion:

Grâce aux méthodes utilisées, nous avons conclu que ces programmes et les sites ont grandement aidé à recueillir des données et à faciliter la mesure. A partir de celles-ci, on peut utiliser le krigeage pour faire des cartes d'évapotranspiration pour estimer ces valeurs spatialement.

Chapitre V: Présentation de logiciel Surfer

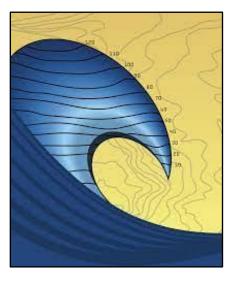
Chapitre V: Présentation du logiciel Surfer

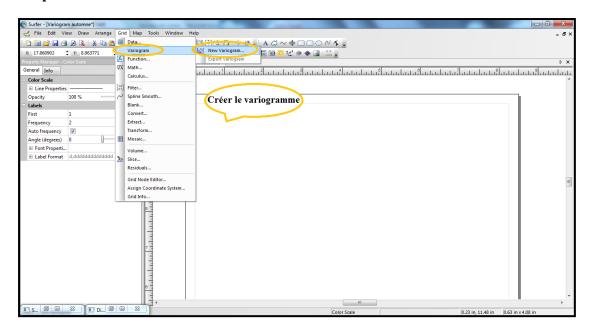
I. Présentation du Surfer :

I.1.Définition du logiciel :

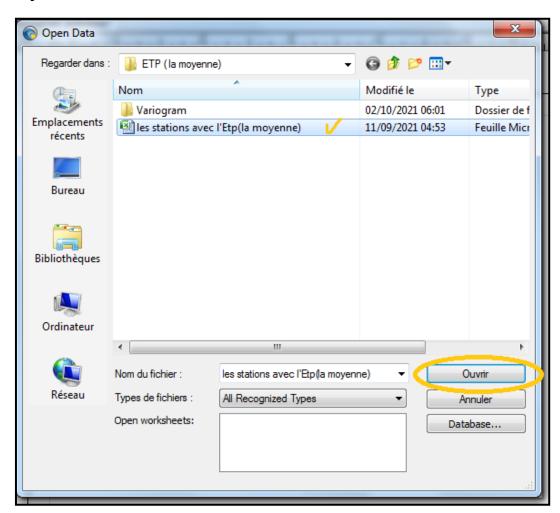
Le logiciel Surfer Conçu par Golden Software, permet de réaliser des Modèles Numériques de Terrain (MNT) issus des données récoltées sur le Terrain via GPS ou sur une carte déjà préétablie. Le logiciel permet de créer des grilles qui vont interpoler les données irrégulières de nos points x, y, z afin de les ordonnées. C'est à partir de ces grilles que l'ont pourra créer plusieurs types de cartes: Base map, contour map, 3D surface, vector et bien d'autres (Anonyme., Page consultée le 30 septembre 2021).

Surfer est un logiciel fonctionnant sous Microsoft Windows qui fournit un ensemble de fonctions de visualisation 3D, de dessin de contour et de modélisation de surface. Surfer est largement utilisé pour la modélisation du terrain, la modélisation du sondage, la visualisation du paysage, l'analyse de surface, la cartographie des contours, la cartographie des bassins versants et des surfaces 3D, le maillage et la mesure du volume.

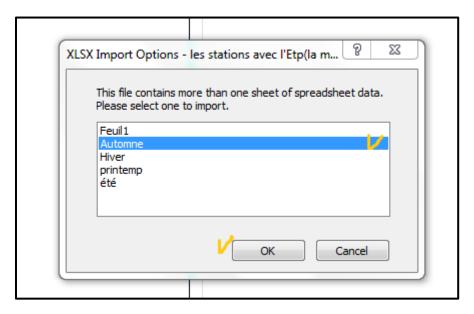


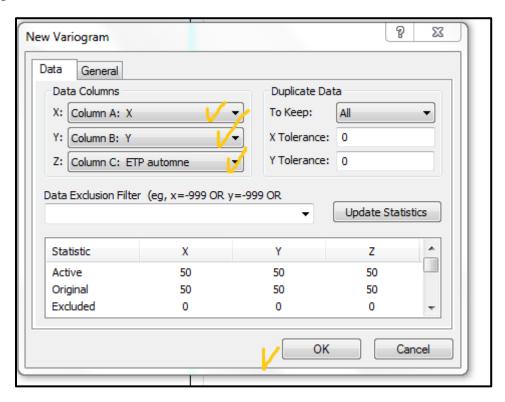

Figure 20: Logos du logiciel de Surfer.

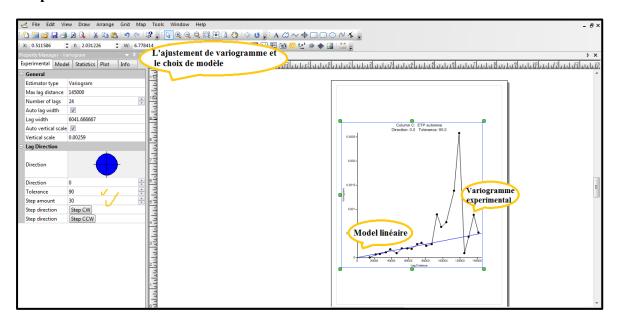
I.2. Fonctionnement du logiciel :


Les étapes suivies dans logiciels pour réaliser la carte de l'évapotranspiration :

I.2.1. Création de variogramme:

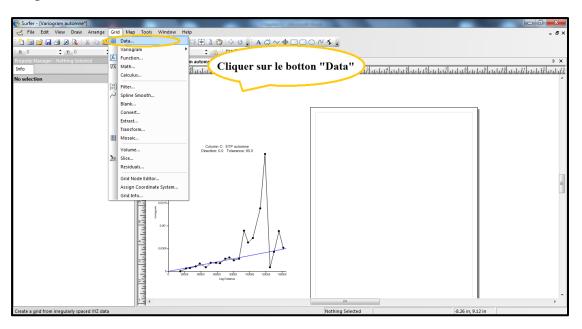

Etape 1:


Etape 2:

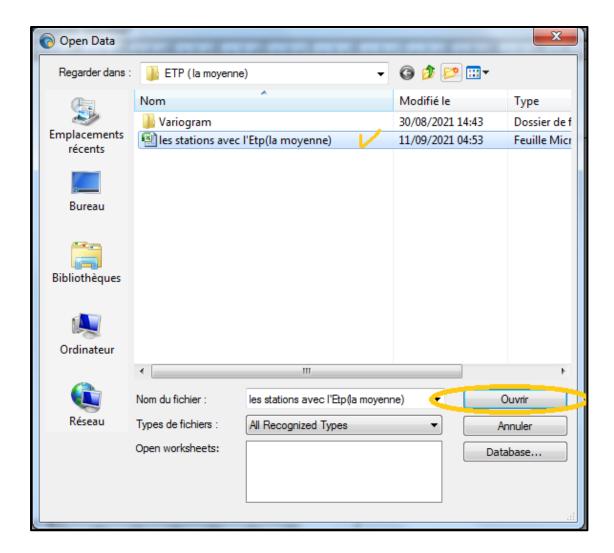

Etape 3:

Etape 4:

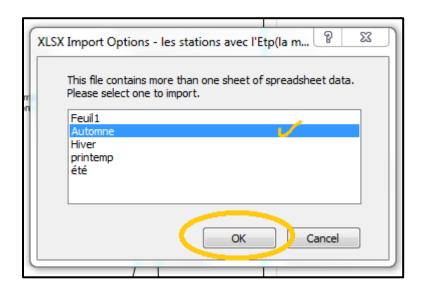
Etape 5:

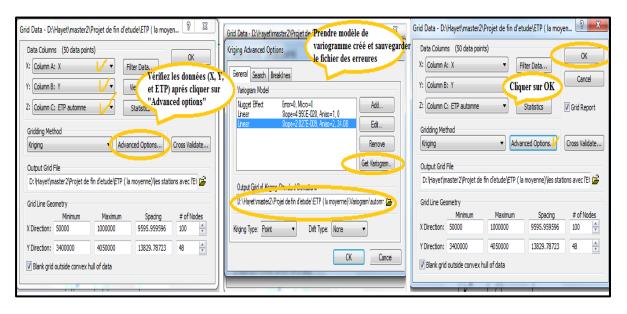


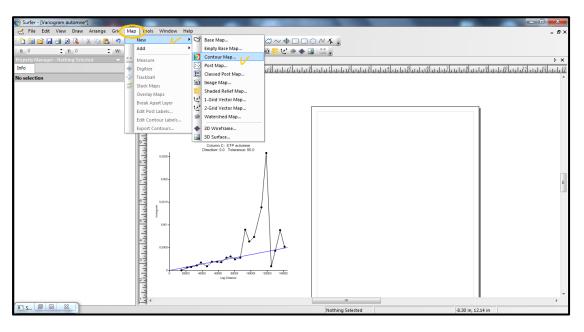
- * Dans l'Etape 2 et 3, on clique sur le fichier qui contient l'ETP mesurés de la saison d'automne.
- * A l'Etape 5, on fait l'ajustement de variogramme par choisir le model et modifier les autres propriétés. Lorsqu'on établit le variogramme, le logiciel de surfer enregistré les données de krigeage dans un fichier avec extension grid qui nous le nommes « Std automne ».


Et ainsi de suite, on répète les même étapes pour saisons (L'hiver, le printemps, et l'été).

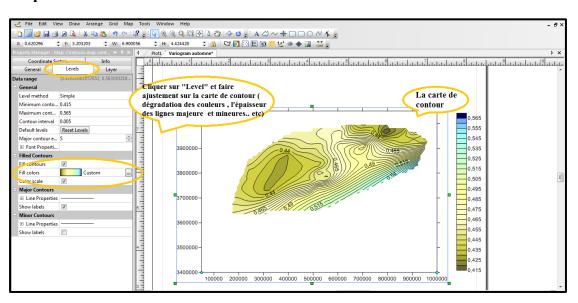
I.2.1. Création de carte par krigeage :

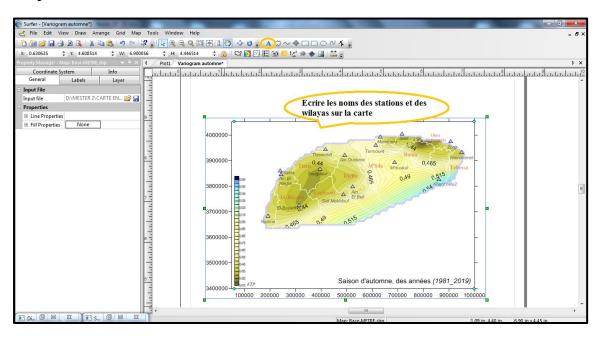

Etape 1:


Etape 2:


Etape 3:


Etape 4:


Etape 5:


Etape 6:

Etape 7:

Etape 8:

^{*}Après l'Etape 7, on fait limiter notre région:

Nous cliquons sur la carte puis "Digitize", et nous limitons la zone d'étude, nous aurons donc un fichier séparé avec l'extension bln, nous le nommons "digital", puis enregistrer le fichier généré.

Ensuite on clique sur « Blank » qui nous affiche une boite de dialogue sur laquelle. On choisi le fichier grid « Map couneur automne » et le fichier de "Digital"; à la fin, on obtient un nouveau fichier que nous utilisons pour la carte finale

Enfin on clique sur « Map » puis « new contour », et on enregistre notre travail.

* La même procédure sera suivie pour réaliser les cartes des valeurs d'ETP (hiver, printemps et été) par programme Surfer.

Chapitre VI: Résultats et discussion

Chapitre VI: Résultats et discussion

Les cultures agricoles sont souvent plantées à la saison d'automne, mais il y en a d'autres qui sont plantées à d'autres saisons, donc lors de notre étude, nous avons mesuré les valeurs ETP à toutes les saisons sur la période 1981-2019

Dans ce chapitre, nous présentons les résultats de notre analyse. Les ETP de 50 sites sélectionnés dans la steppe algérienne ont été calculés, puis interpolés par la méthode de Krigeage pour générer 4 cartes ETP pour 4 saisons (automne, hiver, printemps et été).

