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 الملخص 

 للأنظمة الديناميكي السلوك لنمذجة معروف ا تمثيلً  الثانية الدرجة من النطاق واسع  (LTI)  الخطي الوقت ثابت نموذج يعتبر
 والكهرومغناطيسية والهيكلية والميكانيكية الكهربائية مثل ، والهندسة العلومً مجالات مختلف في المتغيرات متعددة المعقدة

 ترتيب بببس المحاكاة في حسابية مشاكل الأنظمة هذه بعض تواجه  (MEMS) .الكهروميكانيكية الأنظمة - .والميكرو
 والذيً ، مخفض بترتيب به موثوق تقريبي نموذج علىً العثور المناسب من فإنهً .المشكلة هذه لمعالجةً ً، الضخم نموذجها

 الأصلي للنظام الثاني الترتيب بنية على يحافظ أن يمكن والذيً ، التحكم عنصر أو المحاكاة في الأصلي النموذج محل يحل
فيًهذهًالأطروحةً،ًتمًتقديمًخوارزميةًجديدةًلتقليلًً .الاستقرار مثل الكامل ذوًالترتيب للنموذج الرئيسية الخصائص ونفس

(SOARًمنًالدرجةًالثانيةً)Arnoldiًًالأنظمةًالديناميكيةًذاتًالأبعادًالكبيرةًمنًالدرجةًالثانيةًمنًخلالًإجراءًتخفيضًً
(ً،ًمنًأجلًالإنهاءًالمبكرNRPCًمعاملًأداءًالتصنيفًالرقميً)معًمعيارًإيقافًيعتمدًعلىًمعاملًجديدً،ًيعُرفًباسمًً

اًلتقنيةًهيًحسابًمعاملًً لًهذه اًلرئيسية اًلفكرة اًلمصغر. لًلنموذج اًلتلقائي اًلأمثل اًلترتيب تًكرارNRPCًًًالفعالًواختيار لكل
إًلىًكلًمتجSOARًًلخوارزميةًً تًضاف اًلأصليً،ًوالتي لًلنظام اًلديناميكي اًلتطور Krylovًًهًمنًفضاءًً،ًوقياسًمعلومات

.ًعندماًيتمًالتحققًمنًحالةًالتسامحًالديناميكيً،ًيتمًإيقافًالإجراءSOARًًالفرعيًالذيًتمًإنشاؤهًبواسطةًخوارزميةًً
للتحققًمنًفعاليةًوبساطةًالخوارزميةًًًةيمعيارًذجانمثلاثًالتكراريًللخوارزمية.ًتمًاستخدامًالأمثلةًالعدديةًالمطبقةًعلىً

 المقترحة.

 المفتاحية الكلمات

ًًً،ًًالمنخفض الترتيبًًًنموذجًً،ًًالإسقاطاتًً، KRYLOV فرعيًًفضاءًًً،ًًالثانيةًًالدرجةًًمنًًالحالةًًفضاءًً،ًًالثانيةًًالدرجةًًأنظمة
ًالاستقرارً،ًالهيكلًًعلىًالحفاظً،ً)SOARًً (  الثانيًالدرجةًمنArnoldiًًإجراء

Résumé 

Le modèle linéaire invariant dans le temps (LTI) de second ordre à grande échelle est considéré 

comme une représentation bien connue pour modéliser le comportement dynamique de 

systèmes complexes multi variables dans divers domaines de la science et de l'ingénierie, tels 

que l'électricité, la mécanique, la structure, l'électromagnétisme et la micro -systèmes 

électromécaniques (MEMS). Certains de ces systèmes rencontrent des problèmes de calcul dans 

la simulation en raison de leur ordre de modèle énorme, pour traiter ce problème. Il convient 

donc de trouver un modèle approximé fiable d'ordre réduit, qui remplace le modèle d'origine 

dans la simulation ou le contrôle, qui peut conserver la structure de second ordre du système 

d'origine et les mêmes propriétés clés du modèle d'ordre complet telles que la stabilité. Dans 

cette thèse, un nouvel algorithme est introduit pour réduire les systèmes dynamiques de second 

ordre de grande dimension grâce à la procédure de réduction d'Arnoldi du second ordre (SOAR) 

avec un critère d'arrêt basé sur un nouveau coefficient, connu sous le nom de coefficient de 

performance de rang numérique (NRPC), pour résiliation anticipée efficace et sélection 

automatique optimale de la commande du modèle réduit. L'idée clé de cette technique est de 

calculer le coefficient NRPC pour chaque itération de l'algorithme SOAR, et de mesurer les 

informations d'évolution dynamique du système d'origine, qui sont ajoutées à chaque vecteur 

du sous-espace de Krylov généré par l'algorithme SOAR. Lorsque la condition de tolérance 

dynamique est vérifiée, la procédure itérative de l'algorithme est arrêtée. Des exemples 

numériques appliqués sur trois modèles de référence sont utilisés pour vérifier l'efficacité et la 

simplicité de l'algorithme proposé. 

Mots Clés 

Systèmes de second ordre, Espace d’état d’ordre 2, Espaces de Krylov, Projections, Modèle 

d’ordre réduit , Procédure d'Arnoldi du second ordre (SOAR), Préservation de la structure, 

Stabilité 
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Abstract 
the large-scale second-order linear time-invariant (LTI) model is considered a well-known 

representation for modeling the dynamic behavior of multi-variable complex systems in various 

fields of science and engineering, such as electricity , mechanics, structure, electromagnetism 

and micro-electromechanical systems (MEMS) some of these systems have computational 

problems in simulation due to their huge model order. To deal with this problem, it is therefore 

necessary to find a reliable approximated reduced-order model, which replaces the original 

model in simulation or control, which can retain the second-order structure of the original 

system and the same key properties of the original model such as stability. In this thesis a new 

algorithm is introduced for reducing the large dimensional second-order dynamic systems 

through the Second Order Arnoldi Reduction (SOAR) procedure with a stopping criterion based 

on a new coefficient, known as the Numerical Rank Performance Coefficient (NRPC), for 

efficient early termination and automatic optimal order selection of the reduced model. The key 

idea of this technique is to calculate the NRPC coefficient for each iteration of the SOAR 

algorithm, and to measure the dynamic evolution information of the original system, which is 

added to each vector of the Krylov subspace generated by SOAR algorithm. When the 

dynamical tolerance condition is verified the iterative procedure of the algorithm is stopped. 

Numerical examples applied on three benchmark models are used to check the effectiveness 

and simplicity of the proposed algorithm. 

Keywords 

Second-order systems, 2nd-order state space, Krylov spaces, Projections, Reduced-order 

model, Second-order Arnoldi procedure (SOAR), Preservation of structure, Stability 
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General Introduction 
 

1. Motivation 

The mathematical modeling of most physical systems, such as telecommunication systems, 

transmission lines and chemical reactors, results in infinite dimensional models. Using 

engineering tools, we can still roughly represent those systems with approximate finite 

dimension models [1]. However, complex large-scale systems usually require dimensional 

models to well represent them. Analysis, simulation and design methods based on this high 

order model may eventually lead to complicated control strategies requiring complex logic or 

large amount of computation. Model Order Reduction (MOR) is a branch of systems and 

control theory which studies properties of dynamical systems in order to reduce their  

complexity while preserving their input - output behavior [2]. 

 

A reduced description and simulation of the dynamics of a physical problem is known as model 

order reduction. Precision and computational cost are strongly connected. As a result, we must 

consider this connection as well as the needed precision when selecting a model order reduction 

strategy. A reduction of models makes it possible to reduce the computation time and reduce 

the amount of memory used, and this goes through the reduction of the number of necessary 

state variables. 

 

In the literature, there are a number of model reduction strategies with trade-offs between 

various relevant factors including computing cost, accuracy, and stability. Balanced Truncation 

[3] and Hankel Norm Approximation [4] are two of these strategies that ensure stable 

approximations and attain a priori error bounds. They do, however, necessitate the solution of 

Lyapunov equations, which renders them inefficient for large-scale systems. For model 

reduction, many iterative algorithms based on Krylov subspace projection [5] have been widely 

employed. These methods are computationally efficient because they only use matrix-vector 

multiplications and take use of sparsity, which is prevalent in large-scale systems. However, 

several aspects of the original system, such as stability, passivity, and minimum phase 

character, might be lost when using Krylov-based approximations. 
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The large-scale 2nd order model is considered a well-known representation for modeling the 

dynamical behavior of multivariable complex systems in various fields of science and 

engineering, such as electrical, mechanical, structural, electromagnetic, and micro-

electromechanical systems (MEMS). Some of these systems encounter computational problems 

in simulation due to their huge model order, to treat this problem. Therefore, we desire to find 

a reliable approximated model with reduced order, which replace the original model in the 

simulation or the control, which can preserve the second order structure of the original system 

and the same key properties of the full order model such as stability  [6,7]. 

2. State of the art  

The problem of model order reduction for second-order linear systems is basically as old as the 

topic of the model order reduction itself. This amounts to the relevance of mechanical systems 

in practical application. Modal truncation, as one of the oldest model reduction methods [12], 

was quickly extended to the second-order settings in various ways [13,14,15]. Even nowadays, 

structure-preserving modal truncation is the preferred approach for model reduction in 

engineering sciences due to its generality and computational simplicity [16]. However, a 

general problem of related approaches is the selection of the appropriate system modes to 

approximate the original dynamics. The dominant pole algorithms [17] were developed as 

remedy to this problem, which in recent years were extended to large-scale spare systems 

[18,19] as well as to the general case of second-order systems; for example see in [20,21]. In 

practice, the modeling of internal damping of mechanical systems is often simplified to the use 

of combination of the mass and stiffness terms of the system leading to so-called modally 

damped mechanical systems. This subclass of linear mechanical systems holds several 

advantageous properties that are currently not considered in theory or implementations of 

structure preserving dominant pole algorithm. This point will not be discussed in this thesis, 

while also treating other modal truncation concerning bounds for the approximation error and 

the limited approximation quality.      

In this thesis, a model order reduction of the 2nd order system using a Krylov-base technique 

called Second Order Arnoldi (SOAR) algorithm was discussed. The SOAR approach has  

attracted many researchers in the last few years, which has been used to solve the following 

problems: a quadratic Eigen-value [8] [9] , the MOR of second-order dynamical systems [6] 

[10] [11] and in the analysis of structural acoustics. From mathematical point of view, the 

SOAR design is based on a projection-based MOR technique that uses a second-order Krylov 

subspace and the SOAR procedure to generate the projection matrix as follows: in the first step 
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3 General Introduction 

a recurrence formula is defined for the two matrices coefficient A and B and one or two initial 

vectors, then in the second step we generate an orthonormal basis of projection sub-spaces from 

the famous second-order Krylov subspace defined in the recurrence formula. Obviously, the 

SOAR technique is used in MOR, which construct another reduced second-order state-space 

system with reduced order, where the input-output behavior dynamics are completely recovered 

i.e. preserving the basic characteristics of the full order system [6][7]. 

 3. Outline of thesis 

In this study, we propose an new automated technique to generate the best reduced order model 

for a large second order system using the SOAR procedure, by defining a new criterion to auto-

stop the iteration process in SOAR procedure and to auto-select an acceptable reduced order of 

the projection matrix, which in the limit of our knowledge is a new proposed idea, the efficiency 

and robustness of the proposed algorithm is validated by various well-chosen numerical 

examples of 2nd order models. 

 

This thesis is organized as follow: 

• The first chapter is a background on Linear Time invariant (LTI) systems and Model 

Order reduction (MOR). 

• The second chapter presents model order reduction based on Krylov sub-space 

technique. 

• The third chapter presents the Second Order Arnoldi method and the theoretical 

framework used as the basis of the stopping criterion for auto selection of the reduced 

model. 

• Chapter four shows the validation of the proposed technique in various performed tests.  

• The fifth chapter is the conclusion drawn in this work. 
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Chapter I LTI System Theory and Fundamentals 

Chapter I : LTI System Theory and Fundamentals 

 
I.1 Introduction 

 

In this chapter, we introduce the basic concepts of linear time-invariant systems. The content 

of this chapter is mainly taken from [8], it can also be found in other standard textbooks about 

systems theory or model order reduction; see, e.g. [9–13]. This section itself is additionally 

separated into the classical first-order systems and second-order systems. This chapter is 

concluded in section 1.4 by two examples of second-order from mechanical engineering. 

I.2 First-order systems 

 

Before the special case of the second-order systems is considered, some properties of the first-

order linear time-invariant (LTI) systems are needed first. These systems have the form 

{
𝐸�̇�(𝑡) =   𝐴 𝑥(𝑡) +   𝐵  𝑢(𝑡),
𝑦 (𝑡)   = 𝐶 𝑥 (𝑡)  +    𝐷 𝑢(𝑡),

    (I.1) 

This form is called a generalized state space of a linear time-invariant system. 

With E, A  RN.N, B  RN.m, C  Rp.N, and D  Rp.m. x(t) is called the state vector; its dimension 

N  N   denotes the order of the model. u(t) and y(t) contain the input and output signals of the 

system, respectively. Systems with m,p ≥2 are referred to as multi-input multi-output (MIMO) 

systems; the special case m=p=1 is called single-input single-output (SISO) system. Default 

assumptions for (I.1) in model order reduction are x(t0) = 0  and t0=0 (initial condition) to 

neglect the initial value’s influence on the system’s behavior. These assumptions are also made 

through-out this thesis. The behavior of (I.1) is given via the three-dependent functions: 

u:R≥0→R
m, the inputs that are used to control x: R≥0→R

N, the internal states, to get the desired 

outputs y: R≥0→R
p. 

When the term D  0 we call it a feed-through term. This feed-through term will not play any 

role in this thesis, but all developed model reduction theory can be transferred to systems with 

feed-through term by preserving the original term in the reduced-order system �̂� = 𝐷. 

