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Abstract 

 

Variable digital filters are widely used in several signal-processing applications because of their capability of self-tuning 

frequency characteristics, such as the cutoff frequency and the bandwidth. This thesis proposes new state-space formulations of 

IIR Variable Digital Filters (VDFs) based on frequency transformations. In the first part, we presented a brief overview of digital 

filters, then a general overview of the recent development in variable digital filters, focusing on the problems of design and 

realization and application to adaptive filtering. Then, we proceed into the theory of frequency transformation from the 

viewpoint of the internal properties of filters. In the second part, VDFs were created using a state-space model based on a 

frequency transformation, which requires the inverse matrix and the square root, leading to high computational costs. Then a 

new algorithm was implemented to generate the same VDFs absent the complex calculations that utilized negative binomial and 

Taylor series approximations in a simple state-space formulation. This algorithm provides high-accuracy approximations of the 

inverse matrix and square root compared to other algorithms that have been developed. Finally, a comparison study is presented 

between current works and the suggested technique with the help of illustrations from the literature. Thus, the proposed VDFs 

have high tuning accuracy with respect to finite wordlength effects. 

Keywords: Variable Digital Filters, Frequency transformation, State-space representation, Negative 

binomial series approximation, Taylor series approximation, Finite wordlength effects.  

 
Résumé : 

 

 Les filtres numériques variables sont largement utilisés dans plusieurs applications de traitement de signaux en 

raison de leur capacité à régler eux-mêmes les caractéristiques de fréquence, telles que la fréquence de coupure et la 

bande passante. Cette thèse propose de nouvelles formulations d’espace d’état de filtres numériques variables RII (FNV) 

basées sur des transformations  fréquentielles. Dans la première partie, nous avons présenté un bref aperçu des filtres 

numériques, puis un aperçu général de l’évolution récente des filtres numériques variables, en mettant l’accent sur les 

problèmes de conception et de réalisation et d’application au filtrage adaptatif. Ensuite, nous passons à la théorie de la 

transformation de fréquence du point de vue des propriétés internes des filtres. Dans la deuxième partie, les FNV ont été 

créés à l’aide d’un modèle d’espace d’état basé sur une transformation en fréquence, qui nécessite la matrice inverse et la 

racine carrée, ce qui entraîne des coûts de calcul élevés. Ensuite, un nouvel algorithme a été mis en œuvre pour générer 

les mêmes FNV en l’absence des calculs complexes qui utilisaient des approximations binomiales négatives et des séries 

de Taylor dans une formulation simple d’espace d’état. Cet algorithme fournit des approximations de haute précision de 

la matrice inverse et de la racine carrée par rapport à d’autres algorithmes qui ont été développés. Enfin, une étude 

comparative est présentée entre les travaux actuels et la technique suggérée à l’aide d’illustrations de la littérature. Ainsi, 

les FNV proposés ont une grande précision d’accord en ce qui concerne les effets de longueur de mot finie. 

 

Mots clés : Filtres numériques variables, Transformations  fréquentielles, Représentation de 

l'espace d'état, Approximation de séries binomiales négatives, Approximation en série de Taylor, 

effets de longueur de mot finie. 



 

IX  

 :  ملخص             
 

ذغُرخذو انًششذاخ انشلًُح انًرغُشج ػهً َطاق واعغ فٍ انؼذَذ يٍ ذطثُماخ يؼانجح الإشاساخ تغثة لذسذها 

جذَذج  صُغػهً ضثظ خصائص انرشدد انزاذٍ، يثم ذشدد انمطغ وػشض انُطاق انرشددٌ. ذمرشح هزِ الأطشودح 

ذىلاخ انرشدد. فٍ انجضء الأول، لذيُا نًذح ػايح يىجضج ػٍ تُاءً ػهً ذ نهًششذاخ انشلًُح انًرغُشجنفضاء انذانح 

انًششذاخ انشلًُح، ثى نًذح ػايح ػٍ انرطىس الأخُش فٍ انًششذاخ انشلًُح انًرغُشج، يغ انرشكُض ػهً يشاكم 

انرصًُى والإدسان وانرطثُك ػهً انرششُخ انركُفٍ. ثى َُرمم إنً َظشَح ذذىَم انرشدد يٍ وجهح َظش انخصائص 

ػهً أعاط  فضاء انذانحتاعرخذاو ًَىرج  يششذاخ سلًُح يرغُشج  اخهُح نهًششذاخ. فٍ انجضء انثاٍَ، ذى إَشاءانذ

ذذىَم انرشدد، وانزٌ َرطهة انًصفىفح انؼكغُح وانجزس انرشتُؼٍ، يًا َؤدٌ إنً اسذفاع انركانُف انذغاتُح. ثى ذى ذُفُز 

فٍ غُاب انذغاتاخ انًؼمذج انرٍ اعرخذيد انرمشَة ثُائٍ  شانًششخ انشلًٍ انًرغُ خىاسصيُح جذَذج نرىنُذ َفظ

. ذىفش هزِ انخىاسصيُح ذمشَثاخ ػانُح انذلح نهًصفىفح نفضاء انذانحانذذود انغانة وعهغهح ذاَهىس فٍ صُاغح تغُطح 

َح تٍُ انؼكغُح وانجزس انرشتُؼٍ يماسَح تانخىاسصيُاخ الأخشي انرٍ ذى ذطىَشها. أخُشًا، َرى ذمذَى دساعح يماس