VI.1. Variographie et cartographie de l'ETP à la saison d'automne:

Le variogramme des valeurs d'ETP à saison d'automne 1981-2019 est sous forme linéaire:

$$\gamma(h)=C h^1$$

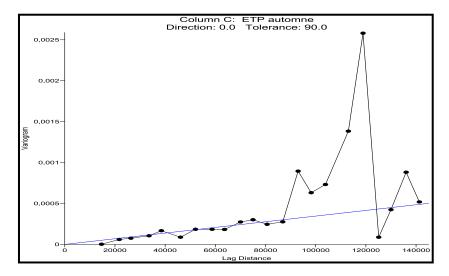
Tableau 3 présente les paramètres du variogramme identifié, et la modélisation de cette structure par variogramme expérimental **(Figure 21)** est réalisée à travers les caractéristiques spatiales suivantes :

*La distance maximale des classes = 145000 m

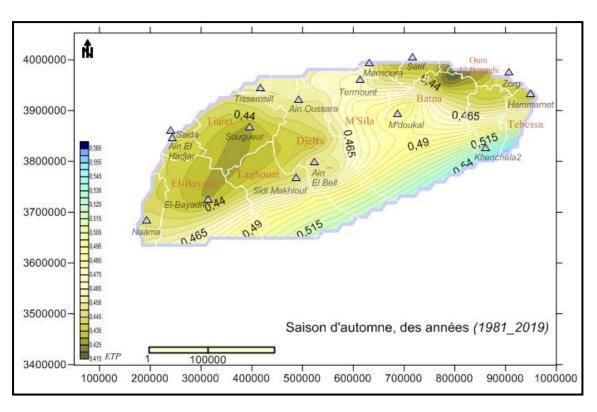
*Nombre de classes = 24

*Largeur de classe = 6042

*La valeur verticale = 0.00259


Tableau3: les paramètres du variogramme d'ETP d'automne.

Palier	/	/
Portée	4.993E-020	M
Effet de pépite	0	Mm^2


Dans **la Figure 22**, les valeurs d'ETP de saison de automne sont représentées sur le long des steppes algériennes.

La valeur inférieure enregistrée est 0.415 mm/mois et la valeur supérieure est 0.565 mm/mois. on remarque les valeurs de ETP dans les station de l'Ouest steppique : El-Bayadh :0.43mm/mois et Sougueur : 0.43mm/mois, dans les stations de l'Est on a : M'doukal : 0.5 mm/mois et sétif : 0.14mm/mois . Les stations du centre steppique comme Ain oussara et Sidi makhlouf, enregistrent 0.13 mm/mois et 0.12mm/mois .

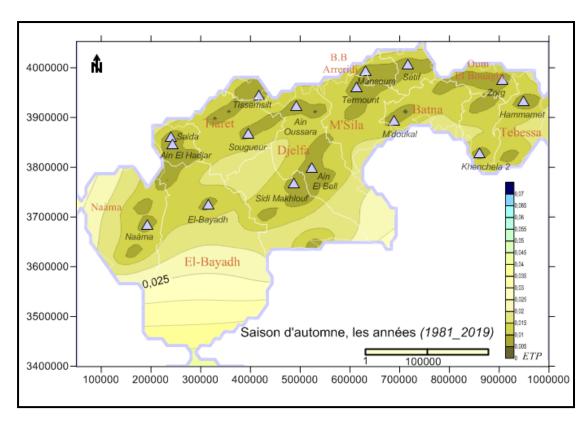

Généralement, le processus de l'évapotranspiration est à faible quantité dans la steppe pendant la saison d'automne.

Figure21 : Variogramme de l'ETP mesuré dans la steppe algérienne pendant 1981_2019 (saison automne).

Figure22: Carte répartition spatial de l'ETP en 1981_2019 dans la steppe algérienne (saison d'automne).

Figure23: Carte des erreurs du d'ETP en 1981_2019 dans la steppe algérienne (saison d'automne)

VI.2. Variographie et cartographie de l'ETP à la saison d'hiver:

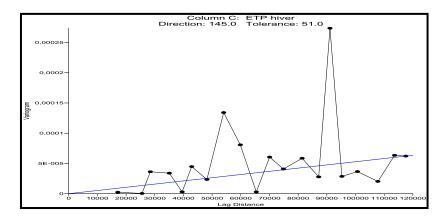
La *Figure 24* représente le variogramme expérimental des valeurs ETP de saison d'hiver qui est ajusté à un model linéaire caractérisé par :

*La distance maximale des classes = 120000 m

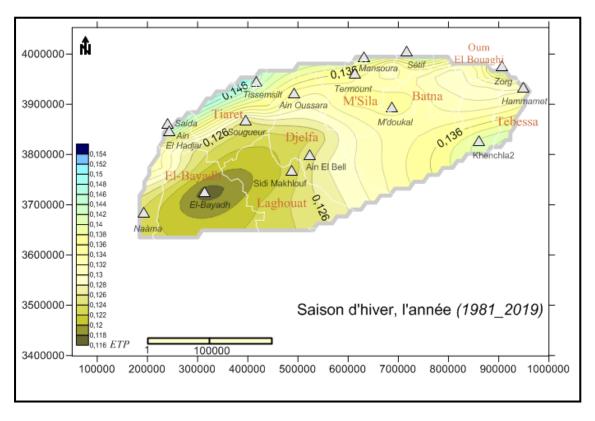
*Nombre de classes = 23

*Largeur de classe = 5217

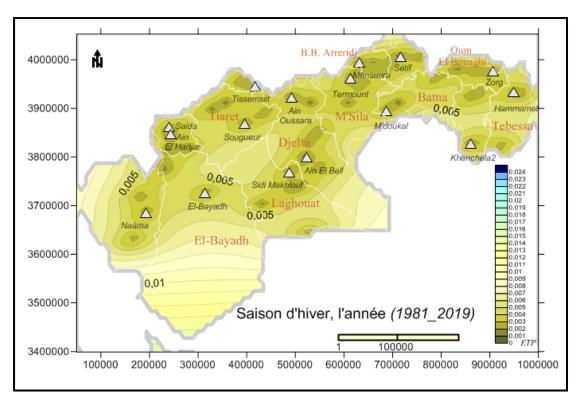
*La valeur verticale = 0.000274


Tableau4: les paramètres du variogramme des valeurs ETP d'hiver.

Palier	/	/
Portée	5.29E-011	M
Effet de pépite	0	Mm ²


La *Figure 25* représente les valeurs d'ETP de saison d'hiver dans le territoire étudié. La valeur inférieure enregistrée est 0.116 mm/mois, et la valeur supérieure est 0.154 mm/mois.

Nous observons les valeurs de ETP dans El-Bayadh et Sougueur (les steppes de ouest) sont : 0.12 mm/mois et 0,13. La valeur 0.14mm/mois a obtenus à stations de M'doukal et 0.13mm/mois à station de Hammamet. Ainsi les mesures obtenus dans les stations de centre steppique Ain Oussara et Sidi Makhlouf sont : 0.13 mm/mois et 0.12mm/mois.


A partir ces résultats, on remarque que la quantité d'eau évaporé à saison d'hiver est très faible.

*Figure 24 :*Variogramme de l'ETP mesuré dans la steppe algérienne pendant 1981 2019 (saison d'hiver).

Figure 25: Répartition spatiale de l'ETP en 1981_2019 dans la steppe algérienne (saison d'hiver).

Figure 26: Carte des erreurs d'ETP en 1981_2019 dans la steppe algérienne (saison d'hiver)

VI.3. Variographie et cartographie de l'ETP à la saison de printemps:

Le variogramme de l'ETP de la saison du printemps correspond au modèle linéaire, et ses caractéristiques structurelles sont présentées dans le *Tableau5*. La modélisation de cette structure par variogramme présente les caractéristiques spatiales suivantes :

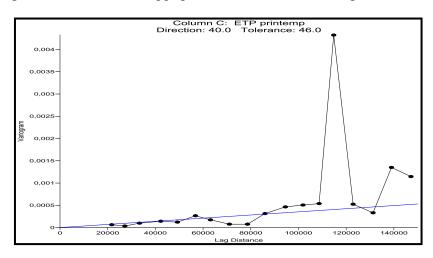
*La distance maximale des classes = 150000 m

*Nombre de classes = 20

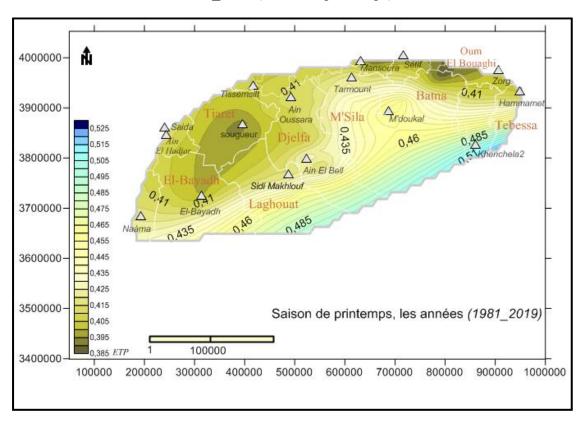
*Largeur de classe = 7500

*La valeur verticale = 0.00433

Tableau5: Les paramètres du variogramme des valeurs ETP de printemps.


Palier	/	/
Portée	3.134E-009	M
Effet de pépite	0	Mm ²

On représente les valeurs d'ETP de saison printemps dans la *Figure 28*. La valeur minimale est 0.385 mm/mois et la valeur maximale est 0.525 mm/mois.


Nous observons la valeur d'ETP dans les stations d'El-Bayadh et Sougueur est 0.40 mm/mois. Et on a enregistré la valeur de 0.46 mm/mois à stations de M'doukal,

0.40mm/mois à station de Hammamet, et 0.39mm/mois à Sétif. Au centre de la steppe on obtenus 0.41mm/mois et 0.42mm/mois comme des valeurs d'ETP dans les stations de Ain Oussara et Termount.

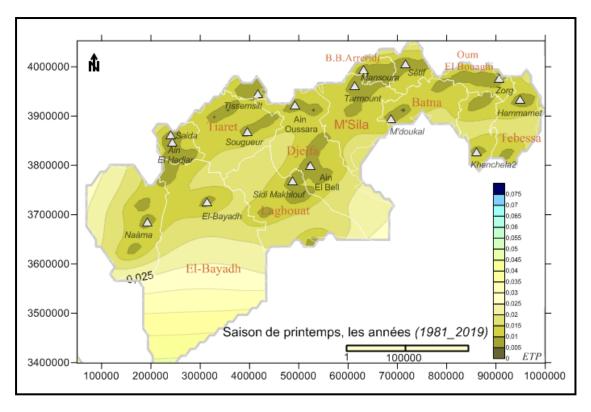

A saison de printemps, on peut dire que il ya un processus de l'évapotranspiration pour les végétations des zones steppiques et avec des valeurs significatives.

Figure 27 : Variogramme de l'ETP mesuré dans la steppe algérienne pendant 1981_2019 (saison de printemps).

Figure 28 : Carte de la répartition spatiale de l'ETP en 1981_2019 dans la steppe algérienne (saison de printemps).

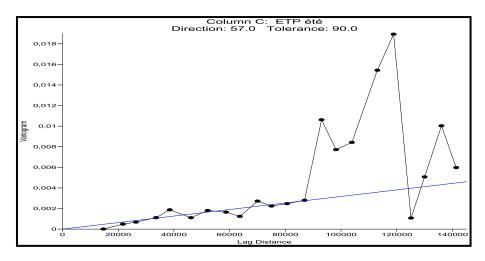
Figure 29 : Carte des erreurs d'ETP en 1981_2019 dans la steppe algérienne (saison de printemps)

VI.3. Variographie et cartographie de l'ETP à la saison d'été:

La **figure 30** présente le variogramme expérimental des valeurs ETP de saison d'été qui caractériser par :

*La distance maximale des classes = 145000 m

*Nombre de classes = 24


*Largeur de classe = 6042

*La valeur verticale = 0.019

Le *Tableau 6* indique à les propriétés du variogramme d'ETP de saison d'été , et la modélisation de cette structure par variogramme expérimental est réalisée à travers les caractéristiques spatiales suivantes :

Tableau6: Les paramètres du variogramme des valeurs ETP d'été.

Palier	/	/
Portée	2.31E-008	M
Effet de pépite	0	Mm²

Figure 30 : Variogramme de l'ETP mesuré dans la steppe algérienne pendant 1981 2019 (saison d'été).

La *Figure 31* représente les valeurs d'ETP de saison d'été dans la steppe algérienne. La valeur minimale est 0.8 mm/mois et la valeur maximale est 1.22 mm/mois.

la valeur d'ETP enregistrée dans la station d'El-Bayadh est 0.90mm/mois , et 0.89 mm/mois à Sougueur. Et on a enregistré la valeur de 1.08 mm/mois à stations de M'doukal, 0.86 mm/mois à station de Hammamet, et 0.80 mm/mois à Sétif. dans les stations qui située au centre de steppe, nous avons remarquer 0.95mm/mois à Ain Ouessara et à Sidi makhlouf, et 0.98mm/mois à stations de Termount.

En général dans la saison d'été, les valeurs de l'ETP sont très élevées dans la steppe algérienne.

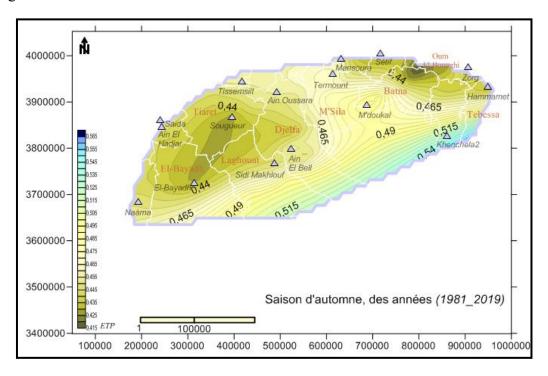


Figure 31 : Carte répartition spatial de l'ETP en 1981_2019 dans la steppe algérienne (saison d'été).