In some applications, the case �̂� ≠ 𝐷 is of particular interest. This can be treated in certain 

model reduction approaches, like interpolation methods, by additional modifications of the 

construction formulae; see, e.g. [14,15] 
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In the literature, the first-order system (I.1) can be found under different names, often, 

depending on the specific realization of the E matrix.  The system (I.1) is called a standard 

state-space system in case of E= IN and it is called a generalized state-space system if E is 

invertible but not the identity, i.e., when the states are described by a system of Ordinary 

differential equations (ODEs) with a mass matrix. In case of E singular, (I.1) contains 

Differential-algebraic equations (DAEs) and is referred to as descriptor system.  

Definition1.1 (System realization and order) 

The quadruple ∑ = (𝐴, 𝐵, 𝐶, 𝐸) 𝑎𝑛𝑑 ∑ = [
𝐸,𝐴|  𝐵

𝐶    |  0
] R

N.N x 
R

N.m x 
R

p.N x 
R

N.N is called a 

realization of the system (I.1). The order of (I.1) is defined to be the dimension of the 

corresponding state-space N. 

In general, the realization of a system is not unique in the sense of the input-to-output behavior, 

i.e., the same system can be described by different realizations. A system realization (I.1) is 

called equivalent to another realization ∑̃ = (�̃�, �̃�, �̃�, �̃�) if and only if there exist (invertible) 

transformation matrices Z, T  ℂN.N such that 

�̃� = 𝒁𝑯𝑬𝑻, �̃� = 𝒁𝑯𝑨𝑻, �̃� = 𝒁𝑯𝑩, �̃� = 𝑪𝑻  (I.2) 

Therein, the matrix T yields a coordinate transformation �̃�  = 𝑇𝑥 and Z transforms the 

describing equations. The change of one system to an equivalent one in the sense of (I.2) is 

referred to as generalized state-space transformation. 

The following definition introduces some important system properties. 

Definition 1.2 (Basic system properties) 

The system (I.1) is called : 

(a) Asymptotically stable  or c-stable, if all eigenvalues of the matrix pencil λE  ̶A, i.e., all 

λℂ such that det(λE ̶ A) = 0, have negative real parts 

(b) Controllable in [t0,tf] , if any initial state x(t0) can be steered to any final state x(tf) by an 

appropriate input signal u(t) with finite energy.  

(c) Observable in [t0,tf] , if the set of states such that y(t) = Cx(t)=0, for all t[t0,tf], contains 

only the zero state x(t)=0. 
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Controllability and observability are important concepts in model order reduction to 

characterize system components that do not contribute substantially to the input-to-output 

behavior of the system. It can be shown that a system (I.1) is minimal, i.e., has the smallest 

possible order to describe exactly the input-to-output behavior, if and only if it is controllable 

and observable. There are variety of different equivalent definitions and criteria for the system 

properties in Definition 1.2. Some can be found, for example, in [8]. 

A useful tool to deal with systems of differential equations is the Laplace transform. For a time 

domain function f: R≥0  → Rn, its Laplace transform is defined to be 

𝐹(𝑠) = 𝐿 {𝑓(𝑡)}(𝑠) ∶=  ∫ 𝑓(𝑡)
∞

0
𝑒−𝑠𝑡 𝑑𝑡,    (I.3) 

If the integral exists, with the complex frequency variable s  ℂ. Applying (I.3) to the linear 

system (I.1) results in an equivalent description in the complex frequency domain via algebraic 

equations rather than differential ones 

𝑠𝐸𝑥(𝑠) − 𝐸𝑥0  = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠),

𝑌(𝑠) = 𝐶𝑋 (𝑠),
        (I.4) 

Where X: ℂ → ℂn, U:ℂ → ℂp are the Laplace transform off the equally named time domain 

function x, u, and y,  respectively. With the assumption that x0 =0, the input-to-output behavior 

of (I.1) in the frequency domain can be directly described by 

𝑌(𝑠) = (𝐶(𝑠𝐸 − 𝐴)−1𝐵)𝑈(𝑠) =  𝐺𝐿(𝑠)𝑈(𝑠)   (I.5) 

Where the complex, matrix-valued function 

𝐺𝐿 = 𝐶(𝑠𝐸 − 𝐴)−1𝐵    (I.6) 

Is called the transfer function (TF) of  (I.1) 

In model order reduction, the input-to-output behavior (I.1) is approximated via a surrogate 

model of smaller order. For an analysis of the approximation quality, norms for dynamical 

systems are needed. The following definition states two commonly used system norms. 

Definition 1.3 (System norms) 

Assume (I.1) to be asymptotically stable with its transfer function (I.6). 

(a) The H2-norm is defined as 
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   ‖𝐺𝐿‖𝐻2
  =   √

1

2𝜋
∫ ‖𝐺𝐿(𝜔𝑖)‖𝐹

2  𝑑𝜔
∞

−∞
  

(b) The H-norm is defined as 

                                     ‖𝐺𝐿‖𝐻∞
  =  sup

𝜔∈ℝ
‖𝐺𝐿(𝜔𝑖)‖2 

 

While most of the time, the norms in Definition 1.3 are sufficient for studying stable systems, 

it should be noted that an important expansion of the H-norm for systems with anti-stable 

parts, i.e., where eigenvalues of  λ E – A have positive real parts, is the L-norm . this norm is 

analogously to the H-norm defined as 

‖𝐺𝐿‖𝐿∞
  =  sup

𝜔∈ℝ
‖𝐺𝐿(𝜔𝑖)‖2      (I.7) 

The norms in Definition 1.3 are defined using the system’s transfer function in the frequency 

domain. Results from Parseval, Plancherel and Payley-Wiener give links between the time and 

frequency domain description of (I.1) in terms of norms and spaces [8]. Roughly speaking, the 

approximation behavior of the transfer function in frequency domain is equivalent to the input-

to-output approximation behavior in the time domain, i.e., the better the transfer function is 

approximated the smaller the time domain input-to-output error will be. In fact, the following 

two inequalities can be shown to hold in time domain (and in frequency domain with according 

changed functions and spaces)    

‖𝑦 − �̂�‖𝐿2
 ≤  ‖𝐺𝐿 −  �̂�𝐿‖

𝐻∞
‖𝑢‖𝐿2

,

‖𝑦 − �̂�‖𝐿∞
 ≤  ‖𝐺𝐿 −  �̂�𝐿‖

𝐻2
‖𝑢‖𝐿2

          (I.8) 

For u  and 𝑦 − �̂� in the appropriate spaces, and where �̂�  is the output signal of an approximating 

system corresponding to �̂�𝐿 . The two norms used above are the time domain  L2-I and L- 

norms, which are defined by 

‖𝑥‖𝐿2
 =  √∫ ‖𝑥(𝑡)‖2

2 𝑑𝑡,
𝑡𝑓

𝑡0
      (I.9) 

‖𝑥‖𝐿∞
 =  sup

𝑡∈[𝑡0,𝑡𝑓] 

‖𝑥(𝑡)‖∞      (I.10) 

For a time domain function x: R≥0→R
n. 
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I.3 Second-order systems 

 

The main interest of this thesis lies in mechanical systems. In the LTI case, these systems are 

usually described by differential equations with second-order time derivatives of the form 

𝐺𝐿 : {
𝑀�̈�(𝑡) + 𝐸�̇�(𝑡) + 𝐾 𝑥(𝑡) =  𝐵𝑢𝑢(𝑡),

𝑦(𝑡) =  𝐶𝑝𝑥(𝑡)  + 𝐶𝑣�̇�(𝑡)
       (I.11) 

With  M, E, K  R NxN , Bu  RNxm , Cp, Cv R
pxN;  M invertible, if not stated otherwise, and 

the initial conditions  𝑥(𝑡0) =  𝑥𝑝,0,  �̇�(𝑡0) =  𝑥𝑣,0 with xp,0 xv,0  R
N. 

Systems of the form (I.11) are further on referred to as second-order LTI systems. The system 

matrices M, E, K are thereby known as mass, damping, and stiffness matrices . conform with 

the previous section, the default assumption for systems like (I.11) will be zero initial conditions 

xp,0 = xv,0 =0, with t0 =0. The definition 2.1 is extended appropriately for (I.11). the order of 

(I.11) is the corresponding state-space dimension N,  and the tuple 

GL = (M, E, K, Bu, Cp, Cv) 

is the realization of (I.11). In case of mechanical systems, M and K are usually symmetric 

positive definite and E+ET symmetric positive semi-definite. Often also E itself is symmetric 

positive semi-definite. 

In principal, the theory of linear first-order systems (I.1) can be directly transferred to the 

second-order case by reformulating (I.11) as a first-order system. There exist infinitely many 

first-order realizations of (I.11). The most commonly used ones are summarized in the 

following; see, e.g. [16,17]. 

The first companion form realization can be obtained by introducing the first-order state vector 

𝑥𝑇   = [𝑥𝑇   �̇�𝑇]. Reordering the lower-order dynamics to the right-hand side yields an 

equivalent description of (I.11) by a first-order system of the form (I.1), with the system 

matrices 

𝐸𝑓𝑐 =  [
𝐽𝑓𝑐 0

0 𝑀
] , 𝐴𝑓𝑐  =  [

0 𝐽𝑓𝑐

−𝐾 −𝐸
] , 𝐵𝑓𝑐  = [ 0

𝐵𝑢
],      𝐶𝑓𝑐 = [𝐶𝑝 𝐶𝑣]     (I.12) 

Where JfcR
NxN is an arbitrary invertible matrix. The input-to-output behavior of  (I.11) and 

the first-order system (I.1) with the matrices (I.12) is identical. A classical choice for the 

invertible matrix is Jfc  = IN. In case of M, E, K symmetric and K invertible, another suitable 

choice for the invertible matrix is Jfc = -K, since thereby Efc and Afc become symmetric. If 



 

Page | 9  
 

Chapter I LTI System Theory and Fundamentals 

additionally Bu  = Cv
T and  Cp = 0 hold, the first companion form realization is also state-space  

symmetric. 

A different realization is obtained by moving only the state without time derivative to the right-

hand side. The second companion form realization of (I.11) is then given by 

𝐸𝑠𝑐 =  [
𝐸 𝑀
𝐽𝑠𝑐 0

] , 𝐴𝑠𝑐  =  [
−𝐾 0

0 𝐽𝑠𝑐
] , 𝐵𝑠𝑐  = [𝐵𝑢

0
],      𝐶𝑠𝑐 = [𝐶𝑝 𝐶𝑣]   (I.13) 

 

With Jsc R
NxN an arbitrary invertible matrix. The default choice for Jsc in (I.13), if M is 

invertible, is Jsc = M. Then, in case of M, E, K symmetric, the first-order system matrices Esc 

and  Asc become symmetric, too. Also, the second companion from realization becomes state-

space symmetric if additionally Bu = Cp
T and Cv =0 hold. 

Since (I.12) and (I.13) are both realization of the same second-order system, i.e., they are 

equivalent, the question off the corresponding transformation matrices in (I.2) arises to switch 

between the two realizations. One can easily prove that (I.12) can be transformed into (I.13) 

using the transformation matrices  

𝑍𝑓𝑐2𝑠𝑐   =  [
𝐽𝑓𝑐

−𝑇𝐸𝑇 𝐽𝑓𝑐
−𝑇𝐽𝑠𝑐

𝑇

𝐼𝑁 0
]     𝑎𝑛𝑑    𝑇𝑓𝑐2𝑠𝑐

 =  [
𝐼𝑁 0
0 𝐼𝑛

]  =  𝐼2𝑁      (I.14) 

i.e., it holds 

𝐸𝑠𝑐 =   𝑍𝑓𝑐2𝑠𝑐

𝑇  𝐸𝑓𝑐𝑇𝑓𝑐2𝑠𝑐
,   𝐴𝑠𝑐   =  𝑍𝑓𝑐2𝑠𝑐

𝑇  𝐴𝑓𝑐𝑇𝑓𝑐2𝑠𝑐
,    𝐵𝑠𝑐  = 𝑍𝑓𝑐2𝑠𝑐

𝑇  𝐵𝑓𝑐 , 𝐶𝑠𝑐 = 𝐶𝑓𝑐𝑇𝑓𝑐2𝑠𝑐
  (I.15) 

Note that the reverse transformation from second to first companion form is given by the inverse 

transformation matrices 

𝑍𝑓𝑐2𝑠𝑐

−1   =  [
0 𝐼𝑁

𝐽𝑠𝑐
−𝑇𝑗𝑓𝑐

𝑇 −𝐽𝑠𝑐
−𝑇𝐸𝑇]     (I.16) 

In practice, while both companion forms have different advantages, they can quickly run into 

numerical problems during computations due to the indefiniteness of the first-order system 

matrices. Therefore, a third first-order realization is mentioned can be also used. 

Assuming K to be invertible, the strictly dissipative realization of (I.11), as introduced in [16], 

is given by 
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𝐸𝑠𝑑 = [
𝐾 𝛾𝑀

𝛾𝑀 𝑀
],   𝐴𝑠𝑑 = [

−𝛾𝐾 𝐾−𝛾𝐸
−𝐾 𝛾𝑀−𝐸

],

𝐵𝑠𝑑= [
𝛾𝐵𝑢
𝐵𝑈

],       𝐶𝑠𝑑=[𝐶𝑝 𝐶𝑣],
       (I.17) 

With the parameter0 < 𝛾 < 𝜆𝑚𝑖𝑛(𝐸 (𝑀 +
1

4
𝐸𝐾−1𝐸)−1). It was shown in [16] that in case of 

mathematical systems with M, E, K symmetric positive definite, this realization is strictly 

dissipative, i.e., Esd is symmetric positive definite and Asd + Asd
T is symmetric negative definite. 