 انًششذاخ انشلًُح انًرغُشج الأػًال انذانُح وانرمُُح انًمرشدح تًغاػذج انشعىو انرىضُذُح يٍ الأدتُاخ. وتانرانٍ، فئٌ

 .انًذذودجطىل انكهًح  انًمرشدح نها دلح ضثظ ػانُح فًُا َرؼهك ترأثُشاخ

 الكلمات المفتاحية:   

ذمشَة عهغهح ذاَهىس, ذاثُش فضاء انذانح, ذمشَة عهغهح ثُائُح انذذ انغهثُح, انًششذاخ انشلًُح انًرغُشج, ذذىَم انرشدد, ذًثُم 

 .طىل انكهًح انًذذودج
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1  

General introduction 

 

 

Digital Signal Processing (DSP) is interested in representing signals in digital form, 

processing these signals and the information they carry. Since the early 1970s, when the 

first DSP chips were introduced, the digital signal processing field has evolved 

considerably. Digital signal processing has become an integral part of many commercial 

products and applications and has become a popular term. DSP is useful in almost any 

application that requires high-speed processing of a large amount of numerical data. Data 

can be anything from location and speed information for the closed-loop control system to 

2D video images to digital sound and vibration signals [1]. 

 

In signal processing, signals with unwanted information, such as random noise or 

interference, are often encountered, or there is a need to selectively extract an interesting 

signal integrated with many other signals. Filters, in these cases, are used to separate 

attention signals from others. Filters can be analog or digital. Analog filters use electronic 

circuits to produce the desired filtration effect, while digital filter uses a digital processor 

to make digital calculations on signal sample values. The processor may be a general-

purpose computing machine, such as a PIC microcontroller or specialized DSP chip. There 

are two basic types of digital filters: Infinite Impulse Response Filter (IIR) and Finite 

Impulse Response Filter (FIR). 

 

Variable Digital Filters (VDFs) are frequency selective digital filters capable of real-

time tuning of frequency characteristics, such as low-pass filters with tunable cutoff 

frequency and band-pass filters with tunable center frequency and/or tunable bandwidth. 

VDFs are widely used in a number of practical applications such as audio processing, 

telecommunications, and biomedical signal processing systems. Up to the present, a 

number of research results on VDFs have been proposed, ranging from theoretical 

framework for design/synthesis to hardware implementation and practical applications [2]. 

Historically, two approaches are well-known for the design of VDFs. One is the  

transformation-based technique [3–5], and the other is the spectral parameter 

approximation-based technique [6–10]. Both techniques have advantages and 



 

2  

disadvantages in practical use. In recent years, these two techniques have been further 

extended, and new VDFs with low implementation complexity have been proposed 

[11,12]with applications to reconfigurable filter bank [13,14]and dynamic spectrum 

learning and access-based cognitive radio networks [15]. Also, in [16–18] another 

promising technique has been developed for designing VDFs using a fast filter bank 

approach. 

 

This thesis focuses on the transformation-based technique among the 

abovementioned techniques. Specifically, we consider VDFs with Infinite Impulse 

Response (IIR) transfer functions given by the frequency transformation [3]. An advantage 

of the frequency transformation-based VDFs is the simple mechanism for tuning 

frequency characteristics, leading to the development of adaptive notch filters [19,20] and 

adaptive band-pass/band-stop filters [21]. In addition, the frequency transformation-based 

VDFs have another powerful advantage: high-accuracy filter structures can be used to 

realize the transfer functions of VDFs. Up to the present, many VDFs with high-accuracy 

structures have been proposed [22], enabling us to realize VDFs that reduce the 

performance degradations caused by the finite wordlength effects such as the coefficient 

quantization error and the round-off noise. These advantages make the frequency 

transformation-based VDFs attractive in designing, realizing, and implementing many 

signal processing applications. 

 

In [23], Variable Low-Pass Filters (VLPFs) based on the state-space approach were 

presented. This method applies to limited transfer functions with distinct complex 

conjugate poles. Also, the state-space representation presented by this method is limited to 

particular realization's: the minimum round-off noise realization and the balanced 

realization. In [24], Variable Band-Pass Filters (VBPFs) and Variable Band-Stop Filters 

(VBSFs) can only tune the center frequency. However, this method can be applied to any 

class of transfer function or state-space representation. The state-space VLPFs and VHPFs 

proposed in [25] can be applied to arbitrary transfer functions and state-space 

representations. In addition, the VBPFs and VBSFs can tune both the center frequency and 

the bandwidth by applying two series approximations to reduce the complexity of both the 

inverse matrix and the square root. However, this proposed series approximation cannot 

give a high accuracy approximation, motivated by this observation. To this end, this work 



 

3  

proposes frequency transformation-based VDFs, of which structures show high accuracy 

regarding the finite word length effects. A new, simple algorithm is used for the VDFs. 

model and implementation in a state-space representation. The inverse matrix and square 

root are calculated using the negative binomial and Taylor series approximations in the 

state-space representation to avoid computational complexity. In addition, this approach 

makes it possible to improve the accuracy in approximating the inverse matrix and square 

root [26]. Poor approximation accuracy is caused by large values of the approximation 

parameters, which degrade VDFs performance, as shown in chapter 5. Furthermore, this 

proposed method allows us to improve the performance of all VDFs (VLPFs, VHPFs, 

VBPFs, and VBSFs) concerning finite wordlength effects under all tunable frequency 

characteristics. 