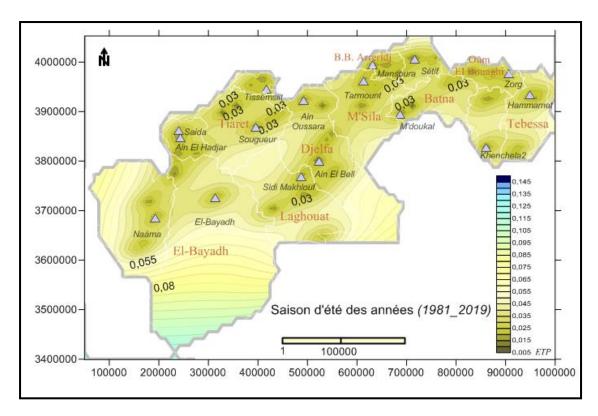
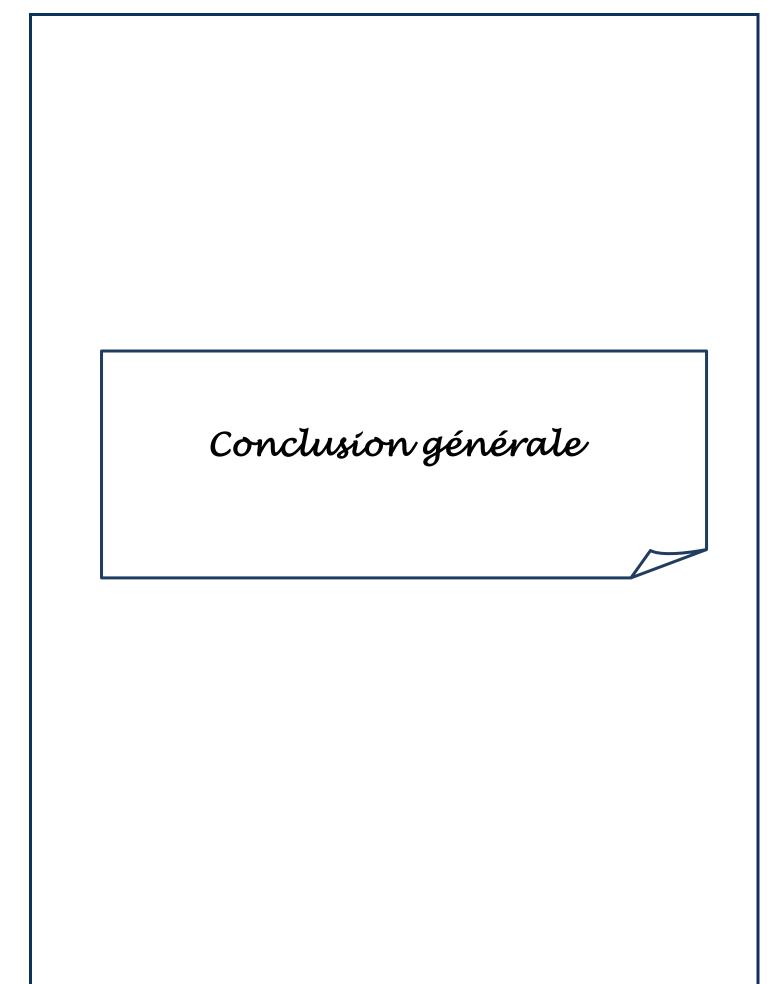



Figure 32 : Carte des erreurs d'ETP en 1981_2019 dans la steppe algérienne (saison d'été)

Les *Figure 23, 26, 29,* et *32* représentent les erreurs des valeurs d'ETP mesurés dans les régions de la steppe algérienne.

Conclusion générale :

Nous avons divisé ce travail en deux parties : une partie théorique et une partie expérimentale. Dans la première partie nous avons 3 chapitres, le premier chapitre a présenté l'importance d'étudier l'évapotranspiration, ses types et les méthodes estimations. Le deuxième chapitre, sous le « géostatistique », nous avons présenté les concepts qui s'y rapportent et les étapes suivies pour accéder au la méthode de krigeage. Dans le troisième chapitre, nous avons donnée les caractéristiques de la steppe algérienne, son situation géographique, ses caractéristiques climatiques, le type de sol et la végétation steppique.

Dans la partie expérimentale, nous avons expliqué le programme que nous avons utilisé dans notre étude et les résultats obtenus, qui comprend les 3 chapitres restants. Le quatrième chapitre représente la méthode d'extraction des données climatiques par le site DAV et la méthode de calcul de l'ETP dans Excel. Quant au cinquième chapitre, il comprenait comment créer des cartes de répartition de l'évapotranspiration mesurée, en fonction des phases de la géostatistique, en entrant les coordonnées géographiques X, Y, Z. le dernier chapitre, nous avons présenté les résultats obtenus et les quatre cartes saisonnières qui ont été créées avec ses cartes d'erreur.

A partir des cartes spatiales d' ETP obtenues, nous concluons que le processus d'évapotranspiration augmente dans la plupart des zones steppiques pendant l'été en raison de la température élevée et du manque d'eau stockée dans le sol, et il commence à diminuer pendant la saison d'automne. Il est faible en hiver, surtout dans les plaines occidentales puis Il augmente progressivement au printemps.

Ces cartes peuvent être exploitées par les agronomes hydrauliciens pour le calcul des besoins en eau des plantes afin d'élaborer leurs projets d'irrigation en calculant les différentes doses d'arrosages pour les différences cultures pour différentes saisons de l'année. On voit bien ici l'intérêt de l'utilisation des procédés d'estimation géostatistiques à savoir le krigeage pour la faciliter la gestion et l'aménagement des projets d'irrigation.

A la fin, ce travail a contribuée d'expliquer l'importance de l'étude géostatistique pour faire des cartes spatial de n'importe quel phénomène naturel.

Les Références Bibliographiques

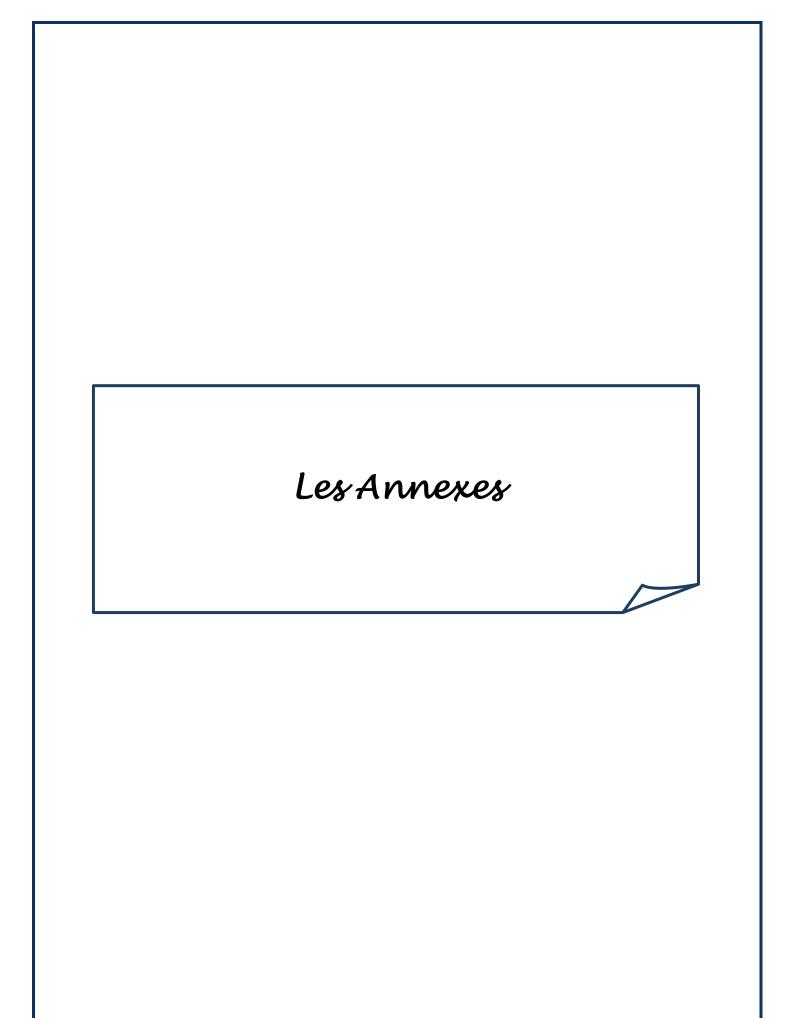
- [1] ABDELKADER M., 1996_ Etude de l'efficience de l'eau sur la culture du mais grain dans le périmètre du haut Cheliff. Thèse Magister. Agro, Inst. Nati. Agro, El-Harrach, P: 32-33.
- [2] ALLEN R.G., PEREIRA, L.S., HOWELL. T et JENSEN M., 2011_ Evapotranspiration information reporting: Factorsgoverning measurement accuracy. Agricultural Water Management 98 (6), pp. 899 920. ALLEN R.G., PEREIRA, L.S., RAES, D., et SMITH, M., 1998: Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56. FAO, Rome, Italy, 300p.
- [3] ALLEN R.G.. SMITH , M. , PERRIER . A.. et PEREIRA , L.S. , 1994_An update for the definition of reference evapotranspiration ICID Bulletin., 43 (2) , P: 1 92 .
- [4] AMRI R., 2013_Estimation régionale de l'évapotranspiration sur la plaine de Kairouan (Tunisie) à partir de données satellites multi-capteurs. Thèse de doctorat de l'Université de Toulouse., 176 p.
- [5] ANAT (Agence Nationale de l'Aménagement du Territoire)., 2004_ *Carte bioclimatique de l'Algérie*.
- [6] Anonyme, Page consultée le 20 septembre 2021- Hauts Plateaux (Algérie). Wikipedia.
- [7] Anonyme, (Page consultée le 26 septembre 2021) *Data Access Viewer (DAV)*, [En ligne]. Adresse URL: https://power.larc.nasa.gov/docs/tutorials/data-access-viewer/user-guide/.
- [8] Anonyme, (Page consultée le 30 septembre 2021) _ *Le logiciel Surfer*, [En ligne]. Adresse URL: https://mescoursuniversitaires.blogspot.com/2017/05/le-logiciel-surfer.html.
- [9] AZOUZI B., 2021 *Polycopié du cours Géostatistique*. Université Ziane Achour,. Faculté des Sciences de la vie et de la nature, Djelfa., 12 P.

- [10] BAILLARGEON S., 2005 _ Le krigeage : revue de la théorie et application à l'interpolation spatiale de données de précipitations. Mémoire pour l'obtention du grade de Maitre ès sciences (M.Sc.).l'Université Laval.,Faculté des sciences et degénie.Québec., 137 p.
- [11] BENZIAN I F,. 2009 _ Etude par krigeage des données piezométriques de la nappe du plateau de Mostaganem. Thèse de Magistère en Hydrogéologie., Université d'Oran Faculté des Sciences de la Terre, Département de Géologie., Oran, 103 P.
- [12] BLANEY et CRIDDEL., 1952 _ Determining water requierements in irrigated acras from climatological and irrigation data ., Departement of agriculture , U.S.A., Soil conservation , P: 30_35 .
- [13] BOUDJERADA I., 2015 _ Estimation et cartographie de l'évapotranspiration potentielle. Thèse Magister, Ecole nationale superieure d'hydraulique Arbaoui Abdellah., Blida, 79 P.
- **[14]** BROCHET P et GERBIER N. , 1975 _ L'évapotranspiration . Aspect Météorologique . Evaluation pratique de l'évapotranspiration Potentielle., Edition revue et complétée, Monographie de la météorologie nationale., n ° 65 . S.M.M. Climatologie Paris., P 3 5.
- [15] BRUC W et STANLY V., 1974 _ Irrigation : desing and practice .Ed : First published., London , P :93 _101.
- [16] CALANCA P., HOLZKÄMPER A., 2010 _ Conditions agro météorologiques du Plateau suisse de 1864 à 2050. *Recherche Agronomique Suisse.*, 1 (9), P: 320-325.
- [17] CHARLES R., 1975 _ La détermination pratique de l'évaporation. Application à l'Afriques centrale. *ORSTOM*. Paris, P :27-67.