Using the realization (I.17) gives numerical advantages in computational methods that work 

with projected spectra of  𝜆𝐸 − 𝐴 rather than directly with the second-order system matrices. 

But applying (I.17) comes with the cost of increased computational complexity  as there are no 

zero blocks in the matrix structure to make use of in computational operations, in contrast to 

(I.12) and (I.13). 

As before, the strictly dissipative realization (I.17)  is equivalent to the other two realizations 

(I.12) and (I.13) such that again the question of appropriate transformation matrices to switch 

between the realization need to be answered. While in [16] only the transformation into (I.12) 

with a specific choice for Jfc namely Jfc  = K, was shown, it can be observed that with 

𝑍𝑓𝑐2𝑠𝑑
 =  [

𝐽𝑓𝑐
−𝑇𝐾𝑇 𝛾𝐽𝑓𝑐

−𝑇𝑀𝑇

𝛾𝐼𝑁 𝐼𝑁

]   𝑎𝑛𝑑  𝑇𝑓𝑐2𝑠𝑑
 =  𝐼2𝑁    (I.18) 

The more general case holds 

𝐸𝑠𝑑 =  𝑍𝑓𝑠2𝑠𝑑

𝑇 𝐸𝑓𝑐𝑇𝑓𝑐2𝑠𝑑
,   𝐴𝑠𝑑 =  𝑍𝑓𝑐2𝑠𝑑

𝑇 𝐴𝑓𝑐𝑇𝑓𝑐2𝑠𝑑
,   𝐵𝑠𝑑  =  𝑍𝑓𝑐2𝑠𝑑

𝑇 𝐵𝑓𝑐,   𝐶𝑠𝑑  =  𝐶𝑓𝑐𝑇𝑓𝑐2𝑠𝑑
.   (I.19) 

The inverse transformation is given by 

𝑍𝑓𝑐2𝑠𝑑

−1 = [
(𝐾 − 𝛾2𝑀)−𝑇𝐽𝑓𝑐

𝑇 −𝛾(𝐾 − 𝛾2𝑀)−𝑇𝑀𝑇

−𝛾(𝐾 − 𝛾2𝑀)−𝑇𝐽𝑓𝑐
𝑇 (𝐾 − 𝛾2𝑀)−𝑇𝐾𝑇 ]  𝑎𝑛𝑑  𝑇𝑓𝑐2𝑠𝑑

−1 =  𝐼2𝑁  (I.20) 

With the additional assumption that 𝐾 − 𝛾2𝑀 is invertible. The transformation of the strictly 

dissipative realization into the second companion form realization follows then by applying 

(I.14) or (I.16) to the transformations above. 

As in the first-order case, realization of second-order systems are an important point for the 

application of model reduction methods. In general, the realizations of two second-order 

systems 𝐺𝐿 𝑎𝑛𝑑 �̃�𝐿  are equivalent if only if there exist Z, T  ℂ RxR, with R = 2N,such that 

corresponding first-order realization of 𝐺𝐿 𝑎𝑛𝑑 �̃�𝐿 are equivalent. 
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This equivalence is in a certain sense unhandy due to the resulting difficult conditions on the 

transformation matrices to preserve the second-order structure. A more applicable special case 

of second-order system equivalence is given in the next definition 

 

 Definition 1.4 (Restricted system equivalence [17]) 

Two second-order systems 

𝐺𝐿 = (𝑀, 𝐸, 𝐾, 𝐵𝑢, 𝐶𝑝, 𝐶𝑣) 𝑎𝑛𝑑 �̃�𝐿  = (�̃�, �̃�, �̃�, �̃�𝑢, �̃�𝑝, �̃�𝑣) 

are called restricted equivalent, if there exist transformation matrices Z, T  ℂNxN such that 

𝑀 =  𝑍𝐻�̃�𝑇,   𝐸 =  𝑍𝐻�̃�𝑇,   𝐾 =   𝑍𝐻�̃�𝑇,

𝐵𝑢   =  𝑍𝐻𝐵𝑢,   𝐶𝑝 =  �̃�𝑝𝑡,    𝐶𝑣 =  �̃�𝑣𝑇
  (I.21) 

 

   hold. The change between two second-order system realization in the sense of (I.21) is called 

restricted state—space transformation. 

It can be shown that the restricted system equivalence is a special cases of the general 

equivalence of second-order systems by observing that (I.21) is obtained by setting  

�̃� = [
𝑍11 0
0 𝑍

]   𝑎𝑛𝑑 �̃�  =  [
𝑇 0
0 𝑇

]   (I.22) 

As a generalized state-space transformation (I.2) to first companion form realization (I.12), 

where Z11  ℂRxR is an arbitrary invertible matrix. 

Analogously to first-order case, second-order systems can equivalently described in the 

frequency domain. Applying the Laplace transform (I.3) to (I.11) yields 

𝑠2𝑀𝑋(𝑠) − 𝑠𝑀𝑥𝑝,0 − 𝑀𝑥𝑣,0 =  −𝑠𝐸𝑋(𝑠) + 𝐸𝑥𝑝,0 − 𝐾𝑋(𝑠) + 𝐵𝑢𝑈(𝑠),

𝑌(𝑠) =  𝐶𝑝𝑋(𝑠) + 𝑠𝐶𝑣𝑋(𝑠) − 𝐶𝑣𝑥𝑝,0
  (I.23) 

Using the assumption xp,0 = Mxv,0  = 0 and reordering the terms to get a direct input-to-output 

relation in the frequency domain results in the second-order transfer function 

𝐺𝐿(𝑠)  = (𝐶𝑝  + 𝑠 𝐶𝑣)(𝑠2𝑀 + 𝑠𝐸 + 𝐾)−1𝐵𝑢   (I.24) 
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With the complex variable s  ℂ. Note that equivalently, inserting any first-order realization 

(I.11), e.g., (I.12), (I.13) and (I.17), into thee first-order transfer function formulation (I.6) also 

results in (I.24). 

While most system properties of second-order systems are only characterized for their first-

order form, e.g., controllability and observability, the concept of asymptotic stability easily 

transfers to the second-order case: A second-order system (I.11) is asymptotically stable (c-

stable) if and only if all eigenvalues λ  of the quadratic matrix pencil λ2M + λE+ K , i.e., all 

λℂ such that   (λ2M + λE+ K)  =0, have negative real parts. 

I.4 Motivating examples for mechanical systems 

 

In this section tow motivating examples with underlying mechanical systems are used to 

illustrate the necessity of structure-preserving model order reduction in practical applications. 

I.4.1 Butterfly gyroscope 

 

The butterfly gyroscope is an open benchmark example for model order reduction methods 

from Oberwolfach Benchmark Collection [18,19]. It models a vibrating micro-mechanical 

gyroscope for the use in inertial navigation applications. The design of the chip itself is 

illustrated in Figure 1.1. The displacement field is described by linear three-dimensional partial 

differential equations from elastodynamics involving second-order time derivatives. Using a 

spatial finite element discretization yields a linear mechanical system of the form (I.11) 

described by N = 17361 ordinary differential equations. The states are excited by a single input 

(m =1) and measuring the displacement of the four wings in the three spatial directions gives p 

= 12 outputs. The internal damping behavior of the gyroscope is modeled Rayleigh (or 

proportional) damping 𝐸 = 𝛼𝑀 +  𝛽𝐾, with the coefficients 𝛼 = 0 𝑎𝑛𝑑 𝛽 =  10−6. 

In the practical process of improving the butterfly gyroscope, the mechanical system needs to 

be simulated many times with different input signals to analyze the system’s behavior with 

respect to important physical phenomena, for example, its sensitivity to shocks and vibration. 

To perform the design process in a reasonable amount of time, it is essential to improve the 

simulation efficiency of the system. A remedy is the reduction of the number of 

describing/defining ordinary differential equations by model order reduction techniques. 

Thereby, the second-order system structure needs to be kept for the analysis process, and is 

even more beneficial if additional mechanical properties like the symmetry and definiteness of 
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the system matrices are preserved. Therefore, structure-preserving model order reduction are 

required here.    

    

(a)   Manufactured specimen.            (b) Schematic Layouts. 

 

Figure 1.1 Design of the butterfly gyroscope. 

 

I.4.2 Artificial fishtail model  

 

Autonomous underwater vehicles are an important and essential tool in environmental 

observation tasks [20]. The classical thruster-driven approach has been proven to be mostly 

inefficient and expensive [21], especially compared with the agile, fast and efficient locomotion 

that fish naturally developed by evolution [22]. For the construction of fish-like underwater 

vehicles, the artificial fishtail model was developed [22–24]. Three-dimensional partial 

differential equations are used to describe the deformation of a fishtail-aped silicon structure; 

see Figure 1.2a. For the fish-like locomotion, the fluid elastomer actuation principle is used 

[25]. Therefore, the fishtail consists of two symmetric, ribbed chambers, as shown in Figure 

1.2a, which are alternately put under pressure; see Figure 1.2b. this bends the fishtail alternately 

into the corresponding directions leading to the typical “flapping” behavior that fish use for 

locomotion. 

The fishtail has a complicated geometric structure, which is expressed in discretization of the 

describing partial differential equations. Using the finite element methods, the discretized 

equations are given by the linear mechanical system (I.11) with N = 779232 ordinary 

differential equations. A single input m=1 is used to describe the pressure flow between the 
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inner chambers and the displacement of the fish tail’s tip is observed in all three spatial 

directions  p =3. The internal damping behavior is modeled via the Rayleigh approach with 

𝐸 =  𝛼𝑀 + 𝛽𝐾, where 𝛼 =  10−4 𝑎𝑛𝑑 𝛽 = 2. 10−4. The size of the resulting system leads to a 

tremendous amount of computational resources needed to perform simulation, e.g., the 

simulation of 2s of the fishtails behavior easily takes around 45 min of real-world computation 

time on computer with (CPU  Intel i5 @ 2.10 GHz with 2x8 Cores and RAM 192 GB). The 

full-order system is simply unbearable when it comes to real-time applications or the use of not 

so powerful hardware for computation, like an onboard chip. Therefore, structure-preserving 

model reduction is needed here to provide suitable surrogate model described by only a few 

differential equations.   

                                 

(a) Transparent sketch.      (b) Fluid chambers in relaxed and pressurized state. 

Figure 1.2 Design and actuation principle of the artificial fishtail. 

 

I.5 Conclusion 

In this chapter, we presented an overall of the basics of system-theoretic notions and concepts 

for both first and second order linear systems. We introduced the fundamental concepts and 

terms associated with Linear Time-Invariant systems such as the state-space representation and 

some basic system properties, we reviewed some system norms. As this work is focused on the 

second-order systems, two examples from mechanical engineering were presented in the last 

section of this chapter. This chapter can serve as starting point for our thesis objective.  
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Chapter II: Basics of Model Order Reduction 

 

 

II.1 Introduction 

 

For a big system, such as the two models examined in the previous chapter, the task of 

simulation or control design can be expensive in term of time and computing cost. Model order 

reduction (MOR) is a wide field that is concerned with finding a lower dimensional system, 

whence faster to simulate, that gives a very good approximation to the original system. Each 

method finds an approximating subspace that spans the major characteristics of a system’s 

response, a projection matrix is also found that is used to project the larger system onto the 

smaller subspace. This chapter discusses the theory background concerning model order 

reduction methods of first and second order systems. First, model order reduction techniques 

for LTI systems and their classification are reviewed. In section, II.2 the projection framework 

for model order reduction is established as the main construction approach for reduced-order 

model in this work. Thereafter, state-of-the-art methods in balanced truncation and Krylov 

subspaces form first- and second-order systems are presented. 

 

II.2 Model Order Reduction for LTI Systems and their Classification  

 

The numerical simulation of predictive models is a key tool in the design of complicated high-

tech systems. These dynamical models, however, are often of high order; a huge number of 

ordinary differential equations characterizes them. This is due to the system’s intrinsic 

complexity or the discretization of partial differential equations. Model Order Reduction 

(MOR) is a broad topic concerned with finding a smaller dimensional system, thus quicker to 

solve, that offers a very good approximation to the original system. Model order reduction 

techniques have been developed to reduce the complexity of a model while preserving its input-

output behavior as much as possible. Other criteria are also used to characterize the reduction 

method, such as the preservation of essential features of the original model. For example, 

stability and passivity. 

The reduction of the complexity of the models is done by eliminating states from the original 

model. The elimination of states implies, in practice, a decrease in the dimension of the 
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matrices, which constitutes the order of the model. Thus, the reduction in order is a dimension 

reduction and not a reduction in the degree of the derivation of the differential equations 

defining the model; Figure 2.1 shows the concept in a graphical easy-to-understand way, 

demonstrating that sometimes very little information is needed to describe a model. This 

example with pictures off  the Stanford bunny shows that, even with only a few facets, the rabbit 

can still be recognized as such (Graphics credits : Harvard University, Microsoft Research). 

 

 

Figure 2. 1 Graphical illustration of model order reduction (source: [26]) 

 

There are two widely known model reduction classes for LTI systems, which are now in use, 

Singular Value Decomposition (SVD) based methods and Krylov Sub-space (moment 

matching) based methods. The key stages in the first technique are the calculation of the so-

called Hankel singular values and balancing of the system. One of the most prominent 

methodology of the SVD-based techniques is the so-called Balanced truncation model 

reduction[3,8,26,27]. This approach  has good system theoretical qualities including stability 

preservation and error bound computing. They are not, however, suitable for large-scale 

systems[28].  

The Krylov-based model reduction is an important class of numerical approaches for model 

reduction. Unlike SVD-based approaches, the reduced model created by Krylov methods is not 

guaranteed to be stable, and there is no a priori error bound. These techniques, on the other 

hand, are numerically robust and may be implemented repeatedly, see, for example [5,29–37] 

for efficient Krylov-based methods implementation. When compared to other reduction classes, 

the key advantage of this strategy is that it needs less computing effort and memory storage. 
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The following table shows the different reduction methods for LTI systems and their 

classification for 1st and 2nd order systems. 