 

The thesis is organized as follows. Start with some reviews of the digital filters 

basics. Second, an overview of the recent development of variable digital filters. Then, the 

technique based on frequency transformation is discussed, and then designing the 

proposed VDFs using the series approximation approach is outlined. Finally, the last 

chapter offers various examples to show our proposed method's usefulness and efficiency. 
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Chapter 1 

 

 Introduction to digital filters 

 
1.1 Introduction  

 

It is difficult to give a formal definition of the concept of filtering. The electronic 

engineer often thinks of a modification of the frequency characteristics of a given input 

signal. From a theoretical point of view, the frequency domain is coupled to the time 

domain, so filtering also modifies the response in the latter. To a sequence of samples of a 

discrete time input signal     , a digital filter, defined by its impulse response     or by 

its transfer function      in terms of  , responds with a sequence of samples of an output 

signal      (Figure 1.1). 

 

Digital Filter 

 
Figure 1.1 Transfer function representation in    

 

Examples of filtering are given below. 

 Noise reduction for radio signals, sensor images, or audio signals. 

 Modification of certain frequency zones in an audio signal or image. 

 Limitation to a predefined frequency band. 

 Special functions (derivation, integration, Hilbert transform ...). 

 In the example of the DTMF (Digital Tone Multiple Frequency) code used in 

telephony [27], the transmitted signal is the sum of two sinusoids whose frequencies 

are normalized (see Figure 1.2 left). It results from the choice of the key pressed on 
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your phone. This principle is often referred to as voice frequencies. At the reception, 

to recognize the dialed number, a series of filter banks is used (see Figure 1.2 right). 

A first discrimination of two frequency zones is realized by a high pass filter and a 

low pass filter. Then, in each zone, a series of band-pass filters followed by a 

detector allows the presence of a particular frequency to be eliminated. 

 
         Keypad tone frequencies Tone detection scheme 

 

Figure 1.2 Example of DTMF code in telephony.  

 

1.2  Representation of a digital filter 

 

Digital filtering can be represented using several types of specifications. 

 

1.2.1 Transfer function in   

 

 This representation mode is the most common. It allows to link the input and the 

output in the plane   by                 . In the following, we will pose: 

 

     
    

    
 

∑     
   

   

  ∑     
   

   

                                         (1.1) 

 

where      is the polynomial of the numerator of the transfer function, while      

is its denominator.   is here the order of the filter. In the case where      has poles, we 

speak of IIR filters. If        we speak of an all-pole filter. In the case where        

the filter has only zeros. This family of filters corresponds to the case of FIR filters. This 

one has no equivalent in analog filtering, and we will see that its properties make it a very 

used function in digital signal processing. 
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Eq.(1.1) can 'also be represented by highlighting the poles and zeros. 

 

       
∏     

        

∏     
        

                                                  (1.2) 

 

where    are the poles and    are the zeros of     . We recall here that the stability 

of the filter will be terminated by the poles belonging to the unit circle (i.e. |  |   ), and 

that zeros belonging to the unit circle will characterize a minimum phase filter. Figure 1.3 

shows several versions of representations of     . The direct form Figure 1.3(a) can be a 

product or sum of lower order transfer functions, usually of order 2. Eq.(1.3) and Figure 

1.3(b) represent the parallel form, while Eq.(1.4) and Figure 1.3(c) represent the cascade 

form. 

 

     ∑       ∑
              

              
 
   

 
                                         (1.3) 

     ∏       
    ∏

              

              
 
                                         (1.4) 

 

1.2.2 Impulse response 

 

 The impulse response is the function in   inverse of     . 

 

     ∑       
                                                    (1.5) 

 

As in analog filtering, the output of a filter       is the result of the convolution of 

the input signal represented in a temporal way       with the impulse response of the 

filter      . We have then                   or, if we ignore the sampling period : 

 

               ∑       
          ∑         

              (1.6) 

 

In the case where      is an impulse       we find well           . 

According to the cases where     . Is infinite or finite support, we will find 

respectively the two IIR and FIR filter types. 
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1.2.3 Difference equation 

 

A transformation in   transformation of Eq.(1.1) leads to the following form: 

 

     ∑   

 

   

       ∑   

 

   

                                         

           

We identify here two distinct parts: a part depending on the current value and the 

previous values of the input     and a part depending on the previous values of the output 

    . Depending on whether the ai are non-zero or zero, we will speak of recursive or non-

recursive filters. 

       

               a) Direct form                                                  b) Parallel form 

 

 

c) Cascade form 

 

Figure 1.3 Transfer function representations in    
 

 

1.3  Specification of a digital filter 

 

Before a digital filter can be designed and implemented, we need to define its 

specifications. A filter must let certain frequencies pass, while it must attenuate (or even 
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eliminate) others. We must therefore be able to represent these constraints. There are four 

basic filters: 

 

 low-pass filters allow frequencies below a cut-off frequency to pass and block those 

above it Figure 1.4(a).    and block those above it Figure 1.4(a), 

 high-pass filters block frequencies below a cut-off frequency    and let pass  

      those above it Figure 1.4(b), 

 band-pass filters allow frequencies around a central frequency    (or between    and 

  ) and block the others Figure 1.4(c), 

 band-stop filters block frequencies around a center frequency    (or between    and 

  ) and let the others pass Figure 1.4(d). 