- [18] CHOURGHAL N., 2003_Modélisation agro météorologique du bilan hydrique par simulation de la pluviométrie et de l'évapotranspiration potentielle de la région d'Alger. These de Magister. Agro, Inst. Nati. Agro., El Harrach, P: 3 5.
- [19] DJEBAILI S., 1984 _ Steppe Algérienne, phytosociologie et écologie. *OPU* .Alger, 171p.
- [20] DUBOST D., 1992- Aridité, agriculture et développement : le cas des oasis algériennes .*In sécheresse* .no 2. vol. 3.
- [21] FLAMAND R., 2000 _ Validation d'un modèle de comportement mécanique pour les fractures rocheuses en cisaillement . These de doctorat , Université du QUEBEC., Canada: 416 p.
- [22] GAMMAR. A.M., et HLAOUI Z., 2012 _ *Utilisation des indicateurs du déficit hydrique dans les synthèses bioclimatiques méditerranéennes*. Actes du 25ème Colloque de l'Association Internationale de Climatologie. Grenoble, P: 321-326.
- [23] GENTIER S., 1987_Morphologie et comportement hydromécanique d'une fracture dans un granite sous contrainte normale. Documents du BRGM., no 134, B.R.G.M., Orléans.
- [24] GOSSE G, PERRIER A et ITIER B., 1977 _ Etude de l'Evapotranspiration réelle d'une culture de blé dans le bassin parisien. *Annales Agronomiques*. 28 (5), P: 521-541.
- [25] GRATTON Y., 2002 _ Le krigeage : la méthode optimale d'interpolation spatiale. INRS-Eau-Terre-Environnement, Juin 2002, Institut. Nationale d'analyse géographique. Québec : 4 p.
- [26] HAMIMED A .,LAOUNIA N., KHALDI A., et AZZAZ H., 2014 _ Contribution à la spatialisation de l'évapotranspiration d'un agrosystème semi aride en Algérie par

utilisation de la télédétection et du modèle METRIC . *Physio - Géo* .Vol 8., P: 197-213.

- [27] HAMIMED A., et RABHA M., 2008 _ cartographie de l'évapotranspiration réelle journalière dans les conditions semi arides en Algérie à partir des données satellitaires Aster. *In Sécheresse*.vol 19 n°(4)., P:293-300.
- [28] JACQUES H. DURAND., 1970 _Les sols irrigables étude pédologique. Ed: Presse universitaire de France., Paris, P: 158-160.
- [29] KHADRI S., 2021_ *Cours Irrigation et drainage*. Université Ziane Achour,. Faculté des Sciences de la vie et de la nature, Djelfa., 19 P.
- [30] KATERJI N., & PERRIER A., 1983 _ Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne: Rôle d'un coefficient cultural. *Agronomie*. (3)., 513-521.
- [31] LE HOUEROU H N.,1975 _ Détérioration of the ecological equilibrium in the aride zone of North Africa. F.A.O .Rome.
- [32] MATHERON G., 1965 _ Les variables régionalisées et leur estimation. Masson et Cie. 306 p.
- [33] MISSOUMI S., 2004 _ Intégration des données agroclimatiques dans un système d'information géographique(SIG) pour la région Ouest Algérienne : Exemple d'application fine sur la région de Mostaganem. Thèse Magister, Université d'Oran Es-Senia., Oran, 142p.
- [34] MJEJRA M. ,2016_ Étude de l'évapotranspiration dans le bassin versant de Mejerda (en Tunisie): apport de la télédétection satellitaire et des Systèmes d'Information Géographique. Thèse de Doctorat, l'Université de Tunis, Tunis, 284 p.


- [35] MOSTEFAOUI A., 1985- Contribution aux calculs des besoins en eau des cultures : Etude fréquentielle des déficits hydriques pour les régions d'Alger et Oran . Thèse Magister Agro, Inst, Nati. Agro, El-Harrach, pp 3-4.
- [36] NEDJIMI B et GUIT B., 2012 _ Les steppes algerienne : causes de déséquilibre. *Algerian journal of arid environment.*, vol 2 n°2 : 50-61.
- [37] NEDJRAOUI D., 2004 _ Evaluation des ressources pastorales des régions steppiques algériennes et définition des indicateurs de dégradation. *Zaragoza : CIHEAM.* p 239- 243
- [38] NEDJRAOUI D et BÉDRANI S., 2008_ La désertification dans les steppes algériennes : causes, impacts et actions de lutte. *Vertigo la revue électronique en sciences de l'environnement.* Vol 8(1), 15 p
- [39] OULBACHIR K., 2010 _ Ecologie microbienne des sols sous differents compartiments granulométriques et différents etage bioclimatiques. Thèse de doctorat , Université d'Oran., 144 p.
- **[40]** PENMAN H.L., 1948. Natural evaporation from open water, bare soil and grass. *Proc. Roy. Soc.* London. 193, 120–145.
- **[41]** PERRIER A. , 1975 Etude physique de l'évapotranspiration dans les condition naturelles . Expression et paramètres donnant l'évaporation réelle et potentielle des couverts végétaux . *Annales Agronomiques* . , n° 26 (2) , pp105-120.
- [42] REMENIERAS G.1963- L'hydrologie de l'ingénieur. Edit : Collection de la direction des études et recherche d'électricité. France, 266 P.
- [43] REMENIERAS G., 1970 *L'hydrologie de l'ingénieur*. coll. du centre de recherches et d'essais de CHATOU. EYROLLES éd : 456 p.

[44] TELIBI A., 2004 _ Contribution à l'étude de l'évapotranspiration et des besoins en eau de Brassica oleracea . (Chou - fleur) en zone semi aride (cas de la région de Dielfa). Thèse Ingénieur agro., Université Ziane Achour, Institut d'Agropastoralisme., Djelfa, 88P.

[45] THORNTHWAITE C., 1948- An approach toward a rational classification of Climate, *The Geog. review*, vol. XXXVIII, no 1., P55-65.

[46] WACKERNAGEL H., 2004 _ Géostatistique et assimilation séquentielle de données. Thèse Magister, Université Pierre et Marie Curie., Paris, 62 P.

[47] XU C.Y, GONG L, JIYANG T, CHEN D, SINGH V.P., 2005_ Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. *Journal of Hydrology* . 327 (2006), P: 81–93.

Annexe 1 : Tableau de coefficient K.

Latit	JAN	FEV	MAR	AVR	MAI	JUI	JUIL	AOUT	SEP	ОСТ	NOV	DEC
N												
0	1,04	0,94	1,04	1,01	1,04	1,01	1,04	1,04	1,01	1,04	1,01	1,04
5	1,02	0,93	1,03	1,02	1,06	1,03	1,06	1,05	1,01	1,03	0,99	1,02
10	1	0,91	1,03	1,03	1,08	1,06	1,08	1,07	1,02	1,02	0,98	0,99
15	0,97	0,91	1,03	1,04	1,11	1,08	1,12	1,08	1,02	1,01	0,95	0,97
20	0,95	0,9	1,03	1,05	1,13	1,11	1,14	1,11	1,02	1	0,93	0,94
25	0,93	0,89	1,03	1,06	1,15	1,14	1,17	1,12	1,02	0,99	0,91	0,91
26	0,92	0,88	1,03	1,06	1,15	1,15	1,17	1,12	1,02	0,99	0,91	0,91
27	0,92	0,88	1,03	1,07	1,16	1,15	1,18	1,13	1,02	0,99	0,9	0,9
28	0,91	0,88	1,03	1,07	1,16	1,16	1,18	1,13	1,02	0,98	0,9	0,9
29	0,91	0,87	1,03	1,07	1,17	1,16	1,19	1,13	1,03	0,98	0,9	0,89
30	0,9	0,87	1,03	1,08	1,18	1,17	1,2	1,14	1,03	0,98	0,89	0,88
31	0,9	0,87	1,03	1,08	1,18	1,18	1,2	1,14	1,03	0,98	0,89	0,88
32	0,89	0,86	1,03	1,08	1,19	1,19	1,21	1,15	1,03	0,98	0,88	0,87
33	0,88	0,86	1,03	1,09	1,19	1,2	1,22	1,15	1,03	0,97	0,88	0,86
34	0,88	0,85	1,03	1,09	1,2	1,2	1,22	1,16	1,03	0,97	0,87	0,86
35	0,87	0,85	1,03	1,09	1,21	1,21	1,23	1,16	1,03	0,97	0,86	0,85
36	0,87	0,85	1,03	1,1	1,21	1,22	1,24	1,16	1,03	0,97	0,86	0,84
37	0,86	0,84	1,03	1,1	1,22	1,23	1,25	1,17	1,03	0,97	0,85	0,83
38	0,85	0,84	1,03	1,1	1,23	1,24	1,25	1,17	1,04	0,96	0,84	0,83
39	0,85	0,84	1,03	1,11	1,23	1,24	1,26	1,18	1,04	0,96	0,84	0,82
40	0,84	0,83	1,03	1,11	1,24	1,25	1,27	1,18	1,04	0,96	0,83	0,81
41	0,83	0,83	1,03	1,11	1,25	1,26	1,27	1,19	1,04	0,96	0,82	0,8
42	0,82	0,83	1,03	1,12	1,26	1,27	1,28	1,19	1,04	0,95	0,82	0,79
43	0,81	0,82	1,02	1,12	1,26	1,28	1,29	1,2	1,04	0,95	0,81	0,77
44	0,81	0,82	1,02	1,13	1,27	1,29	1,3	1,2	1,04	0,95	0,8	0,76
45	0,8	0,81	1,02	1,13	1,28	1,29	1,31	1,21	1,04	0,94	0,79	0,75
46	0,79	0,81	1,02	1,13	1,29	1,31	1,32	1,22	1,04	0,94	0,79	0,74
47	0,77	0,8	1,02	1,14	1,3	1,32	1,33	1,22	1,04	0,93	0,78	0,73
48	0,76	0,8	1,02	1,14	1,31	1,33	1,34	1,23	1,05	0,93	0,77	0,72
49	0,75	0,79	1,02	1,14	1,32	1,34	1,35	1,24	1,05	0,93	0,76	0,71
50	0,74	0,78	1,02	1,15	1,33	1,36	1,37	1,25	1,06	0,92	0,76	0,7
Latit												
S												
5	1,06	0,95	1,04	1	1,02	0,99	1,02	1,03	1	1,05	1,03	1,06
10	1,08	0,97	1,05	0,99	1,01	0,96	1	1,01	1	1,06	1,05	1,1
15	1,12	0,98	1,05	0,98	0,98	0,94	0,97	1	1	1,07	1,07	1,12
20	1,14	1	1,05	0,97	0,96	0,91	0,95	1,99	1	1,08	1,09	1,15
25	1,17	1,01	1,05	0,96	0,94	0,88	0,93	0,98	1	1,1	1,11	1,18
30	1,2	1,03	1,06	0,95	0,92	0,85	0,9	0,96	1	1,12	1,14	1,21
35	1,23	1,04	1,06	0,94	0,89	0,82	0,87	0,94	1	1,13	1,17	1,25
40	1,27	1,06	1,07	0,93	0,86	0,78	0,84	0,92	1	1,15	1,2	1,29

42	1,28	1,07	1,07	0,92	0,85	0,76	0,82	0,92	1	1,16	1,22	1,31
44	1,3	1,08	1,07	0,92	0,83	0,74	0,81	0,91	0,99	1,17	1,23	1,33
46	1,32	1,1	1,07	0,91	0,82	0,72	0,79	0,9	0,99	1,17	1,25	1,35
48	1,34	1,11	1,08	0,9	0,8	0,7	0,76	0,89	0,99	1,18	1,27	1,37
50	1,37	1,12	1,08	0,89	0,77	0,67	0,74	0,88	0,99	1,19	1,29	1,41

Annexe 2 : Tableau d'ETP mesuré de l'Automne.