 

Table 2. 1 Model Order Reduction techniques. 

 

II.3 The concept of projection and its application on model order reduction 

 

II.3.1 Petrov-Galerkin Approximation 

 

As we have seen in the preceding section, the modelisation of a system for real-life application 

can lead to high-dimensional models, i.e., state dimension n reaching up to 106. In what follows, 

we give a compact review of the projection concept which is a unifying feature of the most 

important MOR techniques that can be found in, e.g., [8,26,38–40]. Mathematically speaking, 

we want to replace system (I.1) by the following one  

Σ̂: {
�̂��̇̂�(𝑡) = �̂��̂�(𝑡) + �̂�𝑢(𝑡),

�̂�(𝑡) =  �̂��̂�(𝑡) +  �̂�𝑢(𝑡), �̂�(0) = �̂�0

    (II.1) 

Where �̂� ∈ ℝ�̂�×�̂�, �̂� ∈ ℝ�̂�×𝑚, �̂� ∈ ℝ𝑝×�̂� 𝑎𝑛𝑑 �̂� ∈ ℝ𝑝×𝑚. Obviously, for Σ̂ we require �̂�  ≪ 𝑁  

and the error ‖𝑦 − �̂�‖ to be small. Depending on the specific norm we choose for the 

minimization problem, there are different techniques that have been proven to be very 

successful. On the one hand, there are interpolation-based model reduction techniques that try 

 Method 

System Type 

 

SVD-Based 

 

Krylove-Based 

First Order or State-Space 

Model 

• Balanced Truncation  

• Hankel Approximation 

• Realization 

• Interpolation 

• Lanczos 

• Arrnoldi 

Second Order Model • Second Order Balanced 

Truncation 

• Second Order Arnoldi  
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to minimize the error in the H2-norm and, on the other hand, methods like balanced trunction 

focus on a small  H2-error of the reduced-order system. 

The question that immediately arises is how to construct Σ̂, given an original system Σ. As it 

turns out, a reduced-order system can be obtained by a projection-type framework. For this, we 

briefly state the most important properties of projection matrices, see, e.g., [41,42] 

Projective Model Order Reduction is based on the idea that normally the state trajectory x(t) 

does not transit all parts of the state space equally often, but mostly constrains to remain inside 

a subspace  V of lower dimension. 

The projection theory demonstrates that a projector P may be defined by using two subspaces 

M   and L  such that :  

M ∩ L┴   =   0   (II.2) 

Where M   is the subspace spanned by the range P and L is the subspace orthogonal to the null 

subspace of P. The projector P can define the projection  �̂�   of the vector x over the subspace 

M and the error vector e over the subspace L┴ as follows   

�̂�   =   𝑃𝑥   (II.3) 

𝑒(𝑥) = 𝑥  −   𝑃𝑥  (II.4) 

Where e(x)  Ran( I – P ). It is useful to associate the error with an m-dimensional subspace 

Vm which is orthogonal to Ran( I – P). that is e(x) ┴ Wm. a projection is called an orthogonal 

projection if  Wm is equal to Vm otherwise it is called oblique projection. Figure II.2 illustrates 

the two types of projection. 
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Figure 2. 2 Orthogonal and Oblique Projections 

 

Now for the LTI system given by (I.1), we have, the matrices V  being basis for the subspace 

M and W basis for the subspace L , the projection technique find an approximate solution z that 

is element of the subspace M and an error vector e orthogonal to the subspace L (Pterov-Galerki 

condition) as follows [43,44] 

𝑥 = 𝑉𝑧  (II.5) 

The error of the system is then defined as 

𝑒 = 𝑏 + (𝐴 − 𝑠𝐸)𝑥  (II.6) 

𝑊𝑇𝑒 =  𝑊𝑇𝑏 +  𝑊𝑇(𝐴 − 𝑠𝐸)𝑉𝑧 = 0   (II.7) 

The matrices of the system projected on M   and the orthogonal L are 

�̂�  =   𝑊𝑇𝐸𝑉,     �̂� =  𝑊𝑇𝐴𝑉, �̂� =  𝑊𝑇𝐵 , �̂� = 𝐶𝑉, �̂�  = 𝐷    (II.8) 

 

II.3.2 Error Model and Error Norms 

 

Every reduced order model (ROM) is associated with a corresponding error system: 

Definition 2.1 Given an original system G(s) and some reduced order model Gr(s), we define 

the associated error model Ge(s) as Ge(s) = G(s) – Gr(s). 

It is of high importance for the analysis of the approximation quality, which is typically judged 

by means of ||Ge||, where || . || denotes a system norm of interest. 



 

Page | 20  
 

Chapter II Basics of Model Order Reduction 

We therefore define the absolute and relative error norms. 

Definition 2.2 the absolute H2 and H error norms is defined as 

𝜖ℋ2
  = ‖𝐺𝑒‖ℋ2

   𝑎𝑛𝑑    𝜖ℋ∞
  = ‖𝐺𝑒‖ℋ∞

     (II.9) 

Respectively. The relative error norms are defined as  

𝜖ℋ2,𝑟𝑒𝑙
  =

‖𝐺𝑒‖ℋ2

‖𝐺‖ℋ2

   𝑎𝑛𝑑    𝜖ℋ∞,𝑟𝑒𝑙
  =

‖𝐺𝑒‖ℋ∞

‖𝐺‖ℋ∞

     (II.10) 

 

Projection methods are extremely popular with the area of model order reduction and for both 

classes (SVD and Krylov techniques). Most of these methods are developed for linear problems, 

and researchers in recent years have concentrated on aspects like passivity, parametrization and 

structure preservation[45,46]. 

II.4 SVD-based MOR techniques 

 

SVD-based model reduction is a well-known system-theoretic approach. The main idea of these 

methods is to identify the states, which are important and less important with respect to the 

input-output behavior of the system. A less important state can be defined as a state, which is 

hard to control as well as hard to observe. In other words, a less important state requires a lot 

input energy to reach and yet produces very little output energy. In the following, we provide a 

brief review on two well-known techniques for this class of MOR. 

II.4.1 Balanced truncation based model order reduction 

 

The main idea of the model order reduction based on balanced truncation is to rearrange the 

system in its balanced realization form. This means that the states of the system are arranged 

such that, the more controllable and observable modes of the system are at the beginning of the 

system’s realization. Consequently, the original system can be truncated where its modes 

become irrelevant for representing its behavior. 

Borrowing the notation from [47], given a system of the new form  

�̇� = 𝐴𝑥 + 𝐵𝑢,   𝑦 = 𝐶𝑥.     (II.11) 

A system is in its balanced realization form if its controllability Wc and observability Wo 

Grammians are equal; however, most likely, this is not the case of the original system (II.11). 
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Thus, the balanced realization theory establishes that there exists a similarity transformation 

x=Tz such that the condition above is met. Moreover, the eigenvalues of the product WcWo does 

not change over any coordinate change[48]. This means that these values, called Hankel values, 

have the same meaning for the original and transformed system.   

The problem of balanced truncation model reduction is narrowed to the calculation of the matrix 

T, and this calculation can be carried out as follows [27]. 

The controllability and observability Grammians can be computed from the Lyapunov equation 

(II.12) and (II.13) respectively. 

𝐴𝑊𝑐  +  𝑊𝑐 𝐴𝑇 + 𝐵𝐵𝑇  = 0,    (II.12) 

𝐴𝑇𝑊𝑜  +  𝑊𝑜𝐴 + 𝐶𝑇𝐶 = 0,    (II.13) 

The Cholesky factorization of Wc and Wo are computed by 

𝑊𝑐 = 𝐿𝑐𝐿𝑐
𝑇 ,      (II.14) 

𝑊𝑜  =  𝐿𝑜
𝑇 𝐿0     (II.15) 

The singular value decomposition of the product 𝐿𝑜
𝑇 𝐿𝑐 is calculated. 

𝐿𝑜
𝑇 𝐿𝑐  = 𝑈Σ𝑉𝑇    (II.16) 

Where Σ is a diagonal matrix containing the invariant Hankel values of the system. Finally, the 

matrix T can be computed as 

𝑇 = 𝐿𝑐
𝑇𝑈Σ−

1

2      (II.17) 

The balanced realization of the system (II.11) can be obtained by projection: 

�̂� =   𝑇−1𝐴𝑇,   �̂� = 𝑇−1𝐵, �̂� = 𝐶𝑇    (II.18) 

The matrices of the balanced system above can be decomposed as follows 

�̂� = [
�̂�11 �̂�12

�̂�21 �̂�22

],   �̂� = [
𝐵1

𝐵2
] , �̂� = [𝐶1 𝐶2]   (II.19) 

Where the first blocks of the matrices are related with the first rth more controllable and 

observable states. The reduced system can be established by extracting the matrices from (II.19) 

or by projecting the original system over the first rth columns of the matrix T. 

𝐴𝑟 = 𝑇𝑟
𝑇𝐴𝑇𝑟 ,   𝐵𝑟 = 𝑇𝑟𝐵, 𝐶𝑟 = 𝐶𝑇𝑟

𝑇    (II.20) 
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The balanced truncation method preserves the original modes of the system that have not been 

truncated; therefore, the reduced model present a good representation of the original system in 

a wide variety of frequencies[47,49]. However, the calculation of  Σ and the two Lyapunov is 

computationally demanding since it requires computing the singular value decomposition of 

the system, and is even more difficult for high order systems[47] as the examples cited in the 

previous chapter. 

II.4.2 Modal approximation technique 

 

The modal approximation technique is probably one of the first model reduction technique 

developed for linear systems. Due to its simplicity, it is still popular for some applications. Here 

we will explain the main idea of modal approximation. Let 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵      (II.21) 

Be the transfer function of (II.11). One can rewrite the transfer function as a partial fraction 

expansion: 

𝐺(𝑠) =  ∑
𝑅𝑖

𝑠−𝜆𝑖

𝑛
𝑖=1    (II.22) 

A general framework for modal approximation of the transfer function (II.22) is the following 

[50,51] 

1. Compute the poles 𝜆𝑖 and corresponding left and right eigenvalues 𝑦𝑖 and 𝑥𝑖; 

2. Sort (𝜆𝑖, 𝑅𝑖) in decreasing 
|𝑅𝑖|

|𝑅𝑒(𝜆𝑖)|
 order; 

3. Truncate at 
|𝑅𝑖|

|𝑅𝑒(𝜆𝑖)|
<  𝑅𝑚𝑖𝑛 

4. Construct    

     𝐺𝑘(𝑠) =  ∑
𝑅𝑖

𝑠−𝜆𝑖

𝑘
𝑖=1     (II.22) 

Thus, the idea behind the modal approximation is to take the part of the transfer function with 

the poles that are the closest to the imaginary axis and to throw away the others.  

If n is large, the step 1 of this framework is in general not feasible since full space eigen-methods 

such QR and QZ [52] have time complexity O(n3). In practical situations an alternative for step 

1, is the Subspace Accelerated DPA (SADPA) [53,54]. SADPA computes 𝑘 (𝑘 ≪ 𝑛) most 
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dominant poles and corresponding eigenvectors in an iterative way. The accuracy of the 

approximation can be controlled by stopping convergence to additional poles when the relative 

error 
‖𝐺(𝑖𝜔𝑖)−𝐺𝑘(𝑖𝜔𝑖)‖

‖𝐺(𝑖𝜔𝑖)‖
 (measured over several frequencies 𝜔𝑖) is smaller than a specified 

tolerance tol [55]. An advantage of the modal approximation is that the most dominant poles 

and residues are exactly those of the original system and, therefore, stability is preserved. 

II.5 Krylov sub-space based MOR techniques 

 

It is not in the scope of this thesis to provide extensive details on LTI model reduction methods 

that exist in the literature. However, to classify the results presented in this thesis it is helpful 

to point out the practical problems that are related to the goal of this work, which is: model 

order reduction using a Krylov sub-space technique, and to mention some principle components 

of this technique such as the concept of moment matching and a description of the Arnoldi 

Algorithm. 

II.5.1 Krylov sub-space and moment matching 

 

Krylov subspace model order reduction techniques are based on the projection onto Krylov 

subspaces. Due to their property of matching moments of the transfer function of the reduced 

and original system, Krylov subspace techniques are also called moment matching techniques 

[33].  The moments of a system are defined as the coefficients of the Taylor series expansion 

of the transfer function [34-36]. The moments of the system (I.5) around interpolation point   

s= 0 are: 

𝑀𝑖  = 𝐶(𝐴−1 𝐸)𝑖 𝐴−1𝐵  𝑓𝑜𝑟   𝑖 = 0,1 …       (II.8) 

The moments off the system around s =0  can be approximated from the Krylov subspace by 

using the appropriate initial vectors. This is desired since using a more mathematically stable 

procedure (Arnoldi Algorithm) based on the Krylov subspace instead of the using the explicit 

Taylor series elements. Before continuing it is appropriate to give the definition of Krylov 

subspace as follow. 