 

 
                      | (   )|                                                       | (   )|    

 

                           a) Low pass filter                                      b) High pass filter 

 

                      | (   )|                                                       | (   )|    

 

                             c) Band-pass filter                            d) Band-stop filter 

 

Figure 1.4 Ideal frequency responses of the 4 basic filters. 
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The filters shown in Figure 1.4 are ideal. In a real case there can be no 

discontinuities. The passage between the passing and attenuated zones is done by the so-

called "transition" zones whose width will express the selectivity of the filter. The pass and 

attenuated bands are also not ideal, they contain ripples whose amplitude is expressed by 

the parameters of ripple in pass band and attenuation. For all these reasons, the 

specification of a filter is usually made from a frequency gabarit, defined between 0 and  . 

 

1.3.1 Low-pass and high-pass filter specifications 

 

A low-pass filter has three zones: the pass-band (      ), the transition band 

(       ) and the attenuated band (      ) . Figure 1.5(a) shows a graphical 

representation of the linear frequency gabarit of a low-pass filter, while Figure 1.5(b) 

shows a frequency template in dB. A high-pass filter would have its attenuated and pass 

bands reversed, in this case we would have      .    is the passband ripple,    is the 

attenuation. 

 

The selectivity of the filter is defined in table 1.1. 

 

 

                       a) Linear frequency gabarit                 b) Frequency gabarit in dB 

 

Figure 1.5 Frequency gabarit of a low pass filter. 
 

 

 

 



Chapter 1                                                                                   Introduction to digital filters 

10  

1.3.2 Specifications of band-pass and band-stop filters 

 

A band-pass filter has several zones: the pass-band (         ), two transition 

bands and two attenuated bands (        and        ). Figure 1.6 [28] shows a 

graphical representation of the linear frequency gabarit of a band-pass filter. A band-stop 

filter would have its attenuated and pass bands reversed. 

 

Table 1.1 summarizes the parameters of the different templates studied [28]. 

 

 Low-pass High-pass Band-pass Band-stop 

Selectivity    

Ripple 

Attenuation 

 

Center frequency    

bandwidth B 

  

  

 

   

   

 

 ــــ

 

 ــــ

  

  

 

   

   

 

 ــــ

 

 ـــــ

       

       

 

   

   

 

√        

       

  

 

       

       

 

   

   

 

√        

       

  

 

 

Table 1.1 Specification parameters of a digital filter. 

 

 

Figure 1.6 Linear frequency gabarit of a band-pass filter. 
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1.4   Classification of digital filters 

 

Digital filters can be classified according to several criteria: 

 

1- the length of the impulse response involves two types of filters IIR and FIR. 

2- the type of representation, or structure, involves two types of recursive filters and 

            non-recursive. 

 

We will see that except for one particular case, recursive and non-recursive filters are 

respectively equivalent to IIR and FIR filters. 

 

1.4.1 Recursive IIR filters 

 

Analog filters necessarily have an infinite impulse response. Digital IIR filters 

behave in a similar way, except for the effects due to discretization. This class of filter is 

also characterized by a transfer function in   containing poles, and a recursive difference 

equation, i.e. when the output      depends on both the inputs and the previous outputs. 

Eq.(1.8) and Eq.(1.9) show the transfer function in   and the corresponding difference 

equation of the general form of an IIR filter.   is called here the order of the filter. 

 

     
    

    
 

∑     
   

   

  ∑     
   

   

                                          (1.8) 

     ∑    
 
          ∑    

 
                     (1.9) 

 

From Eq.(1.8), two cases arise: 

 

1. if      is not divisible by     we have an infinite number of terms in the 

polynomial division of       by     : 

 

                                            ∑     
        

                                                             

 

      is an IIR filter 
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2. if       is divisible by     then we have a finite number of terms in the 

polynomial division of       by     : 

 

                                                        ∑       
        

                                                                        

 

     is a FIR filter. 

 

The main features of IIR filters are: 

 

1. a transition band that can be narrow.  

2.  synthesis methods by transposition of the methods for analog filters. 

3. a potential instability due to poles located outside the unit circle (i.e. |  |    

            regardless of  ).  

4. A potential numerical instability (i.e. after quantization of the coefficients and the 

signal) due to the looping. 

 

1.4.2 Non-recursive filters FIR 

 

FIR filters cannot be derived from analog filters. However, they are widely used 

because they have unique properties (linear phase, stability, flexibility). Eq.(1.10) and 

Eq.(1.11) show the transfer function in   and the corresponding difference equation of the 

general form of an IIR filter.   is called here the length of the filter impulse response. 

 

     ∑    
   
                                                         (1.10) 

     ∑    
   
                                                    (1.11) 

 

We notice by exploiting Eq.(1.11) that the    coefficients of the filter are also the 

values of the impulse response      which is therefore limited in time. 

 

     ∑    
   
             ∑    

   
            (1.12)   

      ,
                    
                                      

                         (1.13) 
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The main characteristics of FIR filters are: 

 

1. A transition band that will always be wider than an IIR filter with the same                

number of coefficients. 

2. synthesis methods allowing to derive any frequency response.  

3. inherent stability (∑ |    |       
   . 

4. greater numerical stability than IIR. 

5. a phase that can be exactly linear, therefore a constant group delay and no      

harmonic distortion in the signal. 

6. Easier implementation in a digital processing system. 

 

1.5 Frequency analysis of digital filters 

 

The frequency analysis is the representation of the transfer function of the filter in 

the frequency domain, i.e. the Fourier domain. The transfer function is the Fourier 

transform of the signal      . 

 

 (   )  ∑       
              ⁄                  (1.14) 

 

This function corresponds to a discrete signal, so it is periodic with period   . It is 

for this reason that we usually use the notation  (   ) rather than      Figure 1.7 shows 

an example of a low pass filter. In signal processing, we usually study the modulus and the 

phase (or argument) of the complex function  (   ). 