				ETP
Station	Code	Х	Υ	automne
Ain Madhi		429373,846	3702542,74	0,48478743
Hassi R'Mel	605630	526177,111	3643561,55	0,52543602
Ksar El Hirane	60403	512960,429	3738880,8	0,48710689
Laghouat	605450	493517,528	3735547,97	0,46990388
Sidi Makhlouf	60401	487080,396	3768817,53	0,44408547
Oum el Bouaghi	604210	871178,881	3976227,17	0,42890172
Ain Kercha		832978,888	3981370,74	0,42592816
Zorg		906524,508	3975560,97	0,46143542
Barika	604710	711778,727	3912130,78	0,49666664
Batna	604680	787554,959	3960885,41	0,41342463
M'doukal		687761,679	3894951,77	0,49666664
Tébessa2		922711,722	3821664,18	0,56890301
Tébessa	604750	965980,303	3930618,28	0,43636842
Hammamet		949449,156	3933113,28	0,43299526
Ksar Chellala	605140	437158,65	3891004,6	0,44786302
Medrissa	80701	329807,179	3899042,75	0,44323909
Sougueur	10901	394994,359	3868102,01	0,42785024
Tiaret	605110	357341,657	3912988,86	0,44323909
Ain el Bell	60502	520230,434	3802095,16	0,45766715
Ain Oussara	11205	491832,565	3922951,93	0,45686918
Dar Chioukh	170503	546640,242	3853200,57	0,44545952
Djelfa	604981	532069,695	3835395,12	0,4377169
Djelfa Tletsi	605350	522997,325	3798775	0,45766715
Had-Sahary	11102	531801,554	3911914,06	0,45272548
Messaad	60602	553467,753	3778939,8	0,44634168
Sétif	604450	716732,445	4006605,09	0,42603006
El Eulma	1	757308,766	4004376,01	0,43332439
Ain Arnat	1	707737,875	4006386,26	0,42603006
Saida	605360	239453,046	3861223,41	0,45049736
Sidi Ahmed		238165,442	3815738,52	0,44019395

Maamora		279622,592	3819102,91	0,43830122
Ain El Hadjar		242706,928	3846697,94	0,44960857
Bou Saada	605150	609063,209	3910300,33	0,48072429
M'Sila	604670	635774,36	3947274,8	0,45673323
Tarmount		613864,04	3961389,05	0,46881138
Bougtoub	81502	231433,473	3770409,61	0,4401693
El Kheither	81504	229853,481	3782667,45	0,4401693
El-Bayadh	605500	314557,099	3726252,86	0,42873305
Bordj Bou Arrerid	j 2	683539,791	3975877,44	0,43731528
Bordj Bou Arreridj	604440	658512,096	3992036,69	0,43595502
Mansoura		631457,698	3993808,17	0,45710419
Tissemsilt		386997,241	3958049,91	0,46075799
Theniet El Had		411528,832	3969973,07	0,45721574
Tissemsilt 2		416716,595	3945519,2	0,45721574
Tamza		857090,408	3921171,48	0,43863646
Khenchela	604760	876671,471	3931979,21	0,43615852
Khenchela 2		860759,413	3827943,61	0,5294418
Ain Sefra		164540,119	3629246,51	0,45653055
Mecheria		181622,124	3720863,54	0,44215803
Naama	605570	192566,824	3684969,99	0,44882152

Annexe 3 : Tableau d'ETP mesuré de l'hiver.

Station	Code	Х	Υ	ETP hiver
Ain Madhi		429373,846	3702542,74	0,12228526
Hassi R'Mel	605630	526177,111	3643561,55	0,12451058
Ksar El Hirane	60403	512960,429	3738880,8	0,12533028
Laghouat	605450	493517,528	3735547,97	0,12387274
Sidi Makhlouf	60401	487080,396	3768817,53	0,12289611
Oum el Bouaghi	604210	871178,881	3976227,17	0,13357892
Ain Kercha		832978,888	3981370,74	0,13141582
Zorg		906524,508	3975560,97	0,14843278
Barika	604710	711778,727	3912130,78	0,1351863
Batna	604680	787554,959	3960885,41	0,12919002
M'doukal		687761,679	3894951,77	0,1351863
Tébessa2		922711,722	3821664,18	0,14331844
Tébessa	604750	965980,303	3930618,28	0,13256884
Hammamet		949449,156	3933113,28	0,12902754

Ksar Chellala	605140	437158,65	3891004,6	0,13586375
Medrissa	80701	329807,179	3899042,75	0,14525289
Sougueur	10901	394994,359	3868102,01	0,12514057
Tiaret	605110	357341,657	3912988,86	0,14525289
Ain el Bell	60502	520230,434	3802095,16	0,12526704
Ain Oussara	11205	491832,565	3922951,93	0,13321804
Dar Chioukh	170503	546640,242	3853200,57	0,12698989
Djelfa	604981	532069,695	3835395,12	0,12393621
Djelfa Tletsi	605350	522997,325	3798775	0,12526704
Had-Sahary	11102	531801,554	3911914,06	0,1308636
Messaad	60602	553467,753	3778939,8	0,12794179
Sétif	604450	716732,445	4006605,09	0,14452878
El Eulma	1	757308,766	4004376,01	0,14869464
Ain Arnat	1	707737,875	4006386,26	0,14452878
Saida	605360	239453,046	3861223,41	0,14728308
Sidi Ahmed		238165,442	3815738,52	0,13202119
Maamora		279622,592	3819102,91	0,12752767
Ain El Hadjar		242706,928	3846697,94	0,14706427
Bou Saada	605150	609063,209	3910300,33	0,13545235
M'Sila	604670	635774,36	3947274,8	0,13349413
Tarmount		613864,04	3961389,05	0,13469305
Bougtoub	81502	231433,473	3770409,61	0,13196345
El Kheither	81504	229853,481	3782667,45	0,13196345
El-Bayadh	605500	314557,099	3726252,86	0,11675129
Bordj Bou Arrerid	j 2	683539,791	3975877,44	0,12974764
Bordj Bou Arreridj	604440	658512,096	3992036,69	0,14177769
Mansoura		631457,698	3993808,17	0,14224284
Tissemsilt		386997,241	3958049,91	0,15444935
Theniet El Had		411528,832	3969973,07	0,14449221
Tissemsilt 2		416716,595	3945519,2	0,14449221
Tamza		857090,408	3921171,48	0,12927401
Khenchela	604760	876671,471	3931979,21	0,12878467
Khenchela 2		860759,413	3827943,61	0,14046316
Ain Sefra		164540,119	3629246,51	0,12429821
Mecheria		181622,124	3720863,54	0,12683902
Naama	605570	192566,824	3684969,99	0,12347314

Annexe 4: Tableau d'ETP mesuré de printemps.

Station	Code	Х	Υ	ETP printemps
Ain Madhi	Code	429373,846	3702542,74	0,45526636
Hassi R'Mel	605630	526177,111	3643561,55	0,49659569
Ksar El Hirane	60403	512960,429	3738880,8	0,45919525
Laghouat	605450	493517,528	3735547,97	0,44126834
Sidi Makhlouf	60401	487080,396	3768817,53	0,41444898
Oum el Bouaghi	604210	871178,881	3976227,17	0,39405202
Ain Kercha	00.210	832978,888	3981370,74	0,39215385
Zorg		906524,508	3975560,97	0,40636536
Barika	604710	711778,727	3912130,78	0,46214467
Batna	604680	, 787554,959	3960885,41	0,38623773
M'doukal		687761,679	3894951,77	0,46214467
Tébessa2		922711,722	3821664,18	0,52854476
Tébessa	604750	965980,303	3930618,28	0,40493372
Hammamet		949449,156	3933113,28	0,40222822
Ksar Chellala	605140	437158,65	3891004,6	0,40604382
Medrissa	80701	329807,179	3899042,75	0,40227196
Sougueur	10901	394994,359	3868102,01	0,3925543
Tiaret	605110	357341,657	3912988,86	0,40227196
Ain el Bell	60502	520230,434	3802095,16	0,42923806
Ain Oussara	11205	491832,565	3922951,93	0,41363025
Dar Chioukh	170503	546640,242	3853200,57	0,41478577
Djelfa	604981	532069,695	3835395,12	0,40871065
Djelfa Tletsi	605350	522997,325	3798775	0,42923806
Had-Sahary	11102	531801,554	3911914,06	0,41290458
Messaad	60602	553467,753	3778939,8	0,41310916
Sétif	604450	716732,445	4006605,09	0,385548
El Eulma	1	757308,766	4004376,01	0,39427287
Ain Arnat	1	707737,875	4006386,26	0,385548
Saida	605360	239453,046	3861223,41	0,4137245
Sidi Ahmed		238165,442	3815738,52	0,40696592
Maamora		279622,592	3819102,91	0,40327724
Ain El Hadjar		242706,928	3846697,94	0,41388871
Bou Saada	605150	609063,209	3910300,33	0,43983042
M'Sila	604670	635774,36	3947274,8	0,41985317
Tarmount		613864,04	3961389,05	0,42501517
Bougtoub	81502	231433,473	3770409,61	0,40746817

El Kheither	81504	229853,481	3782667,45	0,40746817
El-Bayadh	605500	314557,099	3726252,86	0,39942336
Bordj Bou Arrerid	j 2	683539,791	3975877,44	0,40886551
Bordj Bou Arreridj	604440	658512,096	3992036,69	0,38813866
Mansoura		631457,698	3993808,17	0,39740681
Tissemsilt		386997,241	3958049,91	0,41216171
Theniet El Had		411528,832	3969973,07	0,40470175
Tissemsilt 2		416716,595	3945519,2	0,40470175
Tamza		857090,408	3921171,48	0,41125215
Khenchela	604760	876671,471	3931979,21	0,40592936
Khenchela 2		860759,413	3827943,61	0,49741463
Ain Sefra		164540,119	3629246,51	0,42885271
Mecheria		181622,124	3720863,54	0,4126103
Naama	605570	192566,824	3684969,99	0,4183894

Annexe 5: Tableau d'ETP mesuré de l'été.

Station	Code	Х	Υ	ETP été
Ain Madhi		429373,846	3702542,74	1,07745162
Hassi R'Mel	605630	526177,111	3643561,55	1,18887409
Ksar El Hirane	60403	512960,429	3738880,8	1,08340792
Laghouat	605450	493517,528	3735547,97	1,03536842
Sidi Makhlouf	60401	487080,396	3768817,53	0,94997607
Oum el Bouaghi	604210	871178,881	3976227,17	0,83451387
Ain Kercha		832978,888	3981370,74	0,83454888
Zorg		906524,508	3975560,97	0,89062041
Barika	604710	711778,727	3912130,78	1,08186877
Batna	604680	787554,959	3960885,41	0,81095663
M'doukal		687761,679	3894951,77	1,08186877
Tébessa2		922711,722	3821664,18	1,21525657
Tébessa	604750	965980,303	3930618,28	0,85465129
Hammamet		949449,156	3933113,28	0,85917492
Ksar Chellala	605140	437158,65	3891004,6	0,92213884
Medrissa	80701	329807,179	3899042,75	0,87992374
Sougueur	10901	394994,359	3868102,01	0,88343609
Tiaret	605110	357341,657	3912988,86	0,87992374
Ain el Bell	60502	520230,434	3802095,16	0,98951546
Ain Oussara	11205	491832,565	3922951,93	0,954042

Dar Chioukh	170503	546640,242	3853200,57	0,94378688
Djelfa	604981	532069,695	3835395,12	0,92462418
Djelfa Tletsi	605350	522997,325	3798775	0,98951546
Had-Sahary	11102	531801,554	3911914,06	0,95059062
Messaad	60602	553467,753	3778939,8	0,93867707
Sétif	604450	716732,445	4006605,09	0,80397852
El Eulma	1	757308,766	4004376,01	0,81654769
Ain Arnat	1	707737,875	4006386,26	0,80397852
Saida	605360	239453,046	3861223,41	0,90903562
Sidi Ahmed		238165,442	3815738,52	0,90761484
Maamora		279622,592	3819102,91	0,90806017
Ain El Hadjar		242706,928	3846697,94	0,90882549
Bou Saada	605150	609063,209	3910300,33	1,02753293
M'Sila	604670	635774,36	3947274,8	0,94361104
Tarmount		613864,04	3961389,05	0,98191235
Bougtoub	81502	231433,473	3770409,61	0,90769955
El Kheither	81504	229853,481	3782667,45	0,90769955
El-Bayadh	605500	314557,099	3726252,86	0,90401345
Bordj Bou Arrerid	j 2	683539,791	3975877,44	0,8878947
Bordj Bou Arreridj	604440	658512,096	3992036,69	0,83990185
Mansoura		631457,698	3993808,17	0,90158759
Tissemsilt		386997,241	3958049,91	0,90734745
Theniet El Had		411528,832	3969973,07	0,92008881
Tissemsilt 2		416716,595	3945519,2	0,92008881
Tamza		857090,408	3921171,48	0,89074645
Khenchela	604760	876671,471	3931979,21	0,87549485
Khenchela 2		860759,413	3827943,61	1,1490495
Ain Sefra		164540,119	3629246,51	0,97387164
Mecheria		181622,124	3720863,54	0,92309382
Naama	605570	192566,824	3684969,99	0,94665428

Annexe 6 : Rapport de maillage de l'ETP d'automne

Gridding Report

Sat Oct 02 06:06:02 2021

Elapsed time for gridding: 0.34 seconds

Data Source

Source Data File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).xlsx (sheet 'Automne')

X Column: A
Y Column: B
Z Column: C

Data Counts

Active Data: 50

Original Data: 50
Excluded Data: 0
Deleted Duplicates: 0
Retained Duplicates: 0
Artificial Data: 0
Superseded Data: 0

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First
X Duplicate Tolerance: 0.095
Y Duplicate Tolerance: 0.044