Definition 2.1 A ith dimensional Krylov subspace corresponding to some matrix A and vector 

g is denoted Ki (A,g) and  is defined as 

𝐾𝑖 (𝐴, 𝑔) = 𝑠𝑝𝑎𝑛 {𝑔, 𝐴𝑔, 𝐴2𝑔, … , 𝐴𝑖−1𝑔}   (II.9) 
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The goal of Krylov subspace model order reduction is to find a projection-based approximation 

of the original transfer function, which matches the first k moments of the original transfer 

function. A basis for a Krylov subspace can be quickly computed if A can be rapidly applied to 

g. e.g.. due to sparsity. This fact gives Krylov-based model order reduction the potential for 

cost savings. Let 

𝐻(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 = 𝐶𝐹(𝑠)    (II.10) 

Where F(s) is the solution to the linear system of equation (sI – A)F(s) = B.  The krylov 

projection technique gives an m-dimensional approximate solution to this linear system and 

thus an approximation to the transfer function H(s). This approximation is called a single-sided 

(one-sided) projection. Note that (II.10) can also be written as, 

𝐻(𝑠) = 𝑋(𝑠𝐼 − 𝐴)−1𝐵 = 𝐺(𝑠)𝑇(𝑠𝐼 − 𝐴)𝐹(𝑠)    (II.11) 

Where G(s) is solution to the linear system, (sI – A)TG(s) = CT. Now we have two linear systems 

of equations and the system H(s) can be approximated by using Krylov projection technique 

for each linear system. The resulting approximation is called a two-sided projection. 

II.5.1.1 Moment Matching 

 

Generally speaking, moment matching can refer to any projection technique wherein 

projections are constructed in a way  to ensure that the reduced model matches some number 

of values and derivatives of the transfer function H(s) of the original model at a prescribed set 

of frequencies. We derive formulas for the higher-order derivatives of H(s). Based on these 

results, we define the so called moments of the transfer function, which will be used in the 

further sections of the approximation accuracy of the reduced-order model [37]. 

Theorem 2.1  Let H(s)  be a transfer function as in (I.5), i.e. H(s) = CT (sE – A)-1B + D. Then 

for all integer i>0  [37]. 

𝜕𝑖𝐻(𝑠) = (−1)−1𝑖! . 𝐶𝑇((𝑠𝐸 − 𝐴)−1𝐸)𝑖(𝑠𝐸 − 𝐴)−1𝐵 = (−1)𝑖𝑖!. 𝐶𝑇(𝑠𝐸 − 𝐴)−1(𝐸(𝑠𝐸 −

𝐴)−1)𝑖𝐵     (II.12) 

And based on the Taylor series expansion around s0 ℂ 

𝐻(𝑠) = 𝐷 + ∑
(𝑠−𝑠0)𝑖

𝑖!
𝜕𝑖𝐻(𝑠0) = 𝐷 +  ∑ (−1)𝑖(𝑠 − 𝑠0)𝑖𝐶𝑇((𝑠0𝐸 − 𝐴)−1𝐸)𝑖(𝑠0𝐸 −∞

𝑖=0
∞
𝑖=0

𝐴)−1𝐵    (II.13) 
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For all s  in an open neighborhood of s0, which for s0=0 and E=I reduces to 

𝐻(𝑠) = 𝐷 − ∑ 𝑠𝑖𝐶𝑇𝐴−(𝑖+1)𝐵∞
𝑖=0     (II.14) 

For all s in an open neighborhood of 0. 

 

Proof. For i>0 

𝜕𝑖𝐻(𝑠) =  𝐶𝑇(𝜕𝑖(𝑠𝐸 − 𝐴)−1)𝐵 = (−1)𝑖𝑖! 𝐶𝑇((𝑠𝐸 − 𝐴)−1)𝐸)𝑖(𝑠𝐸 − 𝐴)−1)𝐵    (II.15) 

Furthermore  

𝐻(𝑠) =  ∑
(𝑠 − 𝑠0)𝑖

𝑖!
𝜕𝑖𝐻(𝑠0)

∞

𝑖=0

 

= 𝐷 +  ∑
(𝑠 − 𝑠0)𝑖

𝑖!
(−1)𝑖𝑖!. 𝐶𝑇((𝑠0𝐸 − 𝐴)−1𝐸)𝑖(𝑠0𝐸 − 𝐴)−1

∞

𝑖=0

𝐵 

= 𝐷 +  ∑ (𝑠 − 𝑠0)𝑖 (−1)𝑖. 𝐶𝑇((𝑠0𝐸 − 𝐴)−1𝐸)𝑖(𝑠0𝐸 − 𝐴)−1∞
𝑖=0 𝐵       (II.16) 

 

Which for s0=0 and E=I reduces to 

𝐻(𝑠) = 𝐷 +  ∑(𝑠 − 0)𝑖 (−1)𝑖. 𝐶𝑇((0𝐸 − 𝐴)−1𝐸)𝑖(0𝐸 − 𝐴)−1

∞

𝑖=0

𝐵 

= 𝐷 +  ∑(−𝑠)𝑖(−1))𝑖+1𝐶𝑇𝐴−(𝑖+1)𝐸𝑖𝐵

∞

𝑖=0

 

= 𝐷 −  ∑ 𝑠𝑖𝐶𝑇𝐴−(𝑖+1)𝐵∞
𝑖=0   (II.17) 

 

For all s in an open neighborhood of 0. 

Theorem 2.2 (the ith moment of the transfer function H(s)); Assuming D=0, the ith moment of 

H(s) at s0 ℂ is defined as [36] 

𝑀𝑖(𝑠0) =  𝐶𝑇((𝑠0𝐸 − 𝐴)−1𝐸)𝑖(𝑠0𝐸 − 𝐴)−1𝐵.      (II.18) 
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II.5.1.2 Moments at infinity 

 

To obtain the Taylor series expansion at infinity, one substitutes 1/s for s and calculates the 

Taylor series’ coefficient at s =0. Let T(s) = 1/s. one can not straightforwardly apply the chain-

rule to H∞(s) = H(1/s) = (H○T)(s), since it leads to 

𝜕𝐻∞(𝑠) =  𝜕(𝐻 ∘ 𝑇)(𝑠) =  𝜕𝐻(𝑇(𝑠)) ∙ 𝜕𝑇(𝑠),  (II.19) 

Where the factor 𝜕𝑇(𝑠) =
1

𝑠2 →  −∞ 𝑓𝑜𝑟 𝑠 → 0. Therefore we follow an alternative approach 

based on a rewritten for of H∞: 

𝐻∞(𝑠) = 𝐻 (
1

𝑠
) =  𝐶𝑇𝐺 (

1

𝑠
) 𝐵 + 𝐷 =  𝐶𝑇 (𝑠.

1

𝑠
𝐺 (

1

𝑠
)) 𝐵 + 𝐷 = 𝐶𝑇𝑠. 𝐺∞(𝑠)𝐵 + 𝐷, (II.20) 

Where 𝐺∞(𝑠) =  
1

𝑠
𝐺 (

1

𝑠
)  𝑎𝑛𝑑 𝐺(𝑠) = (𝑠𝐸 − 𝐴)−1;  and 

𝐺∞(𝑠) =
1

𝑠
𝐺 (

1

𝑠
) = (

𝐸

𝑠
− 𝐴)−1 1

𝑠
= (

𝐸−𝑠𝐴

𝑠
)−1 = ((𝑠(−𝐴) − (−𝐸)))−1 (II.21) 

We put 𝐹∞(𝑠) = (𝑠(−𝐴) − (−𝐸)) is differentiable for 𝑠 ↓ 0. This implies that for I fixed 

𝜕𝑖𝐺∞(𝑠) = (−1)𝑖𝑖! (𝐺∞𝜕𝐹∞)𝑖𝐺∞ = (−1)𝑖𝑖! (𝐺∞ ∘ −𝐴)𝑖𝐺∞ = 𝑖! (𝐺∞ ∘ 𝐴)𝑖𝐺∞.  (II.22) 

Hence for all i >0 

𝜕𝑖𝐻∞(𝑠) =  𝜕𝑖𝐶𝑇𝑠𝐺∞(𝑠)𝐵 + 𝜕𝑖𝐷𝐷 

                  =  𝐶𝑇[𝜕𝑖(𝑠𝐺∞(𝑠))]𝐵 

                  =  𝐶𝑇[𝑖𝜕𝑖−1𝐺∞(𝑠) + 𝑠 𝜕𝑖𝐺∞(𝑠)]𝐵 

                  =  𝐶𝑇[𝑖(𝑖 − 1)! ∙ (𝐺∞(𝑠)𝐴)𝑖−1𝐺∞(𝑠) + 𝑠 ∙ 𝑖! ∙ (𝐺∞(𝑠)𝐴)𝑖𝐺∞(𝑠)]𝐵 

                  =  𝐶𝑇[𝑖! ((𝐺∞(𝑠)𝐴)𝑖−1𝐺∞(𝑠) + 𝑠(𝐺∞(𝑠)𝐴)𝑖𝐺∞(𝑠))]𝐵  (II.23)   

Let i >0. Since 𝐺∞(0) =  𝐸−1 one obtains the derivatives of H at ∞ : 

𝜕𝑖𝐻∞(0) = 𝑖! ∙ 𝐶𝑇(𝐸−1𝐴)𝑖−1𝐸−1𝐵.   (II.24) 

This shows that the Taylor series at infinity of H is that of 𝐻∞ at 0, which is 

𝐻∞(𝑠) =  ∑
(𝑠 − 0)𝑖

𝑖!
∙ 𝜕𝑖𝐻∞(0)

∞

𝑖=0
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             = 𝐷 +  ∑
𝑠𝑖

𝑖!

∞

𝑖=1

∙ 𝑖! 𝐶𝑇(𝐸−1𝐴)𝑖−1𝐸−1𝐵 

                = 𝐷 +  ∑ 𝑠𝑖 ∙ 𝐶𝑇(𝐸−1𝐴)𝑖−1𝐸−1𝐵∞
𝑖=1      (II.25) 

for all s in an open neighborhood of 0; i.e., 

𝐻(𝑠) = 𝐷 + ∑ 𝑠−𝑖 ∙ 𝐶𝑇(𝐸−1𝐴)𝑖−1𝐸−1𝐵,   𝑠 → ∞∞
𝑖=1   (II.26) 

Definition 2.2 (The ith moment of the transfer function H(s) at infinity). Assuming D =0, the ith 

moment of the transfer function H(s) at infinity is called a Markov parameter and defines as 

[56]  

𝑀−𝑖 = 𝐶𝑇(𝐸−1𝐴)𝑖−1𝐸−1𝐵.   (II.27) 

 

II.5.2 Arnoldi Algorithm 

 

Arnoldi-based and Lanczos-Based techniques are the two commonly used processes to generate 

the orthonormal basis for the Krylov subspace. The Lanczos process is suitable for two-sided 

projections since the algorithm computes the orthogonal matrices W and V simultaneously [56]. 

The Arnoldi-based algorithm can be used twice to generate the basis corresponding to input and 

output Krylov subspace [57]. 

In this thesis, we focus on the Arnoldi-like algorithms to reduce an LTI model, so in the next, 

we describe this type of process. For more details on Lanczos-based algorithm, see [56,58]. 

As mentioned before, after selecting the suitable vectors that form the Krylov subspace, an 

orthonormal basis of this subspace should be computed. An Arnoldi-based technique for model 

order reduction is based on orthogonal projection onto the Krylov subspace, 𝐾𝑖 (𝐴, 𝑔), defined 

in (II.9). the need for this orthonormal basis underlies inn the fact that the vectors in the Krylov 

subspace conserve a certain level of dependency [56]. This section describes the computation 

of one-sided and two-sided Arnoldi approximation. 

II.5.2.1 One-sided Arnoldi Algorithm 

 

In the standard form, the one-sided Arnoldi algorithm iteratively computes VmR
Nxm for a given 

AR
NxN and BR

N, such that the following hold : 

• Orthonormal matrix : Vm
TVm = Im 
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• Basis to Krylov subspace : colsp (Vm)=Km(A,B)=colps([B AB,…., Am-1B]), where colps(.) 

represent the column span. 

The next algorithm (Algorithm  2.1) is a variant of the standard Arnoldi algorithm. The main 

step of the Arnoldi algorithm is the Gram-Schmidt orthogonalization. 

 

Algorithm 2.1 : One-sided Arnoldi Algorithm 

Input Matrices: A; B; m; and tol 

Output Matrices: Vm, vm+1; 

1. Initialization 

2. v1 = B / ||B||2 

3. V1 = [] 

4. for i = 1 to m Do 

5. Vi := [Vi vi] 

6. Ri+1  :=Avi – Vi V
T

i Avi; 

7. If ||Ri+1|| < tol then stop  

8. vi+1  := Ri+1 / || Ri+1 || ; 

9. Next j 

 

II.5.2.2 Two-sided Arnoldi Algorithm 

 

The two-sided Arnoldi approach may increase the accuracy of the Arnoldi approximation 

[59,60]. Unlike the one-sided Arnoldi method, the two-sided Arnoldi computes two orthogonal 

basis Vm, and Wm Rnxm for Km(A,B) and Km(AT,CT) respectively: 

𝑐𝑜𝑙𝑠𝑝(𝑉𝑚) = 𝑐𝑜𝑙𝑠𝑝([𝐵 𝐴𝐵, … , 𝐴𝑚−1𝐵]);      𝑉𝑚
𝑇𝑉𝑚 = 𝐼𝑚   (II.19) 

𝑐𝑜𝑙𝑠𝑝(𝑊𝑚) = 𝑐𝑜𝑙𝑠𝑝([𝐶𝑇 𝐴𝑇𝐶𝑇 , … , (𝐴𝑇)𝑚−1𝐶𝑇]);      𝑊𝑚
𝑇𝑊𝑚 = 𝐼𝑚   (II.20) 

Thus in the two-sided Arnoldi algorithm, Wm is not arbitrary. A version of two-sided Arnoldi is 

given in Algorithm 2.2. By construction, it can be shown that the Arnoldi equations: 

𝐴𝑉𝑚 = 𝑉𝑚𝐴𝑉𝑚  +  𝑣𝑚+1𝐶𝑉𝑚,       𝐵 =  𝑉𝑚𝐵𝑉𝑚    (II.21) 

𝐴𝑊𝑚 = 𝑊𝑚𝐴𝑊𝑚
𝑇  +  𝑤𝑚+1𝐵𝑊𝑚

𝑇 ,       𝐶𝑇 =  𝑊𝑚𝐶𝑊𝑚
𝑇     (II.22) 
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Where AVm = VT
mAV,  AWm =WT

mAWm,  BVm =VT
mB, CVm= vT

m+1 AVm, CWm = CWm, 

BWm=WT
mAwm+1  in which wm+1RN is part of the orthonormal matrix Wm+1=[Wm wm+1], are 

satisfied [39]. The above equations can be transformed to represent the oblique projection 

process. 