 

 (   )      
       ( 

  )  | (   )|             (1.15) 

 

1.6 IIR and FIR filter structures 

 

1.6.1 FIR filter structure 

 

The structure of a filter is a Data Flow Graph (D.F.G.) in which the nodes are 

operations (additions are usually represented by circles containing a + and multiplications 
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by triangles associated with multiplicand coefficients) and the arcs are dependencies, i.e. 

the data flow from the signal. Some arcs are values 

 

 

 
Figure 1.7 Example of a low-pass filter. 

 

A coefficient     representing a delay of one sampling period. This coefficient is 

also represented in the form of a register. 

 

Equation: 

 

     ∑    
 
                                                       

(1.16) 

 

Represents the temporal behavior of an FIR filter. We can immediately deduce the 

direct structure of an FIR filter which is represented in Figure 1.8(a). The transposed 

structure of Figure 1.8(b) is obtained after manipulation of this equation. 

 

                                            

                       a) Direct structure                                        b) Transposed structure 

Figure 1.8 FIR filter structures. 
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1.6.1.1 Complexity of implementing an FIR filter  

 

A FIR filter does not require     multiplication operations,   addition operations 

for each new sample to be filtered. The complexity can also be expressed in terms of the 

number of multiplication-accumulation operations (MAC) [28], which, in the case of the 

FIR filter, is    . The memory cost of a FIR filter is             coefficients    

and     memory points for the vector of inputs     . 

If the sampling frequency of the signal is    this means that the calculation of a filter 

will have to be realized in a time         less than    
 

  
  

On a DSP type processor capable of executing a multiplication-accumulation (MAC) 

at each cycle, of computing power        Calculation expressed in MIPS (Million 

Instruction Per Second), the calculation time will be:                            

       . Also, the computing power of a DSP for the implementation of a FIR filtering is: 

   

                          
                                          (1.17) 

 

1.6.2 IIR filter structure 

 

The following Eq.(1.18) shows that we can represent an IIR      filter as the 

product of 2 structures, one of which is a FIR     filter, and the other one is an all-pole 

IIR filter       . 

     
    

    
        *

 

    
+  [∑     

   
   ]  [

 

  ∑     
   

   

]            (1.18) 

 

The direct structure of an IIR filter is thus obtained by cascading an FIR filter in 

direct form, and the immediate representation of the all-pole filter       . This one is 

given in Figure 1.9(a). By joining the additions of the center of the Figure, we obtain the 

classical direct form used in the literature represented in Figure 1.9(b). 
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                     a) Cascade                                                      b) Direct structure 

 

Figure 1.9 Direct structures of IIR filters. 

 

It is of course possible to represent an IIR filter differently by using the 

commutativity property of multiplication. We then have : 

 

     *
 

    
+         [

 

  ∑     
   

   

]  [∑     
   

   ]                (1.19) 

 

We can thus exchange on Figure 1.9(a) the 2 blocks FIR and IIR The two delay lines 

allowing memorizing the signals      being common, it is possible to reunite them by 

obtaining a unique vector of registers      as shown in Figure 1.10(a). 

 

 

               a) Direct canonical structure               b) Transposed canonical structure 

 

Figure 1.10 Canonical structures of IIR filters. 
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The canonical structure can also be represented as a system of Eq.(1.20) showing the 

signal       

 

{
     

 

    
     

              
   {

          ∑          
   

     ∑          
   

               (1.20) 

 

1.6.2.1 Complexity of implementing an IIR filter  

 

An IIR filter requires      multiplication operations,    addition operations for 

each new sample to be filtered or      MAC. The memory cost of an IIR filter in direct 

structure is    + 3       coefficients    and      memory points for the vectors of 

inputs      and the outputs       The canonical structure allows to decrease the memory 

cost which only requires     memory points for the vector     . If the sampling 

frequency of the signal is    this means that the calculation of the filter Must be completed 

in a time         less than    
 

  
  

 

On a DSP type processor capable of executing a multiplication-accumulation (MAC) 

at each cycle, of computing power P computing expressed in MIPS (Million Instruction 

Per Second), the computing time will be:                                      . 

Also, the computing power of a DSP for the implementation of a FIR filtering is : 

 

                                                                   (1.21) 
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1.7 Conclusion 

 

This chapter covered the definitions, classifications, and specifications of digital 

filters. Moreover, Finite Impulse Response (FIR) filters and Infinite Impulse Response 

(IIR) filters were presented and compared, which serves as the foundation for chapter 2, 

which focuses on recent developments digital filters, design methods, benefits, drawbacks, 

and types. 
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Chapter 2 

 
 Recent developments in variable digital filters 

 

2.1 Introduction 

 

    Digital filter is widely recognized as one of the most basic and necessary 

components of signal processing systems. In addition, many signal processing applications, 

such as digital audio equipment and communications systems need the simultaneous 

implementation of digital filtering and management of filter parameters in real time. Such 

needs may be satisfied by use of variable digital filters (VDFs). Since the 1970s, several 

findings have been published about VDFs research. Among these, [2] provides a 

comprehensive analysis of the outcomes up to the 1990s. 

 

     The issues that must be resolved in the creation of VDFs are substantially 

identical to those that must be resolved in digital filters with set characteristics. 

Consequently, research concerns on VDFs and fixed characteristic filters are categorized 

into three groups [26], the approximation problem, the realization problem, and the 

implementation problem. Additionally, in the realm of VDFs, application-focused 

outcomes have been actively published. Adaptive notch filters, which have been researched 

since the 1980s and whose particulars will be discussed in this chapter, are one of the most 

well-known applications. 