No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Data Counts

Active Data: 50

Univariate Statistics

	X	Y	Z
Count:	50	50	50

1%%-tile: 5%%-tile: 10%%-tile: 25%%-tile: 50%%-tile: 75%%-tile: 90%%-tile: 95%%-tile:	164540.119 192566.824 231433.473 386997.241 526177.111 707737.875 871178.881 906524.508 949449.156	3629246.51 3684969.993 3720863.541 3798775.003 3894951.77 3947274.801 3981370.74 3993808.172 4006386.259	0.413424627836 0.426030056157 0.427850237203 0.437315284003 0.446341682823 0.457667152147 0.487106887461 0.496666643893 0.529441803096
Minimum: Maximum:	164540.119 965980.303	3629246.51 4006605.09	0.413424627836 0.568903011107
Mean: Median: Geometric Mean: Harmonic Mean: Root Mean Square: Trim Mean (10%%): Interquartile Mean: Midrange: Winsorized Mean: TriMean:	548832.89828 528989.3325 495735.524301 438432.112326 593910.996152 539052.033111 536930.21212 565260.211 546667.07006 536772.3345	3869202.92196 3896997.2605 3867869.29495 3866521.76088 3870522.3695 3870443.79287 3880595.9902 3817925.8 3871738.41886 3883988.336	0.454517701444 0.447102352942 0.453675390695 0.452889149183 0.455421249868 0.450283365444 0.447435080311 0.491163819472 0.45128586862 0.446916450449
Variance:	52564001138.1	10420572947.2	
Standard Deviation:	0.000838952964317 229268.404143 0.0289646847785	102081.207611	
Interquartile Range:	320740.634 0.0203518681441	148499.798	
Range: Mean Difference:	801440.184 265906.939433 0.0287775942499	377358.58 116393.177722	0.155478383271
Median Abs. Deviation:	175198.109 0.0105647992052	76613.7115	
Average Abs. Deviation:	187503.48728 0.0189687089846	84459.11568	
Quartile Dispersion: Relative Mean Diff.:	0.292984694939 0.48449526307 0.0633145731364	0.019171035787 0.0300819522961	0.022739963738
Standard Error:	32423.4486562 0.00409622500436	14436.4628266	
Coef. of Variation:	0.417738085419 0.0637261974318	0.0263830069576	
Skewness: Kurtosis:	0.098663065596 1.92287615206	-0.552916031022 2.25530844399	1.8489826 6.94285868546
Sum: Sum Absolute: Sum Squares: Mean Square:	27441644.914 27441644.914 1.76365135675e+013 352730271350	193460146.098 193460146.098 7.4904717064e+014 1.49809434128e+013	

Inter-Variable Covariance

V	V	7	

X:	5.2564001e+010	1.3319591e+010	949.53395
Y:	1.3319591e+010	1.0420573e+010	-932.21363
Z:	949.53395	-932.21363	0.00083895296

Inter-Variable Correlation

	Х	Υ	Z	
X:	1.000	0.569	0.143	
Y:	0.569	1.000	-0.315	
Z:	0.143	-0.315	1.000	

Inter-Variable Rank Correlation

	X	Υ	Z
X:	1.000	0.593	-0.093
Y:	0.593	1.000	-0.348
Z:	-0.093	-0.348	1.000

Principal Component Analysis

	PC1	PC2	PC3
X: Y: Z:	-0.278130292572 0.960543356832 -1.76654201494e-007	-0.278130292572 0.960543356832 -1.76654201494e-007	-6.0246431156e-008 1.66466034909e-007 1.66466034909e-007
Lambda:	56420757589.9	6563816495.37	0.000626565026449

Planar Regression: Z = AX+BY+C

Fitted Parameters

A	В	С
 	-1.66466034909e-007 4.34991410987e-008	

Inter-Parameter Correlations

	A	В	С
A:	1.000	-0.569	0.524
B:	-0.569	1.000	-0.998

C: 0.524 -0.998 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.0104070089555	0.00520350447776	
5	7.96583966421	0.000=0.4000000		
Residual:	47	0.030701686296	0.000653227368	
Total:	49	0.0411086952515		

Coefficient of Multiple Determination (R^2): 0.253158337715

Nearest Neighbor Statistics

	Separation	Delta Z
1%%-tile:	4321.93264053	0
5%%-tile:	8997.23160152	0
10%%-tile:	12359.2511801	0
25%%-tile:	22365.7096802	0.000888794577488
50%%-tile:	29528.5766975	0.00666348795601
75%%-tile:	40637.5027832	0.0148835458362
90%%-tile:	62269.7340714	0.0258184109429
95%%-tile:	62374.6963985	0.0325336939155
99%%-tile:	94124.1517708	0.0394612080112
Minimum:	4321.93264053	0
Maximum:	96231.1765547	0.0394612080112
Mean:	33415.4804776	0.0101585924394
Median:	29659.8149025	0.00666348795601
Geometric Mean:	27912.8598118	N/A
Harmonic Mean:	21736.8689571	N/A
Root Mean Square:	38707.0631698	0.0152751116773
Trim Mean (10%%):	31103.0612963	0.00868173494332
nterquartile Mean:	30056.7007307	0.00636285177648
Midrange:	50276.5545976	0.0197306040056
Ninsorized Mean:	32355.6907948	0.00909405478666
TriMean:	30515.0914646	0.00727482908143
Variance:	389431024.166	0.000132787792248
Standard Deviation:	19734.0067945	0.011523358549
nterquartile Range:	18271.793103	0.0139947512587
Range:	91909.2439141	0.0394612080112
lean Difference:	20956.8239719	0.0122202265481
Median Abs. Deviation:	9933.33215025	0.00666348795601
Average Abs. Deviation:	13917.765585	0.00863061264329
Quartile Dispersion:	0.290013673725	N/A
Relative Mean Diff.:	0.627159139189	1.20294485885
Standard Error:	2790.81000488	0.0016296489944
Coef. of Variation:	0.590564807463	1.1343459852

Skewness: 1.26116769165 1.16031867803 Kurtosis: 4.8484792955 3.32107916367

 Sum:
 1670774.02388
 0.507929621971

 Sum Absolute:
 1670774.02388
 0.507929621971

 Sum Squares:
 74911836961.5
 0.0116664518377

 Mean Square:
 1498236739.23
 0.000233329036753

Complete Spatial Randomness

Lambda: 1.65327333521e-010
Clark and Evans: 0.859310337704
Skellam: 77.8170882627

Gridding Rules

Gridding Method: Kriging Kriging Type: Point

Polynomial Drift Order: 0 Kriging std. deviation grid: yes

Semi-Variogram Model

Component Type: Nugget Effect

Error Variance: 0 Micro Variance: 0

Component Type: Linear Anisotropy Angle: 0
Anisotropy Ratio: 1

Variogram Slope: 4.993E-020

Component Type: Linear Anisotropy Angle: 24.08 Anisotropy Ratio: 2

Variogram Slope: 2.827E-009

Search Parameters

Search Ellipse Radius #1: 443000 Search Ellipse Radius #2: 443000

Search Ellipse Angle: 0

Number of Search Sectors: 1
Maximum Data Per Sector: 50
Maximum Empty Sectors: 1

Minimum Data: 1 Maximum Data: 50

Output Grid

Grid File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).grd

Grid Size: 48 rows x 100 columns

Total Nodes: 4800 Filled Nodes: 1532 Blanked Nodes: 3268

Blank Value: 1.70141E+038

Grid Geometry

X Minimum: 50000 X Maximum: 1000000

X Spacing: 9595.95959596

Y Minimum: 3400000 Y Maximum: 4050000

Y Spacing: 13829.787234043

Univariate Grid Statistics

	Z
Count:	1532
1%%-tile:	0.42511871736
5%%-tile:	0.429979750127
10%%-tile:	0.433030200342
25%%-tile:	0.440947953237
50%%-tile:	0.457650031512
75%%-tile:	0.48529639707
90%%-tile: 95%%-tile:	0.511791812611
99%%-tile:	0.524115949291 0.541400683874
99 % %-tile.	0.541400065674
Minimum:	0.416200618579
Maximum:	0.563193218897
Mean:	0.465401851026
Median:	0.457664136207
Geometric Mean:	0.464473703415
Harmonic Mean:	0.46357461455
Root Mean Square:	0.466358392877
Trim Mean (10%%):	0.463588250133
Interquartile Mean: Midrange:	0.459299778425 0.489696918738
Winsorized Mean:	0.464271808156
TriMean:	0.460386103333
Triivicari.	0.400000100000
Variance:	0.00089184981589
Standard Deviation:	0.0298638546723
Interquartile Range:	0.0443484438329
Range:	0.146992600319
Mean Difference:	0.0330949186443
Median Abs. Deviation:	0.0195330956808
Average Abs. Deviation:	0.0238177737138
Quartile Dispersion:	0.0478798535378
Relative Mean Diff.:	0.0711104147336
Standard Error:	0.000762985844827
Coef. of Variation:	0.0641678897634
Skewness:	0.819387259022
Kurtosis:	2.83265899715

 Sum:
 712.995635772

 Sum Absolute:
 712.995635772

 Sum Squares:
 333.19491073

 Mean Square:
 0.217490150607

Annexe 7 : Rapport de maillage de l'ETP d'hiver.

Gridding Report

Sat Sep 11 21:20:06 2021

Elapsed time for gridding: 0.36 seconds

Data Source

Source Data File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).xlsx (sheet 'Hiver')

X Column: A
Y Column: B
Z Column: C

Data Counts

Active Data: 50

Original Data: 50
Excluded Data: 0
Deleted Duplicates: 0
Retained Duplicates: 0
Artificial Data: 0
Superseded Data: 0

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First
X Duplicate Tolerance: 0.095
Y Duplicate Tolerance: 0.044

No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Data Counts

Active Data: 50

Univariate Statistics

	X	Υ	Z
Count:	50	50	50
1%%-tile:	164540.119	3629246.51	0.11675128538
5%%-tile:	192566.824	3684969.993	0.122896110288
10%%-tile:	231433.473	3720863.541	0.123872738099
25%%-tile:	386997.241	3798775.003	0.126839021565
50%%-tile:	526177.111	3894951.77	0.131963450348
75%%-tile:	707737.875	3947274.801	0.141777692641
90%%-tile:	871178.881	3981370.74	0.145252891831
95%%-tile:	906524.508	3993808.172	0.147283081894
99%%-tile:	949449.156	4006386.259	0.148694638535
Minimum:	164540.119	3629246.51	0.11675128538
Maximum:	965980.303	4006605.09	0.154449346859
Mean:	548832.89828	3869202.92196	0.133761878863
Median:	528989.3325	3896997.2605	0.131992320378
Geometric Mean:	495735.524301	3867869.29495	0.1334792532
Harmonic Mean:	438432.112326	3866521.76088	0.133201070614
Root Mean Square:	593910.996152	3870522.3695	0.134048434364
Trim Mean (10%%):	539052.033111	3870443.79287	0.133277347271
Interquartile Mean:	536930.21212	3880595.9902	0.132201291751
Midrange:	565260.211	3817925.8	0.135600316119
Winsorized Mean:	546667.07006	3871738.41886	0.133570388567
TriMean:	536772.3345	3883988.336	0.133135903726
Variance:	52564001138.1	10420572947.2	
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7.83086920858e-005	100001 007011	
Standard Deviation:	229268.404143 0.00884921985747	102081.207611	
Interquartile Range:	320740.634	148499.798	
	0.0149386710757		
Range:	801440.184	377358.58	
	0.0376980614793		
Mean Difference:	265906.939433	116393.177722	
mean Birerenee.	0.0100841131299		
Median Abs. Deviation:	175198.109	76613.7115	
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.00672527563071		
Average Abs. Deviation:	187503.48728	84459.11568	
	0.00717959678141	2	
Quartile Dispersion:	0.292984694939	0.019171035787	
Qualtito Dioporoioni.	0.0556133341138	5.510111000101	
Relative Mean Diff.:	0.48449526307	0.0300819522961	
ROMING MICHIED III.	3.40440020001	0.0000010022001	

0.0753885428016

Standard Error: 32423.4486562 14436.4628266

0.00125146867389

Coef. of Variation: 0.417738085419 0.0263830069576

0.0661565158374

 Skewness:
 0.098663065596
 -0.552916031022
 0.405311296919

 Kurtosis:
 1.92287615206
 2.25530844399
 2.09633066792

 Sum:
 27441644.914
 193460146.098
 6.68809394317

 Sum Absolute:
 27441644.914
 193460146.098
 6.68809394317

 Sum Squares:
 1.76365135675e+013
 7.4904717064e+014
 0.898449137767

Mean Square: 352730271350 1.49809434128e+013

0.0179689827553

Inter-Variable Covariance

	Х	Υ	Z
X:	5.2564001e+010	1.3319591e+010	301.92204
Y:	1.3319591e+010	1.0420573e+010	573.77959
Z:	301.92204	573.77959	7.8308692e-005

Inter-Variable Correlation

	X	Υ	Z	
X:	1.000	0.569	0.149	
Y:	0.569	1.000	0.635	
Z:	0.149	0.635	1.000	

Inter-Variable Rank Correlation

	X	Υ	Z
X:	1.000	0.593	0.208
Y:	0.593	1.000	0.663
Z:	0.208	0.663	1.000

Principal Component Analysis

	PC1	PC2	PC3
X:	-0.278130292572	-0.278130292572	1.21411773996e-008
Y:	0.960543356832	0.960543356832	-7.05810625866e-008