 

Algorithm 2.2 : Two-sided Arnoldi Algorithm 

Input Matrices: A; B; CT, m; and tol 

Output Matrices: Vm, vm+1; Wm, wm+1 

1. Initialization 

2. v1 = B / ||B||2, w1=CT/||CT|| 

3. V1 = [], W1=[] 

4. for i = 1 to m Do 

5. Vi := [Vi vi], Wi = [Wi wi] 

6. Ri+1  :=Avi – Vi VT
i Avi; 

7. Pi+1 := ATwi – WiW
T

i A
Twi ; 

8. If ||Ri+1|| < tol or ||Pi+1|| < tol then stop  

9. vi+1  := Ri+1 / || Ri+1 || ; 

10. wi+1  := Pi+1 / || Pi+1 || ; 

11. Next i 
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II.6 Conclusion 

 

Model order reduction approaches are used in a variety of areas. Mechanical systems is one of 

these areas because the dynamic modelling of mechanical systems often necessitates high-order 

systems. Model order reduction approaches are classed based on the area in which they are used 

or their mathematical basis. Several of these approaches, however, operate by projecting the 

original system onto a smaller subspace. Krylov subspace-based and Balanced truncation are 

two of these projection-based approaches. The Krylov subspace attempts to reproduce the rth 

moments of the original system on the moments of the reduced system. The Arnoldi approach 

is a well-known Krylov-based technique for model order reduction. It can be used to generate 

an orthonormal basis for the Krylov subspace projection. The commonly used Arnoldi process 

is the one-sided and two-sided Arnoldi Algorithms. 
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Chapter III: Proposed Technique 

 

 

III.1 Introduction 

 

The large-scale 2nd order model is considered a well-known representation for modeling the 

dynamical behavior of multivariable complex systems in various fields of science and 

engineering, such as electrical, mechanical, structural, electromagnetic, and micro-

electromechanical systems (MEMS). Some of these systems encounter computational problems 

in simulation due to its huge model order, to treat this problem. Therefore, we desire to find a 

reliable approximated model with reduced order which replace the original model in the 

simulation or the control, which can preserve the second order structure of the original system 

and the same key properties of the full order model such as stability [61,62]. 

In this thesis, the following large-scale system given in the second-order form is considered, 

and given by its representation as follows: 

∑𝑁 ∶   {
𝐌q̈(𝑡) +  𝐃q̇(𝑡) +  𝐊q(𝑡)  = 𝐛𝑢(𝑡)

𝑦(𝑡) =  𝑙𝑇𝐪(𝑡)
    (III.1) 

 

M ∊ ℝN x N is invertible matrix,  𝐪(𝟎)  =  𝐪𝟎 and  �̇�(𝟎)  =  �̇�𝟎 , initial conditions. M, D, and K 

∊ ℝN x N are respectively the mass, damping and stiffness matrices as known for mechanical 

models. q (t) ∊ℝN is the state variables vector. b,  l∊ ℝN  represent respectively the input 

distribution matrix and the output measurement matrix [62]. 

In this chapter, a model order reduction (MOR) of the 2nd order system ∑N  using a Second Order 

Arnoldi (SOAR) algorithm was discussed. The SOAR approach has been attracted many 

researchers in the last few years, which has been used to solve the following problems: a 

quadratic Eigen-value [63,64], the MOR of second-order dynamical systems [62,65] and in the 

analysis of structural acoustics [65,66]. From mathematical point of view, the SOAR design is 

based on a projection-based MOR technique that uses a second-order Krylov subspace and the 

SOAR procedure to generate the projection matrix as follows: first step a recurrence formula is 
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defined for the two matrices coefficient A and B and one or two initial vectors, the second step 

generate an orthonormal basis of projection sub-spaces from the famous second-order Krylov 

subspace defined in the recurrence formula. 

Obviously, the SOAR technique is used in MOR, which construct another reduced second-order 

state-space system ∑n with reduced order, where the input-output behavior dynamics are 

completely recovered i.e. preserving the basic characteristics of the full order system [61,62]. 

In this work, we try to automate the generation of the best reduced order model for a large 

second order system using the SOAR procedure, by defining a new criterion to auto-stop the 

iteration process in SOAR procedure and to auto-select an acceptable reduced order of the 

projection matrix, which in the limit of our knowledge is a new proposed idea, the efficiency 

and robustness of the proposed algorithm is validated by various well-chosen numerical 

examples of 2nd order models. 

In the next two sections (Section.2 and 3) of this chapter, we give some preliminaries 

concerning reduction of large-scale second order models based on the SOAR technique. 

Section.4 describes the theoretical establishment of Numerical Rank Performance Coefficient 

(NRPC) and proposes a stopping condition based on the NRPC value. 

 

III.2 Model Reduction Of Second Order System 

 

III.2.1 Problem formulation 

 

Numerous approaches have been proposed throughout the years for structural-preserving model 

reduction of the second-order system [61]. First a structure preserving method with moment-

match property was proposed by Su and Craig in 1991 [67]. Improvements have been added by 

Z. Bai and Y. Su.   in 2005-2006 [61,68]. 

    The analysis of the second-order system ∑N leads to building a very large complex model. 

Thus, we need mathematical tools for reducing the computational complexity and to accelerate 

the modeling task by constructing a reduced order system ∑𝑛. Where, the proposed tools 

preserve the characteristic proprieties of the original system such as, the second order form and 

stability, the reduced second order system ∑𝑛 is defined by: 
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∑𝑛 ∶   {
𝐌𝑛z̈(𝑡) +  𝐃𝑛ż(𝑡) +  𝐊𝑛z(𝑡)  = 𝐛𝐧𝑢(𝑡)

�̂�(𝑡) =  𝑙𝑛
𝑇𝐳(𝑡)

   (III.2) 

 

   Where z(t) represent the state vector with dimension n, where n<< N. and the matrices Mn, 

Dn, and Kn∈ ℝ𝑛 𝑥 𝑛, are the mass, damping, and stiffness matrices as known in structural 

dynamics, and the vectors bn, ln∈ ℝ 𝑛 are input distribution, output measurement. 

By applying the Laplace transform, the transfer function of the original second-order model is 

given as follows: 

ℎ(𝑠) =  𝑙𝑇 (𝐌𝑠2 +  𝐃𝑠 + 𝐊)−1 𝑏                (III.3) 

   The power series of Laplace transform Q(s) = L (q (t)) can be expressed as follows: 

𝑄(𝑠) =  𝑅0 + 𝑅1𝑠 +  … =  ∑ 𝑅𝑙𝑠
𝑙∞

𝑙=0       (III.4) 

   Where Rl are called lth order system moments. One can rewrite the above second order system 

∑N  in first-order form by taking the following state vector  𝑥(𝑡) = [
�̇�(𝑡)
𝑞(𝑡)

]: 

 

[
𝑀 0
0 𝐼

] [
�̈�(𝑡)
�̇�(𝑡)

] −  [
−𝐷 −𝐾

𝐼 0
] [

�̇�(𝑡)
𝑞(𝑡)

] =  [
𝑏
0

]  𝑢(𝑡) ,      𝑦(𝑡) =  [0 𝑙𝑇] [
�̇�(𝑡)
𝑞(𝑡)

]         (III.5) 

     The compact representation of the equation (III.5) can be expressed in matrix form as follow 

𝐶�̇�(𝑡) −  𝐺𝑥(𝑡) = 𝐵𝑢(𝑡),     𝑦(𝑡) = 𝐿𝑇𝑥(𝑡)         (III.6) 

Where:  𝐶 =  [
𝑀 0
0 𝐼

] , 𝐺 =  [
−𝐷 −𝐾

𝐼 0
],   and  𝐵 =  [

𝑏
0

]  ,     𝐿𝑇 =  [0 𝑙𝑇] are respectively 

the input and the output of the first-order system representation. 

     Now we can write the transfer function h(s) as follows: 

ℎ(𝑠) =  𝐿𝑇 (𝐶𝑠 − 𝐺)−1 𝐵        (III.7) 

     And the power series of the transfer function h (s) as: 

ℎ(𝑠) =  𝑚0 + 𝑚1𝑠 +  … =  ∑ 𝑚𝑙𝑠
𝑙∞

𝑙=0           (III.8) 
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    The design of MOR Krylov subspace techniques is based on the moment matching methods. 

The principle of its work is to replicate the moments of the original system ∑N   on the moments 

of the reduced system ∑n.  

The first application of MOR via Krylov Subspaces was on the first order systems, but we 

consider in this study a system described by 2nd order form. Generally, we proceed by 

transforming the 2nd order form to the 1st order state space type, but the drawback of this process 

is the lot of original model structures (sparsity, symmetry, orthogonality, etc.) are lost. Hence, 

many researches in second order reduction technique has recently been proposed with some 

constructive achievements in preservation of the original properties [69–71] . 

 

III.2.2 SOAR Algorithm for second order systems 

 

A mathematical formulation of Krylov Subspace is used as framework of a subspace projection 

technique to obtain a reduced system with the moment matching property, in the next, we define 

a second order Krylov subspace with presentation of SOAR algorithm.  

Definition 1: We define the second-order Krylov subspace as follow: 

𝐺𝑛(𝐴, 𝑍, 𝑤) = 𝑐𝑜𝑙𝑠𝑝𝑎𝑛{𝑟0, 𝑟1, … , 𝑟𝑛−1} (III.9) 

Where 

{
𝑟0 = 𝑤, 𝑟1 =  𝐴𝑟0

𝑟𝑖 =  𝐴𝑟𝑖−1 +  𝑍𝑟𝑖−2  ,   𝑖 = 2,3, … .
(III.10) 

Where𝐴, 𝑍 ∈ ℝ𝑛 𝑥 𝑛 are square matrices called constant matrices , and 𝑤 ∈ ℝ𝑛 𝑥 1 is a column 

vector called the  starting vector., Then the sequence r0, r1, …., rn-1 is known as second-order 

Krylov basic blocks [62]. 

The subspace Gn(A,Z;w) defined in (III.9) is called an nth second order Krylov subspace 

[61,68,71]. There is a connection between the subspace Gn(A,Z;w) and a the standard Krylov 

subspace Kn  (A,w) defined in (III.11), we can  consider Gn(A,Z;w) as  a generalization of Kn  

(A,w). 

  

Kn  (A,w)  = span (w, Aw, A2w, . . . , An-1w)  (III.11) 
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In the case of the matrix Z= 0, the second order Krylov subspace Gn(A,Z;w) is equal to the 

general Krylov subspace Kn  (A,w). 

     The application of the vector sequence {rj} of the second-order Krylov sub-space to obtain 

an orthonormal basis {r0, r1, . . ., rn-1} is called a SOAR (Second Order Arnoldi) Algorithm, 

this is an Arnoldi-like procedure.  

 

Algorithm 3.1: Second Order Arnoldi Algorithm 

Input Matrices: A; Z; w; q 

Output Matrices: Qn 

10. Initialization 

11. q1 = w / ||w||2 

12. p0 = 0 

13. for j = 1 to qDo 

14. r  :=Aqj +Zpj 

15. s := qj 

16. for i = 1to jDo 

17. t ij  := qi
T r 

18. r : = r – qiti j 

19. s := s – piti j 

20. Next   i 

21. tj +1,j := ||r||2 

22. if tj+1,j== 0, Break 

23. qj+1 := r / tj+1, j 

24. pj+1:= s / tj+1, j 

25. Next j 

 

 Two loops exist in SOAR algorithm. The first is the inner loop, which is an 

orthogonalization procedure for {qi} vectors. Where, a Gram-Schmidt procedure is used to 

generate the orthogonal vectors. The {pi} vectors set is an intermediate sequence. 

Another modified SOAR Algorithm version was proposed in [61] to avoid the use of a 
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direct reference to the intermediate vector set of {pi}. That will almost halve the size of the 

needed memory capacity. The second is the outer For-loop which is mainly used for counting 

the total number of iteration and generating the final orthonormal basis Qn for the given Krylov 

subspace. 

     If the matrices Qn ,Pn, denote square matrices with dimension n and whose columns vectors 

{q1 ,q2 , q3, . . . , qn} and {p1 ,p2 , p3, . . . , pn}, respectively. Let Tn represents the square upper 

Hessenberg matrix with entries tij≠ 0 obtained from the previous Algorithm.1.  Just as the 

relation in [10], then we easily see that the tow next relations for Qn, Pn, and Tn holds: 

 

𝐴𝑄𝑛 + 𝑍𝑃𝑛 =  𝑄𝑛𝑇𝑛 +  𝑞𝑛+1𝑒𝑛
𝑇𝑡𝑛+1,𝑛      (III.12) 

𝑄𝑛 =  𝑃𝑛𝑇𝑛 +  𝑝𝑛+1𝑒𝑛
𝑇𝑒𝑛+1,𝑛      (III.13) 

If upper Hessenberg matrix�̃�𝑛with dimension of (n + 1) x n can be written in the form of �̃�𝑛 =

 [
𝑇𝑛

𝑒𝑇𝑡𝑛+1,𝑛
], then the Eqs. (III.12) and (III.13) can be rewritten in the compact form  

[
𝐴 𝑍
𝐼 0

] [
𝑄𝑛

𝑃𝑛
]  =   [

𝑄𝑛+1

𝑃𝑛+1
] �̃�𝑛      (III.14) 

The sub-space spanned by the vectors {q1 ,q2 , q3, . . . , qn} generated from the SOAR procedure 

forms the projection sub-space to produce the reduced model, in other words they form  an 

orthogonal projection matrix by means of Second Order Krylov Subspace. 

span {q1 ,q2 , q3, . . . , qn} = Gn(A,Z;w),  for n ≥ 1. 