 

   In the sequel, initial focus is placed on a summary of VDF foundations. The most 

recent findings on VDFs are presented and analyzed after that, with the approximation 

issue, the realization problem, and the applications serving as the primary areas of 

concentration. 
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2.2 Fundamentals of VDFs 

 

2.2.1 Definition 

 

VDFs are frequency-selective digital filters (e.g., low-pass filters and band-pass 

filters) whose frequency properties may be altered in real time through parameter control. 

Figure 2.1 [25] depicts a common example of such VDFs, the variable low-pass filter 

(VLPF), whose cutoff frequency may be altered by adjusting the value of a single 

parameter     , Figure 2.2 [24] also depicts the variable band-pass filter (VBPF), where the 

bandwidth is constant and the pass-band center frequency may be changed by a single 

parameter  . 

 

It must be noticed that VDFs vary from the "filters with variable (adjustable) 

coefficients" used in adaptive filtering. Following are the specifics of the differences: 

 

• In the case of general adaptive filtering, an adaptive algorithm modifies all filter 

coefficients. In contrast, the majority of coefficients in a VDF are either fixed or 

supplied as functions of just few variable parameters. In the VLPF of Figure 2.1, for 

instance, only the single parameter is variable, while the remaining coefficients are 

fixed or supplied as functions of   . 

 

• VDFs vary from standard adaptive filters in terms of the process used to alter 

frequency characteristics. In VDFs, the characteristics are altered, but the frequency 

selectivity is maintained, including the low-pass and band-pass shapes. In other 

words, VDFs regulate the frequency characteristics while preserving the frequency 

selectivity. In contrast, general adaptive filters do not require this restriction. This 

indicates that such adaptive filters converge on ideal ones whose properties do not 

always include frequency selectivity. 
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Figure 2.1 Illustration of a VLPF. 

 

 

 

Figure 2.2 Illustration of a VBPF. 
 

 

 

Figure 2.3 Diagram of the steps required to get VDF. 

 

2.2.2 The procedure to obtain VDFs 

 

   In this part, we will discuss the process that must be followed to acquire VDFs. 

The necessary technique is, for the most part, the same as that is needed in the situation of 

fixed characteristic filters, where it is necessary to take into consideration the three 

significant challenges depicted in Figure 2.3: approximation, realization, and 

implementation [49]. In this chapter, we focus a lot of our attention on the issue of 
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approximation as well as the problem of realization. An input-output characterization, such 

as a transfer function, must be obtained from a predetermined specification of a VDF in 

order to solve the approximation issue. The realization issue consists of determining a 

structure that corresponds to the input-output characterization. This structure may be an 

adequate collection of adders and multipliers or an appropriate list of basic operations for 

filtering. 

 

      In the VDF approximation problem, it is necessary to incorporate variable 

parameters in the description of an input-output relationship (e.g., transfer function) of the 

VDF. Consider, for instance, the approximation issue shown in Figure 2.1 for the VLPF. In 

order to achieve this VLPF as a FIR filter, one must approximate the transfer function as 

follows: 

 

 

       ∑          
                                                  (2.1) 

 

Additionally, each coefficient       must be described as a function of  . 

Consequently, the approximation challenge for this VLPF is to identify the set of 

functions               similarly, in order to produce IIR-type VLPF, it is 

essential to characterize the transfer function as: 

 

       
∑          

   

  ∑          
   

                               (2.2) 

      

and to find the filter coefficients as functions {     }            

{     }         

 

2.3 Research topics relating to VDFs 

 

   This section presents VDF research problems from the approximation problem and 

the realization problem perspectives. For the approximation and implementation of VDFs, 

the variable transformation of transfer functions and the multi-dimensional (M-D) 

polynomial approximation of filter coefficients have been extensively employed. In the 

next section, the specifics of these two methodologies are examined, and some recent 
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findings on them are presented. 

 

2.3.1 VDFs based on variable transfer function transformation 

 

    In this procedure, we must first create the transfer function of the "prototype 

filter," which is often a low-pass filter with preset coefficients (i.e., variable parameters are 

not included in this transfer function). Next, we apply a variable transformation to this 

prototype transfer function in order to get the required VDF, where the variable 

transformation utilizes a function with variable parameters related with the frequency 

characteristic components to be altered. There are several ways for variable 

transformations, with the frequency transformation being the most well-known. [3]. All-

pass functions are used for the variable transformation in the frequency transformation. 

Despite the fact that [2] provides a comprehensive overview of the frequency 

transformation, this chapter will also cover this subject with additional explanations. This 

is due to the fact that numerous findings using the frequency transformation have been 

published in recent years. 