Z: 7.1173000008e-008 7.1173000008e-008 -7.05810625866e-008

Lambda: 56420757589.9 6563816495.37 4.14764077757e-005

Planar Regression: Z = AX+BY+C

Fitted Parameters

	A	В	С
Parameter Value: Standard Error:	-1.21411773996e-008 4.98310187174e-009		

Inter-Parameter Correlations

	A	В	С
A:	1.000	-0.569	0.524
B:	-0.569	1.000	-0.998
C:	0.524	-0.998	1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.0018047819312	0.000902390965598	
regression.	20.8686992849	0.0010047010012	0.000302030303030	
Residual:	47	0.00203234398101	4.3241361298e-005	
Total:	49	0.0038371259122		

Coefficient of Multiple Determination (R^2): 0.470347330917

Nearest Neighbor Statistics

	Separation	Delta Z
1%%-tile: 5%%-tile: 10%%-tile: 25%%-tile: 50%%-tile: 75%%-tile: 90%%-tile:	4321.93264053 8997.23160152 12359.2511801 22365.7096802 29528.5766975 40637.5027832 62269.7340714 62374.6963985	0 0 0 0.000218807827937 0.00145753919182 0.00336587743976 0.0107231729222 0.014853857191
99%%-tile: Minimum:	94124.1517708 4321.93264053	0.0150430836579 0
Maximum:	96231.1765547	0.0152121649687

Mean:33415.48047760.00326574511005Median:29659.81490250.00152250706823

Geometric Mean: 27912.8598118 N/A Harmonic Mean: 21736.8689571 N/A

Root Mean Square: 38707.0631698 0.00554567533384 Trim Mean (10%%): 31103.0612963 0.00262618110411 Interquartile Mean: 30056.7007307 0.00163131575641 Midrange: 50276.5545976 0.00760608248436 Winsorized Mean: 0.00289820200588 32355.6907948 TriMean: 0.00162494091283 30515.0914646

Variance: 389431024.166 2.04994120251e-005 Standard Deviation: 19734.0067945 0.00452762763764 Interquartile Range: 18271.793103 0.00314706961183 91909.2439141 0.0152121649687 Range: Mean Difference: 20956.8239719 0.00431778381125 Median Abs. Deviation: 9933.33215025 0.00152250706823 Average Abs. Deviation: 13917.765585 0.00285450965043

Quartile Dispersion: 0.290013673725 N/A

Relative Mean Diff.: 0.627159139189 1.32214354328

 Standard Error:
 2790.81000488
 0.000640303241052

 Coef. of Variation:
 0.590564807463
 1.38639957653

 Skewness:
 1.26116769165
 1.64036803614

 Kurtosis:
 4.8484792955
 4.36510386427

 Sum:
 1670774.02388
 0.163287255502

 Sum Absolute:
 1670774.02388
 0.163287255502

 Sum Squares:
 74911836961.5
 0.00153772574542

 Mean Square:
 1498236739.23
 3.07545149084e-005

Complete Spatial Randomness

Lambda: 1.65327333521e-010
Clark and Evans: 0.859310337704
Skellam: 77.8170882627

Gridding Rules

Gridding Method: Kriging Kriging Type: Point

Polynomial Drift Order: 0 Kriging std. deviation grid: yes

Semi-Variogram Model

Component Type: Nugget Effect

Error Variance: 0
Micro Variance: 0

Component Type: Linear Anisotropy Angle: 14.12 Anisotropy Ratio: 2

Variogram Slope: 5.29E-011

Component Type: Linear Anisotropy Angle: 12.94 Anisotropy Ratio: 2 Variogram Slope: 2.712E-010

Search Parameters

Search Ellipse Radius #1: 443000 Search Ellipse Radius #2: 443000

Search Ellipse Angle: 0

Number of Search Sectors: 1
Maximum Data Per Sector: 50
Maximum Empty Sectors: 1

Minimum Data: 1 Maximum Data: 50

Output Grid

Grid File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).grd

Grid Size: 48 rows x 100 columns

Total Nodes: 4800 Filled Nodes: 1532 Blanked Nodes: 3268

Blank Value: 1.70141E+038

Grid Geometry

X Minimum: 50000 X Maximum: 1000000

X Spacing: 9595.95959596

Y Minimum: 3400000 Y Maximum: 4050000

Y Spacing: 13829.787234043

Univariate Grid Statistics

	Z
Count:	1532
1%%-tile: 5%%-tile: 10%%-tile: 25%%-tile: 50%%-tile: 75%%-tile: 90%%-tile: 95%%-tile: 99%%-tile:	0.118415811283 0.120095628729 0.121207580131 0.124004760701 0.130544819015 0.134183236847 0.138984087526 0.141689370311 0.146869405286
Minimum: Maximum: Mean:	0.117329923066 0.152871100392 0.130048177902
Median: Geometric Mean: Harmonic Mean:	0.130048177902 0.130554839207 0.129874420658 0.129701994223

 Root Mean Square:
 0.130223148457

 Trim Mean (10%%):
 0.129831130745

 Interquartile Mean:
 0.129988042406

 Midrange:
 0.135100511729

 Winsorized Mean:
 0.129822598608

 TriMean:
 0.129819408895

Variance: 4.55695635028e-005 Standard Deviation: 0.00675052320215 Interquartile Range: 0.0101784761453 Range: 0.0355411773255 Mean Difference: 0.00765802043549 Median Abs. Deviation: 0.00487220494291 Average Abs. Deviation: 0.00552750258547 Quartile Dispersion: 0.0394227316607 Relative Mean Diff.: 0.0588860263868

 Standard Error:
 0.000172467811169

 Coef. of Variation:
 0.0519078645396

 Skewness:
 0.298528900566

 Kurtosis:
 2.62149366715

 Sum:
 199.233808546

 Sum Absolute:
 199.233808546

 Sum Squares:
 25.9797607796

 Mean Square:
 0.016958068394

Annexe 8 : Rapport de maillage de l'ETP de printemps.

Gridding Report

Sat Sep 11 03:23:10 2021

Elapsed time for gridding: 0.33 seconds

Data Source

Source Data File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).xlsx (sheet 'printemp')

X Column: A
Y Column: B
Z Column: C

Data Counts

Active Data: 50

Original Data: 50
Excluded Data: 0
Deleted Duplicates: 0
Retained Duplicates: 0
Artificial Data: 0

Superseded Data: 0

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First X Duplicate Tolerance: 0.095 Y Duplicate Tolerance: 0.044

No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Data Counts

Active Data: 50

Univariate Statistics

	Х	Υ	Z
Count:	50	50	50
1%%-tile: 5%%-tile: 10%%-tile: 25%%-tile: 50%%-tile: 75%%-tile: 90%%-tile: 95%%-tile:	164540.119	3629246.51	0.385547998268
	192566.824	3684969.993	0.386237729949
	231433.473	3720863.541	0.392153847237
	386997.241	3798775.003	0.402271957118
	526177.111	3894951.77	0.40886551371
	707737.875	3947274.801	0.419853168282
	871178.881	3981370.74	0.459195253146
	906524.508	3993808.172	0.462144668154
	949449.156	4006386.259	0.497414626569
Minimum:	164540.119	3629246.51	0.385547998268
Maximum:	965980.303	4006605.09	0.528544760807
Mean: Median: Geometric Mean: Harmonic Mean: Root Mean Square: Trim Mean (10%%): Interquartile Mean: Midrange: Winsorized Mean:	548832.89828	3869202.92196	0.418460932385
	528989.3325	3896997.2605	0.410058833678
	495735.524301	3867869.29495	0.417510218492
	438432.112326	3866521.76088	0.416629218621
	593910.996152	3870522.3695	0.419487337316
	539052.033111	3870443.79287	0.413986567593
	536930.21212	3880595.9902	0.409938481781
	565260.211	3817925.8	0.457046379537
	546667.07006	3871738.41886	0.415906429465

TriMean:	536772.3345	3883988.336	0.409964038205
Variance:	52564001138.1 0.000877626771598	10420572947.2	
Standard Deviation:	229268.404143 0.0296247661864	102081.207611	
Interquartile Range:	320740.634 0.0175812111641	148499.798	
Range: Mean Difference:	801440.184 265906.939433 0.0290923299196	377358.58 116393.177722	0.142996762539
Median Abs. Deviation:	175198.109 0.00808059015598	76613.7115	
Average Abs. Deviation:	187503.48728 0.0185593667139	84459.11568	
Quartile Dispersion:	0.292984694939 0.0213850794982	0.019171035787	
Relative Mean Diff.:	0.48449526307 0.0695222126323	0.0300819522961	
Standard Error:	32423.4486562 0.00418957461229	14436.4628266	
Coef. of Variation:	0.417738085419 0.0707945805539	0.0263830069576	
Skewness: Kurtosis:	0.098663065596 1.92287615206	-0.552916031022 2.25530844399	1.81742395986 6.28673662764
Sum: Sum Absolute: Sum Squares: Mean Square:	27441644.914 27441644.914 1.76365135675e+013 352730271350	193460146.098 193460146.098 7.4904717064e+014 1.49809434128e+013	20.9230466192 20.9230466192 8.79848130843 0.175969626169

Inter-Variable Covariance

	Х	Υ	Z
X:	5.2564001e+010	1.3319591e+010	836.82055
Y:	1.3319591e+010	1.0420573e+010	-1408.2898
Z:	836.82055	-1408.2898	0.00087762677

Inter-Variable Correlation

	Х	Υ	Z	
X:	1.000	0.569	0.123	
Y:	0.569	1.000	-0.466	
Z:	0.123	-0.466	1.000	

Inter-Variable Rank Correlation

	X	Υ	Z
 X:	1.000	0.593	-0.110
Y:	0.593	1.000	-0.601
Z:	-0.110	-0.601	1.000

Principal Component Analysis

	PC1	PC2	PC3
X: Y: Z:	-0.278130292572 0.960543356832 -2.41546753231e-007	-0.278130292572 0.960543356832 -2.41546753231e-007	-7.41975698124e-008 2.29984580976e-007 2.29984580976e-007
Lambda:	56420757589.9	6563816495.37	0.000491651779201

Planar Regression: Z = AX+BY+C

Fitted Parameters

A	В	С
 	-2.29984580976e-007 3.85324314488e-008	

Inter-Parameter Correlations

	A	В	С
A:	1.000	-0.569	0.524
B:	-0.569	1.000	-0.998
C:	0.524	-0.998	1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.0189127746274	0.00945638731372	
	18.4488548705			
Residual:	47	0.0240909371809	0.000512573131508	
Total:	49	0.0430037118083		

Coefficient of Multiple Determination (R^2):

0.439794004567

Nearest Neighbor Statistics

	Separation	Delta Z
1%%-tile:	4321.93264053	0
5%%-tile:	8997.23160152	0
10%%-tile:	12359.2511801	0
25%%-tile:	22365.7096802	0.000164212414207
50%%-tile:	29528.5766975	0.00577910032608
75%%-tile:	40637.5027832	0.0123133328841
90%%-tile:	62269.7340714	0.0199772560486
95%%-tile:	62374.6963985	0.0268193664277
99%%-tile:	94124.1517708	0.0311301342376
Minimum:	4321.93264053	0
Maximum:	96231.1765547	0.0374004405065
Mean:	33415.4804776	0.00816588910722
Median:	29659.8149025	0.00577910032608
Geometric Mean:	27912.8598118	N/A
Harmonic Mean:	21736.8689571	N/A
Root Mean Square:	38707.0631698	0.0122434965307
Trim Mean (10%%):	31103.0612963	0.00685852769731
Interquartile Mean:	30056.7007307	0.00543348540996
Midrange:	50276.5545976	0.0187002202533
Winsorized Mean:	32355.6907948	0.00721947606666
TriMean:	30515.0914646	0.00600893648761
Variance:	389431024.166	8.49198595783e-005
Standard Deviation:	19734.0067945	0.00921519720778
Interquartile Range:	18271.793103	0.0121491204699
Range:	91909.2439141	0.0374004405065
Mean Difference:	20956.8239719	0.00962881253781
Median Abs. Deviation:	9933.33215025	0.00577910032608
Average Abs. Deviation:	13917.765585	0.00658483635495
Quartile Dispersion:	0.290013673725	N/A
Relative Mean Diff.:	0.627159139189	1.17915053846
Standard Error:	2790.81000488	0.00130322568712
Coef. of Variation:	0.590564807463	1.12849894075
Skewness:	1.26116769165	1.35826379681
Kurtosis:	4.8484792955	4.2973023464
Sum:	1670774.02388	0.408294455361
Sum Absolute:	1670774.02388	0.408294455361
Sum Squares:	74911836961.5	0.0074951603649
Mean Square:	1498236739.23	0.000149903207298

Complete Spatial Randomness

Lambda: 1.65327333521e-010 Clark and Evans: 0.859310337704 Skellam: 77.8170882627