And 𝑞𝑖
𝑇𝑞𝑘 =  𝛿𝑖𝑘 for I, k= 1,…., n [63]. In fact, in moment matching by means of Second Order 

Krylov Subspaces we use the output of the Hessenberg matrix Tn of the SOAR Procedure 

to extracted analytically the system moments. The next Lemma.1can be used in the proof of the 

Theorem.1: 

Lemma.1 Let Tn ∈Rn x n bean upper Hessenberg matrix. The k entry 𝑇𝑛
𝑗
𝑒1is zero for k = j+2, . . 

., n and  j=0,1,..,n-1. In particular, 𝑒𝑛
𝑇𝑇𝑛

𝑗
𝑒1 = 0  for j = 0, 1, . . ., n-2. For proof see [62]   

Theorem.1Let Qn be the orthonormal matrix defined by the sequence vectors Qn = {q1, q2, …, 

qn}, where the vectors qi with i=1, …, n are generated by the SOAR procedure after the 
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execution of n iterations. Then the analysis of the relationship between the jth system’s moment 

rj and the output the SOAR procedure can be expressed as follow: [62]  

[
𝑟𝑗

𝑟𝑗−1
] =  𝐻𝑗𝑣 =  [

𝑄𝑛

𝑃𝑛
] 𝑇𝑛

𝑗
𝑒1,   for j =0,1, …, N-1.      (III.15) 

In particular, we have 

𝑟𝑗 =  𝑄𝑛𝑇𝑛
𝑗
𝑒1, 𝑎𝑛𝑑  𝑟𝑗−1 =  𝑃𝑛𝑇𝑛

𝑗
𝑒1, 𝑓𝑜𝑟  𝑗 = 0,1, … , 𝑁 − 1 

Proof.  We can re-write the SOAR algorithm iteration as 

[
𝐴 𝑍
𝐼 0

] [
𝑄𝑛

𝑃𝑛
] =  [

𝑄𝑛

𝑃𝑛
] 𝑇𝑛 +  [

𝑞𝑛+1

𝑝𝑛+1
] 𝑡𝑛+1,𝑛𝑒𝑛

𝑇.      (III.16) 

Therefore, if we multiply on the right the both sides of the Eqs. (III.13) by e1, we have 

[
𝑟1

𝑟0
] = 𝐻𝑣 =  [

𝑄𝑛

𝑃𝑛
] 𝑇𝑛𝑒1.        (III.17) 

Therefore, r1 = QnTne1 and r0 = PnTn e1. The extension of the above argument into the jth iteration 

for   j=0,1,..,n-1 can be verified mathematically by  induction proof. We now admit that Eqs. 

(III.15) is true for j= p, for j =p+1, we have 

 

[
𝐴 𝑍
𝐼 0

]
𝑝+1

[
𝑞1

𝑝1
] =  [

𝐴 𝑍
𝐼 0

] [
𝑄𝑛

𝑃𝑛
] 𝑇𝑛

𝑝𝑒1 =  {[
𝑄𝑛

𝑃𝑛
] 𝑇𝑛 + [

𝑞𝑛+1

𝑝𝑛+1
] 𝑡𝑛+1,𝑛𝑒𝑛

𝑇} 𝑇𝑛
𝑝𝑒1 =  [

𝑄𝑛

𝑃𝑛
] 𝑇𝑛

𝑝+1𝑒1.     

(3.18) 

Here we’re using the fact mentioned before in Lemma 1 𝑒𝑛
𝑇𝑇𝑛

𝑗
𝑒1 = 0  for j = 0, 1. . . n-2 in the 

last equality. Therefore, we can say that Eqs. (III.14) defines compactly the moment’s 

representation of the system. 

III.2.3 Second order model reduction based on moment matching 

 

A reduced second-order system is generated using the projection approaches, which are 

subjected for the linear systems, where these projection techniques closes the second-order into 

the first order system. Let Qn∈RN x n such that 

q(t) ≈ Qn z(t)       (III.19) 
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      where z(t) is the reduced state vector so that can accurately approximate the high-

dimensional vector q(t) by the projection Qn. in other words Qn is the projection matrix which 

mapping the N-dimensional state space into a reduced n-dimensional space. Substituting 

equation (III.16) into equation (3.1) and by multiplying the first equation of (III.1) with Qn
T 

from the left and Qn from the right yield the reduced system (3.1) where the matrices MnDn, 

Kn∈ ℝ𝑛 𝑥 𝑛  are defined as Mn=Qn
TMQn, Dn = Qn

TDQn, and Kn=Qn
TKQn. and the vectors bn, 

ln∈ ℝ𝑛  are defined as bn=Qn
Tb and ln=Qn

Tl. From the explicit formulation of the reduced order 

model  ∑𝑛 matrices Mn, Dn and Kn, we can notice that the essential structures of the original 

model matrices M,D and K  are preserved, such as the symmetric positive definite structure of 

M, which is preserved in Mn. Consequently, and as result we can easily say that the stability is 

also preserved in the reduced Model [61]. 

In the following theorem.2, we give a sufficient condition for the n first output vectors moment 

of the reduced and the original systems are matched. By using the second-order form. 

Theorem.2 Let Qn be the projection matrix generated by the SOAR algorithm to reduce the 

order of the second order model. If ri∈ colspan(Qn) for j =0, …, n then 𝑟𝑗  = 𝑄𝑛�̂�𝑗. [62], for 

proof see [62] 

The previous theorem 2. Can helps us now to verify that the condition of the output moment 

matching can be maintained. 

Theorem.3 With assumption of the condition stated in theorem.2, the output moments of the 

transfer function of both the original and the reduced second-order systems are matched and we 

write:[62] 

�̂�𝑖 =  𝑚𝑖  for i = 0, 1, …, n. 

Theorem.4 The first unmatched moment is obtained after the execution of the nth iteration of 

the SOAR procedure, and the error ∆𝑚𝑛+1between the two moments  ∆𝑚𝑛+1 of the original 

system and �̂�𝑛+1 of the reduced system can be given by analytical expression. For proof see 

[61,62] 

∆𝑚𝑛+1 =  𝑚𝑛+1 − �̂�𝑛+1 =  𝐶𝑇(∏ 𝑡𝑗+1,𝑗
𝑛
𝑗=1 )𝑞𝑛+1      (III.20) 

Generally, the SOAR algorithm converges in the case of the equality in dimensions of the 

original second order system and the reduced system, or when encounter a breakdown in the 

iteration process [68]. In theorem.4, the decrease of the unmatched moments error cannot be 
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ensured to be monotonically. To analyze the efficiency of the SOAR procedure in realistic 

manner we check the converge of SOAR algorithm if the theoretical expression of an 

unmatched moments error is necessarily small enough, for more details see [72]. 

III.2.4 SOAR procedure with deflation and memory saving 

 

In algorithm 1, the pn is closely related to qn, and the bi-product vector pn are clearly utilized. 

So to avoid the explicit references and updates of the p vectors, a new version of SOAR shown 

in algorithm 2, was presented in [50] to reduce memory requirement by almost half.  

Since p1 = 0, we have 

𝑄𝑛 = 𝑃𝑛+1�̂�𝑛 =  𝑃𝑛+1(: ,2: 𝑛 + 1)�̂�𝑛(2: 𝑛 + 1, 1: 𝑛).    (III.21) 

 

Algorithm 3.2: SOAR with deflation and saving memory Algorithm 

Input Matrices :A, Z, r0, q 

Output Matrices: Qn 

1. /* Initialization */ 

2. q1:= r0 / ||r0||2 

3. f := 0 

4. for j := 1,2, . . ., q 

5. r := Aqj +Zf 

6.     for i:= 1, 2, . . ., j 

7.          t ij := qi
T r 

8. r : = r – qiti j 

9. Next i 

10. tj +1:= ||r||2 

11.     if tj+1,j!= 0 

12.     qj+1 := r / tj+1, j              /* Normalization*/ 

13.           f := 𝑄𝑗�̂�(2: 𝑗 + 1,1: 𝑗)−1𝑒𝑗  

14. else  

15. reset tj+1,j:= 1 

16. qj+1:=0 

17. f := 𝑄𝑗�̂�(2: 𝑗 + 1,1: 𝑗)−1𝑒𝑗  
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18.          save f and check deflation and breakdown 

19. End-if 

20. Next j 

 

The purpose of the checking of deflation in line 19 is to verify if the subspace defined by the 

set of previously saved f vectors contains the new f generated at line18 – the modified Gram-

Schmidt procedure can be used to check whether f is a component of this subspace -, in case of 

f linearly dependent on all previously saved f vectors, then we get a breakdown and the 

algorithm is terminated. Otherwise, we have a deflation at step j; and the algorithm set the value 

of tj+1,j  to 1 and continue running [73]. 

III.3 Proposed Stopping Criterion For SOAR 

 

Finding a suitable order, q, for the reduced model that leads to a better approximation is one of 

the important components in order reduction. Roughly speaking, the question is: 

When can we pause in iterative order reduction? [74]. The traditional tow techniques to stop an 

iterative MOR approach based on Krylov Subspace are: 

A. Finding the zero vector: 

Although it has an automatic implementation, the conventional approach consists 

in finding the zero vector (tj+1=0 in the SOAR procedure) to interrupt the 

process is extremely ineffective, the major drawback of this technique is 

a lot of redundancy is added to thetransformation matrix and the duplication 

once and again of the same information about dynamic behavior of the original model. 

 

B. Time response comparison and manual termination:   

In this technique a reduced order model is generated for each iteration of the SOAR 

procedure, a time response comparison is made for both models the reduced and the 

original one, and the process is terminated if the errors are acceptable. 

Although this stopping approach returns reduced iterations of appropriate sizes, a great

 deal of cost saving in term of computational effort 

is involved and manual operation is required. 
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In order to present the implementation and application of the new criterion for stopping and 

selection of the reduced order in the SOAR procedure, some fundamentals definitions from 

Matrix Factorization will be presented first [75]. 

Definition 1. Let  A ∈ℂ n x m , and we suppose rank(A)=r, and n ≤ m, then there exist matrices 

U∈ℂn x n and V ∈ ℂ  m x m such and ∑ ∈ 𝑅𝑛 𝑥 𝑛such that 

A = U ∑ V*     (III.22) 

U and V are unitary, and   ∑ =  [∑̂ 0
0 0

] 

Where ∑̂is a diagonal matrix with ∑̂=diag{σ1…σr} with σ1 ≥ σi ≥ ……≥σr>0. 

The positive numbers σi for i= 1…r, are determined uniquely by A and are called the singular 

values of A. The equation III.22 is called the Singular Value Decomposition (SVD) of matrix 

A; the columns of U and V are called the left and right singular vectors, respectively. The index 

r of the smallest singular value is called the theoretical rank of matrix A. 

Definition 2.  Let σr the calculated singular values of the matrix A ∈ℂ n x m, and let δ a positive 

real number, δ>0,we define the numerical δ- rank as the number of the singular values that are 

greater than δ, we write numerical δ- rank=k, if : 

σ1 ≥ σ2 ≥ …...  σk≥ δ ≥ σk+1 ≥ …... ≥ σr; r = min (n, m)  (III.23) 

For each iteration of SOAR algorithm. The contribution of second order Krylov vectors with 

taking into consideration the knowledge about the model dynamics stored in them decreases 

monotonously.it is therefore expected that each generated vector ri will be less effective to the 

numerical-rank of the transformation matrix Qn. 

The suggested stopping criteria is relied on the estimation of a signal of the progress in the 

numerical-rank of the generated transformation matrix with each iteration in SOAR procedure, 

exactly before adding the new normalized vector. 

In order to measure this signal, for each vector generated by the iterative process we assign an 

indicator before being fed to the normalization routine (line 12 in algorithm 2), we call it NRPC, 

the value range of NRPC is ]0,1]. The greater value of the NRPC for nominee vector harmonize 

to an important contribution of that vector to the improvement of the numerical rank and to the 

dynamic progression of the original system and must hence be included in Qn. The NRPC for 

the candidate vector  ri is given as the inverse of the sum of singular values of the current 
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transformation matrix Ql obtained by appending the new no-normalized vector r to 

transformation matrix Qn of the previous iteration. 

𝑁𝑅𝑃𝐶 =
1

∑ 𝜎𝑗
𝑖
𝑗=1

       (III.24) 

Therefore, it is possible to approximate the stopping criteria as follows: 

1. In each iteration calculate the NRPC indicator using Eqs III.24 

2. The iteration can be halted as soon as NRPC < ε, where ε > 0 some specified value. 

 

For the sake of example, In Algorithm 3.3, we demonstrate how to integrate this stopping 

criterion into the Algorithm 3.2 of SOAR. 