 

      The analyze the VLPF shown in Figure 2.1 once again. If frequency 

transformation is employed to generate this VLPF, the transfer function of a prototype low-

pass filter must be constructed first. This transfer function is indicated by      . Then, by 

performing the following frequency transformation to      , the necessary VLPF with 

transfer function       : may be obtained as : 

 

                                                         |
          

 

       
        

        .                                                             (2.3) 

 

Where        is the all-pass first-order transfer function. By adjusting the value of   

in       , the cutoff frequency of the VLPF may be controlled. If      , the cutoff 

frequency falls below the frequency of the prototype filter. When     , the converse 

holds. If the prototype filter is stable and | |    is met, the stability of this VLPF is 

ensured, also, we note that  |        |    holds for any   and   because        is all-

pass. 
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      Next, we will talk about the realization issue for this VLPF. Eq. (2.3) indicates 

that, from a realization standpoint, a block diagram of this VLPF may be created by 

substituting each delay element      in the prototype filter with the all-pass filter 

      . In the majority of instances, however, this substitution leads in delay-free loops 

and a block diagram        that is not realizable. To understand this issue, consider a 

second-order IIR prototype filter with the transfer function defined by: 

 

      
              

                                                               (2.4) 

 

Figure 2.4(a), depicts the block diagram derived from the direct form. The VLPF 

whose block diagram corresponds to Figure 2.4(b) is produced by applying the 

aforementioned substitution of delay elements with       . It is now evident that 

Figure 2.4(b) contains delay-free loops; hence, this block design cannot be 

implemented. It is well know that delay-free loops may be avoided via transfer function 

or difference equation modifications. However, such manipulations are not effective 

methods for VDF implementation For example, the transfer function of the second-

order VLPF is produced by applying            to       given in Eq. (2.4) and 

then performing mathematical manipulations  [49]: 

 

                                             
  

       
       

    

    
       

    
 

                                           
     

      (    )     

           

                                           
     

         

           

                                    
     

           

          
                                                       (2.5) 

                                           
     

        (    )     

           

                                           
     

           

                                                      

    

    Using this description to construct the VLPF greatly increases the computational 

cost, since the filter coefficients   
    ,   

    ,   
    ,   

    ,   
     must be revised to 
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account for the change in  . Particularly, the filter coefficients in Eq.(2.5) are rational 

polynomials that need divisions in order to recalculate filter coefficients, resulting in very 

expensive implementation. 

 

The Taylor approximation-based description [30] is a prominent way for overcoming 

this challenge. This approach applies the first-order Taylor series approximation to all 

rational polynomials of filter coefficients in VDFs, based on the premise that the Taylor 

series is continuous: 

 
 

 

Figure 2.4 Problem in realization of VLPF based on frequency transformation: (a) second-

order model filter, and (b) VLPF generated by applying            to the prototype 

filter. 

 

Ensure all variable parameters have tiny absolute values. In the case of Eq. (2.5), for 

instance, it is assumed that | |      and the filter coefficients are approximated to [30]: 

 

                                           
           

          

                                           
                   

                                      
                                                              (2.6)                           
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These new factors do not need division, therefore the VLPF may be calculated using 

additions and multiplications, as seen in Figure 2.5[49]. Moreover, this understanding does  

 

 
 

Figure 2.5 Second-order VLPF using frequency transformation and first-order Taylor 

approximation. 

 

 not require recalculation of filter coefficients if   is changed. All multipliers except for   

in this block diagram are fixed coefficients. 

 

    Although VLPFs based on the Taylor approximation offer an efficient technique 

of implementation, they have a significant disadvantage in that the range of changeable 

cutoff frequency is extremely restricted. This constraint is a result of the assumption of 

      , which indicates that the approximation error increases when the cutoff frequency 

of the VLPFs deviates from that of the prototype filter. Furthermore, if the value of     is 

very big, the VLPFs may become unstable. Alternative strategies are given in order to 

solve these difficulties [23,30]. For the implementation of block diagrams for the prototype 

filter, all of these techniques use low-sensitivity structures. The replacement     

       and Taylor approximation are then applied to these block diagrams, resulting in the 

appropriate VDFs. Although the approaches presented in [23,30] may be used to restricted 

classes of transfer functions, the Taylor approximation error becomes less than the typical 

VDFs based on direct form. This strategy is also used to 2-D VDFs [31]. 
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   There are further methods for reducing the Taylor approximation inaccuracy. The 

technique based on wave digital filters is described in [32]. Although this method requires 

understanding of analog filter theory, the resulting VDFs are very precise, allowing the 

variable cutoff frequency to be regulated across a reasonably large range. In [25], the block 

diagram of the prototype filter is constructed using a state- space representation, and series 

approximations are employed to minimize the large rise in implementation cost of 

frequency transformation-based VDFs. The technique of [25] may be used to arbitrary 

transfer functions and any state-space structures since this method does not need any of the 

restrictions present in conventional approaches. Moreover, in [11], the VDFs based on the 

combination of frequency transformation and coefficient decimation are presented, and 

FPGA implementation and performance assessment demonstrate that the proposed 

technique achieves very cheap hardware implementation costs. 

 

    As stated before, the problem of delay-free loops is crucial to the approximation 

and implementation of frequency transformation-based VDFs. However, it should be 

emphasized that this issue does not always occur. In general, this issue occurs when the all-

pass function in the frequency transformation contains a constant component that is not 

zero. This scenario relates to variable bandwidth VDFs. Figure 2.2 demonstrates that the 

issue of delay-free loops does not occur when the VDFs have a fixed bandwidth. 

This paragraph concludes with an overview of the advantages and disadvantages of 

frequency transformation-based VDFs. The following are the benefits: 

 

• Because the principle of regulating cutoff frequency is based on simple variable 

transformations, it is straightforward to produce features with changeable 

parameters. 

• If Taylor approximation is not performed, the frequency transformation keeps 

several relevant aspects about the shape of magnitude responses. For instance, when 

a prototype low-pass filter is a Butterworth filter with a monotonic and maximally 

flat magnitude response, the VDFs obtained by performing frequency 

transformations to this prototype filter likewise have monotonic and maximally flat 

magnitude responses. 