Gridding Rules

Gridding Method: Kriging Kriging Type: Point

Polynomial Drift Order: 0 Kriging std. deviation grid: yes

Semi-Variogram Model

Component Type: Nugget Effect Error Variance: 4.627E-014

Micro Variance: 0

Component Type: Linear Anisotropy Angle: 22.53 Anisotropy Ratio: 2

Variogram Slope: 3.134E-009

Search Parameters

Search Ellipse Radius #1: 443000 Search Ellipse Radius #2: 443000

Search Ellipse Angle: 0

Number of Search Sectors: 1
Maximum Data Per Sector: 50
Maximum Empty Sectors: 1

Minimum Data: 1 Maximum Data: 50

Output Grid

Grid File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).grd

Grid Size: 48 rows x 100 columns

Total Nodes: 4800 Filled Nodes: 1532 Blanked Nodes: 3268

Blank Value: 1.70141E+038

Grid Geometry

X Minimum: 50000 X Maximum: 1000000

X Spacing: 9595.95959596

Y Minimum: 3400000 Y Maximum: 4050000

Y Spacing: 13829.787234043

Univariate Grid Statistics

	Z
Count:	1532
1%%-tile: 5%%-tile: 10%%-tile: 25%%-tile: 50%%-tile: 75%%-tile:	0.391758684776 0.397346062419 0.400082581507 0.40605716175 0.42225601307 0.454855569831

90%%-tile: 0.481700083993 95%%-tile: 0.493454496566 99%%-tile: 0.508286679626

Minimum: 0.387378784816 Maximum: 0.524583104027

Mean: 0.432267664971 Median: 0.422266688966 Geometric Mean: 0.431169580487 Harmonic Mean: 0.430108941162 Root Mean Square: 0.433401422778 Trim Mean (10%%): 0.430440273308 Interquartile Mean: 0.425118104941 Midrange: 0.455980944421 Winsorized Mean: 0.431277091513 TriMean: 0.42635618943

Variance: 0.000982100143639 Standard Deviation: 0.0313384770472 Interquartile Range: 0.0487984080809 Range: 0.137204319211 Mean Difference: 0.0347132262345 Median Abs. Deviation: 0.0194076954678 Average Abs. Deviation: 0.0255862980676 Quartile Dispersion: 0.0566821772879 Relative Mean Diff .: 0.0803049338351

 Standard Error:
 0.000800660686566

 Coef. of Variation:
 0.0724978516478

 Skewness:
 0.777145504694

 Kurtosis:
 2.52489737309

 Sum:
 662.234062736

 Sum Absolute:
 662.234062736

 Sum Squares:
 287.765967283

 Mean Square:
 0.187836793266

Annexe 9 : Rapport de maillage de l'ETP d'été.

Gridding Report

Mon Sep 06 23:33:55 2021

Elapsed time for gridding: 0.33 seconds

Data Source

Source Data File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).xlsx (sheet 'été')

X Column: A
Y Column: B
Z Column: C

Data Counts

Active Data: 50

Original Data: 50

Excluded Data: 0

Deleted Duplicates: 0

Retained Duplicates: 0

Artificial Data: 0

Superseded Data: 0

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First X Duplicate Tolerance: 0.095 Y Duplicate Tolerance: 0.044

No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Data Counts

Active Data: 50

Univariate Statistics

	X	Υ	Z
Count:	50	50	50
1%%-tile:	164540.119	3629246.51	0.803978518092
5%%-tile:	192566.824	3684969.993	0.810956632653
10%%-tile:	231433.473	3720863.541	0.834513874254
25%%-tile:	386997.241	3798775.003	0.883436091691
50%%-tile:	526177.111	3894951.77	0.909035624826
75%%-tile:	707737.875	3947274.801	0.954042003048
90%%-tile:	871178.881	3981370.74	1.08186877243
95%%-tile:	906524.508	3993808.172	1.08340792069
99%%-tile:	949449.156	4006386.259	1.18887408863

Minimum: Maximum:	164540.119 965980.303	3629246.51 4006605.09	0.803978518092 1.21525657493
Mean: Median: Geometric Mean: Harmonic Mean: Root Mean Square: Trim Mean (10%%): Interquartile Mean: Midrange: Winsorized Mean: TriMean:	548832.89828 528989.3325 495735.524301 438432.112326 593910.996152 539052.033111 536930.21212 565260.211 546667.07006 536772.3345	3869202.92196 3896997.2605 3867869.29495 3866521.76088 3870522.3695 3870443.79287 3880595.9902 3817925.8 3871738.41886 3883988.336	0.938420835516 0.914562215721 0.934062840426 0.92995675485 0.943042091483 0.927997879487 0.918078150781 1.00961754651 0.934290458405 0.913887336098
Variance:	52564001138.1 0.00887216507906	10420572947.2	
Standard Deviation:	229268.404143 0.0941921710073	102081.207611	
Interquartile Range:	320740.634 0.0706059113574	148499.798	
Range:	801440.184	377358.58	0.411278056839
Mean Difference:	265906.939433	116393.177722	0.100876600584
Median Abs. Deviation:	175198.109	76613.7115	0.03572112598
Average Abs. Deviation:	187503.48728 0.0660938001353	84459.11568	
Quartile Dispersion:	0.292984694939 0.0384254438513	0.019171035787	
Relative Mean Diff.:	0.48449526307	0.0300819522961	0.10749612196
Standard Error:	32423.4486562 0.0133207845708	14436.4628266	
Coef. of Variation:	0.417738085419	0.0263830069576	0.100373060191
Skewness:	0.098663065596	-0.552916031022	1.08729743814
Kurtosis:	1.92287615206	2.25530844399	3.87154694173
Sum:	27441644.914	193460146.098	46.9210417758
Sum Absolute:	27441644.914	193460146.098	46.9210417758
Sum Squares:	1.76365135675e+013		44.4664193154
Mean Square:	352730271350	1.49809434128e+013	0.889328386308

Inter-Variable Covariance

	Х	Y	Z
X:	5.2564001e+010	1.3319591e+010	-444.47646
Y:	1.3319591e+010	1.0420573e+010	-5250.1338
Z:	-444.47646	-5250.1338	0.0088721651

Inter-Variable Correlation

X	Υ	Z	

X:	1.000	0.569	-0.021
Y:	0.569	1.000	-0.546
Z:	-0.021	-0.546	1.000

Inter-Variable Rank Correlation

	Х	Y	Z	
X:	1.000	0.593	-0.211	
Y:	0.593	1.000	-0.639	
Z:	-0.211	-0.639	1.000	

Principal Component Analysis

	PC1	PC2	PC3
X: Y: Z:	-0.278130292572 0.960543356832 -7.49466222229e-007	-0.278130292572 0.960543356832 -7.49466222229e-007	-1.7632102831e-007 7.29197696342e-007 7.29197696342e-007
Lambda:	56420757589.9	6563816495.37	0.0051221501712

Planar Regression: Z = AX+BY+C

Fitted Parameters

	A	В	С
Parameter Value: Standard Error:		-7.29197696342e-007 1.24372327095e-007	

Inter-Parameter Correlations

	A	В	С
A:	1.000	-0.569	0.524
B:	-0.569	1.000	-0.998
C:	0.524	-0.998	1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.183750730485	0.0918753652424	
Residual: Total:	17.204757258 47 49	0.250985358389 0.434736088874	0.00534011400828	

Coefficient of Multiple Determination (R^2):

0.422671904145

Nearest Neighbor Statistics

	Separation	Delta Z
1%%-tile:	4321.93264053	0
5%%-tile:	8997.23160152	0
10%%-tile:	12359.2511801	0
25%%-tile:	22365.7096802	3.50063937939e-005
50%%-tile:	29528.5766975	0.0152516045013
75%%-tile:	40637.5027832	0.0420831969557
90%%-tile:	62269.7340714	0.0616857426164
95%%-tile:	62374.6963985	0.0662070757934
99%%-tile:	94124.1517708	0.0853923544158
Minimum:	4321.93264053	0
Maximum:	96231.1765547	0.105466167937
Mean:	33415.4804776	0.024951953919
Median:	29659.8149025	0.0152516045013
Geometric Mean:	27912.8598118	N/A
Harmonic Mean:	21736.8689571	N/A
Root Mean Square:	38707.0631698	0.0372404624977
Trim Mean (10%%):	31103.0612963	0.0216181620681
Interquartile Mean:	30056.7007307	0.0163963336639
Midrange:	50276.5545976	0.0527330839683
Winsorized Mean:	32355.6907948	0.0229766370912
TriMean:	30515.0914646	0.018155353088
Variance:	389431024.166	0.00077984902313
Standard Deviation:	19734.0067945	0.0279257770372
Interquartile Range:	18271.793103	0.042048190562
Range:	91909.2439141	0.105466167937
Mean Difference:	20956.8239719	0.0302236925884
Median Abs. Deviation:	9933.33215025	0.0152516045013
Average Abs. Deviation:	13917.765585	0.0224595734653
Quartile Dispersion:	0.290013673725	N/A
Relative Mean Diff.:	0.627159139189	1.21127558533
Standard Error:	2790.81000488	0.00394930126258
Coef. of Variation:	0.590564807463	1.1191819738
Skewness:	1.26116769165	0.922272027767
Kurtosis:	4.8484792955	2.88774171191
Sum:	1670774.02388	1.24759769595
Sum Absolute:	1670774.02388	1.24759769595
Sum Squares:	74911836961.5	0.0693426023523
Mean Square:	1498236739.23	0.00138685204705

Complete Spatial Randomness

Lambda: 1.65327333521e-010 Clark and Evans: 0.859310337704 Skellam: 77.8170882627

Gridding Rules

Gridding Method: Kriging Kriging Type: Point

Polynomial Drift Order: 0 Kriging std. deviation grid: yes

Semi-Variogram Model

Component Type: Nugget Effect

Error Variance: 0
Micro Variance: 0

Component Type: Linear Anisotropy Angle: 24.06 Anisotropy Ratio: 2

Variogram Slope: 2.31E-008

Search Parameters

Search Ellipse Radius #1: 443000 Search Ellipse Radius #2: 443000

Search Ellipse Angle: 0

Number of Search Sectors: 1 Maximum Data Per Sector: 50 Maximum Empty Sectors: 1

Minimum Data: 1 Maximum Data: 50

Output Grid

Grid File Name: D:\Hayet\master2\Projet de fin d'etude\ETP (la moyenne)\les

stations avec l'Etp(la moyenne).grd

Grid Size: 48 rows x 100 columns

Total Nodes: 4800 Filled Nodes: 1532 Blanked Nodes: 3268

Blank Value: 1.70141E+038

Grid Geometry

X Minimum: 50000 X Maximum: 1000000

X Spacing: 9595.95959596

 Y Minimum:
 3400000

 Y Maximum:
 4050000

Y Spacing: 13829.787234043

Univariate Grid Statistics

Count: 1532 1%%-tile: 0.829408023096 5%%-tile: 0.872938077411 10%%-tile: 0.889718244898 25%%-tile: 0.910649515195 50%%-tile: 0.963727597545 75%%-tile: 1.0536019579 90%%-tile: 1.13100495138 95%%-tile: 1.1614545941 99%%-tile: 1.18547167568 0.813374535461 Minimum: Maximum: 1.20981007532 Mean: 0.986586296581 Median: 0.96373577376 Geometric Mean: 0.982437890211 Harmonic Mean: 0.978409337854 Root Mean Square: 0.990840761676 Trim Mean (10%%): 0.983692627794 Interquartile Mean: 0.970353797369 Midrange: 1.01159230539 Winsorized Mean: 0.985974856168 TriMean: 0.972926667046 Variance: 0.00841838942991 Standard Deviation: 0.0917517816171 Interquartile Range: 0.142952442703 Range: 0.396435539863 Mean Difference: 0.10333214591 Median Abs. Deviation: 0.0609412481544 Average Abs. Deviation: 0.0753757536195 Quartile Dispersion: 0.0727770576535 Relative Mean Diff .: 0.104737057739 Standard Error: 0.00234414851598 Coef. of Variation: 0.0929992459201 Skewness: 0.55242623395 2.30108208048 Kurtosis: Sum: 1511.45020636 Sum Absolute: 1511.45020636

1504.06461578

0.981765414999

Sum Squares:

Mean Square:

Résumé:

Les besoins en eau des plantes, base essentielle d'un projet d'irrigation, repose principalement sur la connaissance de l'ETP. Il s'agit de mettre en œuvre une répartition spatiale de l'évapotranspiration sous forme de carte d'iso valeurs établie par une approche d'estimation géostatistique « Krigeage ». L'ETP sera estimée par une des formules empiriques connues qui sera choisi en fonction de la disponibilité des paramètres climato-édaphiques de la région d'étude.

Mots clés: ETP, Variabilité spatiale, variogramme, krigeage.

Abstract:

The water needs of plants, the essential basis of an irrigation project, rely mainly on knowledge of the ETP. The aim is to implement a spatial distribution of evapotranspiration in the form of an iso-values map established by a geostatistical estimation approach called «Kriging». The ETP will be estimated by one of the known empirical formulae chosen based on the availability of the climato-edaphic parameters of the study area.

Keywords: ETP, Spatial variability, variogram, kriging.