 

Algorithm 3.3: SOAR with stopping criterion Algorithm 

Input Matrices :A, Z, r0;q 

Output Matrices: Qn 

1. /* Initialization */ 

2. q1:= r0 / ||r0||2 

3. f := 0 

4. for j := 1,2, . . ., q 

5. r := Aqj +Zf 

6.     for i:= 1, 2, . . ., j 

7.          t ij := qi
T r 

8. r : = r – qiti j 

9.  Next i 

10. tj +1:= ||r||2 

11.     Q1 :=[Qn  r] 

12. Sigma:= svd(Q1) 

13. NRPC  := 1/sum (sigma) 

14.                  If NRPC <ε    then Stop 

15.                  end if 

16.     if tj+1,j != 0 

17.     qj+1 := r / tj+1, j              /* Normalization 
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18.           f := 𝑄𝑗�̂�(2: 𝑗 + 1,1: 𝑗)−1𝑒𝑗  

19. else  

20. reset tj+1,j:= 1 

21. qj+1:=0 

22. f = 𝑄𝑗�̂�(2: 𝑗 + 1,1: 𝑗)−1𝑒𝑗  

23.          save f and check deflation and breakdown 

24. End-if 

25. Next j 

 

III.4 Coclusion 

 

In this chapter, we have considered a new approach for efficient early termination and automatic 

optimal order selection of the reduced model for a large second-order system. The suggested 

approach based on a new coefficient, to which we referred as NRPC coefficient, can improve 

the selection of the reduced order automatically with preservation of the second-order form and 

some properties of the original model such as stability. In the two first sections of this chapter 

we present some implementation details of the second-order Krylov sub-space and Second-

order Arnoldi Algorithm. In section three, we present the implementation of the NRPC 

coefficient and its integration in the SOAR approach.        
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Chapter IV: Numerical Application 

 

 

IV.1 Introduction 

 

In this section, we illustrate the efficiency and the performance of the proposed technique for 

reducing second-order systems using various examples. We compare the frequency response of 

the reduced model with the original one for each example. We also check the stability of 

reduced models by plotting the poles distribution. The Bode diagram and the Step response are 

used to calculate some norms such as the steady error and to illustrate the stability of the reduced 

models. To compare the results, we consider different types of the error functions. For relatively 

small systems, we calculate the relative error defined as:  

ℋ∞𝑒𝑟𝑟𝑜𝑟_𝑛𝑜𝑟𝑚 =  
‖𝐺(𝑠)−𝐺𝑟(𝑠)‖∞

‖𝐺(𝑠)‖∞
        (IV.1) 

ℋ2𝑒𝑟𝑟𝑜𝑟_𝑛𝑜𝑟𝑚 =  
‖𝐺(𝑠)−𝐺𝑟(𝑠)‖2

‖𝐺(𝑠)‖2
          (IV.2) 

Where ||.||, ||.||2, G(s) and Gr(s) are ℋ∞ 𝑛𝑜𝑟𝑚, ℋ2 𝑛𝑜𝑟𝑚, the transfer function of the original 

and reduced systems, respectively. 

IV.2 Materials and Methods.  

 

The numerical applications were conducted to demonstrate the efficiency and the accuracy of 

the SOAR method with the proposed stopping criterion and the robustness of the terminating 

mechanism for the Krylov based reduction technique, the proposed approach, in this section, is 

applied to various applications. Two practical engineering examples are studied: (i) A shaft on 

bearing supports with a damper originated from a Finite Element (FE) in the first application. 

(ii) The butterfly gyro-scope problem in second application, in order to compare the results of 

the proposed algorithm for these examples, we consider the output of the relative errors between 

the original and reduced systems, and also the related frequency responses[47,48].All 

experiments are implemented in MATLAB 7.12.0 (R2011a) using PC with Intel® Core™ with 

i5-CPUand 8 GB RAM-Memory. 
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Table 4.1 displays the dimension of the discussing models, their types with analogous input-

output structure, and the chosen values of NRPC and their corresponding size of the reduced 

order models (ROMs) gain by the developed technique. Detailed of those models are available 

on the web page for the Oberwolfach Benchmark Collection. 

Model Full Order 

Model (N) 

Input/output NRPC Values ROMs (n) 

 

Shaft on bearing 

supports 

 

400 

 

1/1 

ε = 0.1, 

ε = 0.053, 

ε = 0.026 

n=10 

n=19 

n=40 

 

Butterfly gyroscope 

 

17361 

 

12/12 

 

ε = 0.1, 

ε = 0.053, 

ε = 0.026 

n=10 

n=19 

n=39 

 

3D Cantilever 

Timoshenko beam 

 

600 

 

1/1 

ε = 0.1, 

ε = 0.053, 

ε = 0.026 

n=10 

n=19 

n=39 

 

Table 4.1 Model examples with input/output structure  

IV.3 Pattern of the NRPC Coefficient 

 

Figure 4.1 shows the pattern of the stopping criterion, the NRPC coefficient, which is the 

inverse of the sum of singular values of the current transformation matrix Ql obtained by 

appending the new no-normalized vector r to transformation matrix Qn of the previous iteration. 

The NRPC of the transformation matrix Qn decreases monotonically. The NRPC coefficient 

decreases rapidly from the value of 1 to 0.05 after 20 iterations, that means, the 20 first vectors 

generated by the SOAR procedure have dominant contribution in the numerical rank of the 

transformation matrix. After the 20th iteration the NRPC decreases slowly and we can say that 

a good reduced order model can be selected around 20 and above, in other terms an acceptable 

good approximation model can be obtained for values of NRPC in ]0  ,   0.5] ,then we define a 

fixed tolerance value ε in ]0  ,   0.5]to implement a conditionfor selecting a good reduced order 

and stopping the SOAR procedure. 
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Figure 4. 1 Pattern of variation of NRPC vs number of iterations 

 

IV.4 A shaft on bearing supports 

 

This example comes from Finite Element (FE) model, it is a second order system with full order 

N= 400, the data of the FE model of a shaft on bearing supports with damper were extracted 

from MSC-NASTRAN [76]. This second order model is symmetric, with M and D are 

symmetric and not positive definite matrices, and K is symmetric positive definite matrix. The 

frequency range of interest of this example is [0, 3000] Hz, and we suggest the use of expansion 

point s0 = 150×2π. Figure.4.2 shows the frequency response and the relative errors of the exact 

transfer function h(s) and the reduced ones hn(s) obtained by the proposed method with ε = 0.1, 

ε = 0.053, ε = 0.026, correspond respectively to reduced models with order n= 10, 19, 40, and 

Figure.4.3 shows their poles distribution with all negative real parts which means the stability 

preservation for the reduced models. Figure 4.4 and 4.5, show the Bode diagram and the step 

response for the reduced order model (n=40) with the proposed method.  
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Figure 4.2 Frequency response the relative errors for the shaft on bearing support 
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Figure 4.3 Poles distribution of Reduced Models - shaft on bearing support Example – 
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Figure 4.4 Bode Diagram of the reduced model with n = 40 - shaft on bearing support 

Example – 

 

 

Figure 4.5 Step response of the reduced model with n = 39 - shaft on bearing support 

Example 

 

 

 

– 
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IV.5 The butterfly gyroscope 

 

The butterfly gyroscope is MEMS system, which is a vibrating micro-mechanical gyro. The 

gyro chip consists of a three-layer wafer stack, in which the middle layer contains sensors, the 

data of this example can be found in the Oberwolfach collection [77]. The order of the full 

second order system ∑N is N = 17361, this is single input multiple output SIMO system with 

one input vector and 12 output vector. The matrices M and K are both symmetric and the 

proportional Rayleigh damping matrix is defined by D = αM + βK. The frequency responses 

through the 1st output vector of the original and the reduced transfer functions in the frequency 

range from 103 to 106 Hz are shown in figure.4.6 with the relative errors, we took α=0 and β=10-

7, and the expansion point was equal to 1.05x105. Figure.4.7 shows their poles distribution the 

stability preservation for the reduced models. Figure 4.8 and 4.9, show the Bode diagram and 

the step response for the reduced order model (n=39) with the proposed method.  
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Figure 4.6 Frequency response the relative errors for the butterfly gyroscope 
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Figure 4.7 Poles distribution of Reduced Models – Butterfly Gyroscope Example – 
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Figure 4.8 Bode Diagram of the reduced model with n = 39 – Butterfly gyroscope Example 

– 

 

Figure 4.9 Step response of the reduced model with n = 39 – Butterfly gyroscope Example- 
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IV.6 The 3D Cantilever Timoshenko beam 

 

This is another FE model of 3D Cantilever Timoshenko beam in [78]. The model describes the 

dynamic behavior of a beam of length equal to 1m where a vertical force �⃗� is applied at its tip, 

the dimension of N= 600 for the full second order model  ∑N. In the Matlab code in [60] we set 

the number of elements parameter to 100 and we took s0=0 as an expansion point. The matrices 

M and K are both symmetric and the proportional Rayleigh damping matrix is defined by D = 

αM + βK. The frequency responses for this SISO (Single Input Single Output) system of the 

original and the reduced transfer functions in the frequency range from 0 to 1200 Hz are shown 

in figure.5.10, we took α=8 and β=8*10-6. Figure.4.10 also shows the relative errors for reduced 

models with order n= 10, 19,39, and Figure.4.11 shows their poles distribution and the stability 

preservation for the reduced models. Figure 4.12 and 4.13 show the Bode diagram and the step 

response for the reduced order model (n=39) with the proposed method. 
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Figure 4.10 Frequency response the relative errors for the 3D Cantilever Timoshenko 

beam 
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Figure 4.11 Poles distribution of Reduced Models – 3D Cantilever Timoshenko beam – 
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Figure 4.12 Bode Diagram of the reduced model with n = 39 – 3D Cantilever Timoshenko 

beam – 

 

 

Figure 4.13 Step response of the reduced model with n = 39 – 3D Cantilever Timoshenko 

beam – 
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IV.7 Stability analysis 

 

From poles distribution of each ROMs, it is perceivable that all the ROMs computed by the 

proposed technique of the considering examples are stable (all real parts are negatives). 

Figures 4.5, 4.9 and 4.13 exhibit the step-response of the ROMs of the target models originated 

from the proposed Algorithm. The horizontal axis depicts the time required for the step response 

to be converged to the equilibrium, whereas the vertical axis is for the amplitude. The ROM of 

Butterfly Gyroscope converged within a fraction of a second, and the ROMs of the shaft on 

bearing supports and the 3D Cantilever Timoshenko beam need 5 x 105, 1.5 seconds 

respectively to be converged. 

IV.8 H2 and H  norms 

 

Table 4.2 represents the ℋ∞ 𝑛𝑜𝑟𝑚, and ℋ2 𝑛𝑜𝑟𝑚 and the steady state error (SS error) of the 

ROMs achieved by our newly developed technique for the value of NRPC = 0.026 with 

computing time (denoted CPU) in seconds for the three examples. The results show the 

convergence behavior of the proposed method with an acceptable error in short lapse of time.  

           Norms 

 

ROMs Model 

 

H2 

 

 

H  

 

SS error 

 

CPU 

shaft on bearing support 

(n= 40) 

 

0.3308 

 

0.3230 

 

0.068493  

 

0.5635 

Butterfly gyroscope (n 

=39) 

 

1.3312E-05 

 

3.5104E-06 

 

1.31E-005 

 

2.8540 

3D Cantilever 

Timoshenko beam ( n= 

39) 

 

0.0224 

 

0.0143 

 

0.00191 

 

0.3099 

 

Table 4.2 H2 and H  norms and the SS error of the ROMs 
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IV.9 Conclusion  

 

Based on the obtained results, the proposed algorithm showed through the three numerical 

examples, high efficiency and accuracy in terms of relative error against the original systems, 

however the keys properties of the 2nd order form in the reduced model are still preserved, also 

proved its superiority compared to the conventional SOAR in terms of robustness, where a 

suitable and optimal reduced order has been chosen systematically. 

The proposed approach works very well for the three examples used in numerical tests (FE 

Model of a shaft on bearing supports with a damper, a butterfly gyroscope model, and the FE 

Model of a 3D Cantilever Timoshenko Beam) where the key proprieties such as the preservation 

of the of Second order structure and the stability was guaranteed with an automatic selection of 

a significant reduced order as a size of the reduced model in the numerical simulation results. 
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 General Conclusion 

General Conclusion 
 

 

 

In this thesis, we investigate a new technique for the problem of model order reduction for 

different kinds of mechanical systems described by differential equations involving second-

order time derivatives. The contribution described in this thesis are of theoretical as well as 

computational nature.  

In chapter 1 and chapter 2, some basics and fundamentals on LTI systems and techniques from 

model order reduction theory were presented. A special focus on the model order reduction of 

second-order models based on the Krylov subspace has been exposed. We have also shown a 

new idea for reducing a second order linear time invariant system with structure preserving; the 

proposed model order reduction approach is based on the definition of a new coefficient for an 

efficient stopping criterion called Numerical Rank Performance Coefficient NRPC and an 

extension of the general definition of the Krylov sub-space to second-order Krylov sub-space. 

The NRPC was used to find the suitable order of the reduced model, and this by using a Second 

Order ARnoldi algorithm as a Krylov MOR approach with auto selection of the reduced order.  

In practical applications, often only limited ranges in frequency or time domain are of interest, 

the reduced order models obtained with proposed technique are compared to the original ones. 

They indicate that the proposed approach with the automatic stopping criteria exhibit better 

performance in all experiments and provide the best optimal solution during the search 

mechanism with preservation of the second-order structure and the propriety of stability. 

The contribution of this work are summarized below: 

1. This work is the first to reduce a second-order system directly from the second-order 

form of the original model with auto-selection of the reduced order. 

2. A computationally attractive and analytically simple model reduction approach based 

on Second-order Krylov sub-space is introduced. 

3. A stable and improved reduced order models are obtained from benchmark model 

reduction problems. 

4. The results of this work have been published in international journal. 
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In conclusion, these new ideas presented above opened the door to new methods that could be 

applied to other algorithms, such as SVD-based algorithms or evolutionary algorithms. 

Some possible future research area in model reduction could be finding a relationship between 

the NRPC coefficient and the relative error to define a global bounds the global error. Another 

possible research area would be to the study ℋ∞ 𝑛𝑜𝑟𝑚, and ℋ2 𝑛𝑜𝑟𝑚   of the reduced model 

with some constraints on the norms, steady state error, or any other aspect of the system.
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