• This advantage enables the design of adaptive band-pass or band-stop filters since 
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the cost function for adaptive filtering becomes unimodal, resulting in an adaptive 

algorithm that converges on the globally optimum solution. In the following section, 

particulars will be explained. 

• Compared to the VDFs based on the M-D polynomial approximation, the frequency 

transformation-based VDFs incur much less computational cost in the filtering 

process. 

Next, the disadvantages are summarized: 

• As noted before, if the bandwidth must be changeable in VDFs, the frequency 

translation results in delay-free loops, an issue that must be addressed effectively. 

• To generate VDFs with multiple pass bands or stop bands, such as VBPFs, VBSFs, 

and variable multiband filters, high-order all-pass functions must be used for 

frequency transformation. Consequently, the order of VDFs surpasses that of the 

prototype filter. For instance, the order of the frequency transformation-based 

VBPFs and VBSFs is doubled compared to the prototype filter's order. 

• Because the all-pass functions employed in the frequency transformation are IIR 

filters, it is not possible to create VDFs with linear phase. Even though the prototype 

filter is FIR, the frequency changes result in IIR-type VDFs. 

• Very few changeable qualities can be realized. Specifically, only VDFs with 

variable cutoff frequencies may be generated using frequency transformation. In 

other words, the stop-band attenuation and transition bandwidth cannot be 

controlled. 

 

2.3.2 VDFs using M-D approximation of filter coefficients 

 

    In the realm of VDFs, the M-D polynomial approximation of filter coefficients-

based VDFs have been the subject of the many research [6, 10]. One of the key advantages 

of this method over frequency transformation-based VDFs is the ability to achieve a 

variety of variable features and changeable cutoff frequencies. As illustrated in Figure 2.6, 

this method may create VLPFs with variable transition bandwidth and variable stop-band 

attenuation. In addition, as this method is applicable to both FIR and IIR filters, VDFs may 

achieve linear-phase characteristics and variable group delay. 
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     The initial stage in obtaining this kind of VDFs is to identify a set of   variable 

parameters              that correspond to the required variable components of 

frequency characteristics such as cutoff frequency, transition bandwidth, and stop-band 

attenuation. Spectral parameters are changeable parameters of this kind. Following this 

stage, the filter coefficients of the required VDFs are represented as M-D polynomials with 

regard to these variable parameters. As an example, the transfer function of an  -th order 

VDF with   variable parameters is defined as 

 

                 ∑                
   

                              (2.7) 

 

where each filter coefficient                 is given in terms of the subsequent 

M-D polynomial: 

 

                               

                    ∑ ∑  
   
     

∑   

   
     

    
    

     
   

   
   
       

      
    (2.8) 

 

    Approximating these VDFs requires finding the set of coefficients 

{      
    

     
 } for          . Here,    

    
      

  represent the orders of 

the M-D polynomials that correspond to the variables          , respectively, the usual 

method for obtaining the set {      
    

     
 }, uses a curve-fitting technique to 

define the intended M-D polynomials and minimizes an error function relative to an ideal 

characteristic of the desired VDF. 
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Figure 2.6 This illustration uses a VLPF where the filter coefficients are approximated by 

an M-D polynomial. 

 

   The Farrow structure [33] is often used to implement the VDFs indicated above. To 

demonstrate this notion, consider a basic VDF with one variable parameter,   . The 

expression for this VDF's transfer function is: 

 

 

 

                                             ∑        
   

    

 ∑ ∑       
   

   
   
         

                      (2.9) 

 

it may also be expressed as: 

 

                                  ∑  ∑       
       

     
   

   
                 (2.10)                         

 

Consequently, using the following definition: 

 

    
    ∑   (   

)             
  

                          (2.11) 

 

the description of the VDF         is now 

 (   
 
)  ∑     

    
 

   
   

   
  

.                                                 (2.12)     
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   By using formulation, it is possible to implement           using the Farrow form 

shown in Figure 2.7 is viewed as the parallel combination of the set of  -th order FIR 

filters with fixed coefficients and weights   . Given that these  -th -order FIR Since 

filters do not contain   , a recalculation of their coefficients in response to a change in    

is unnecessary. In this respect, the Farrow structure is appropriate for implementing M-D 

polynomial approximation-based VDFs. 

 

 

 

Figure 2.7  Realization of M-D polynomial approximation-based VDF based on the 

Farrow structure. 

  

Due to the fact that the filter coefficients are characterized by M-D polynomials, M-

D polynomial approximation-based VDFs have a high computational cost for filtering. 

Additionally, this method restricts the scope of changeable attributes. The M-D polynomial 

approximation imposes this restriction, similar to the Taylor approximation in frequency 

transformation. In addition, as this method necessitates a number of filters with fixed 

coefficients, the hardware implementation of these filters may result in an increase in 

characteristic degradations caused by finite word length effects, such as coefficient 

sensitivity and round off noise. However, such degradations may be mitigated by using 

high-precision filter structures, a strategy recently presented in [10]. VDFs with 

approximation-based structures. 
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2.3.3 VDFs based on alternative methods 

 

  In addition to the two procedures listed above, several more strategies have been 

given in the literature. By cascading a single sub filter, VDFs with variable bandwidth and 

no delay-free loops may be constructed at a minimal cost as described in [34]. By adding 

frequency response masking and the fast filter bank to the design of VDFs, [16, 18] 

achieves a considerable decrease in implementation costs in comparison to VDFs with the 

Farrow structure. 

 

      In addition, research on VDFs for adaptive filtering has been extensive. Variable 

notch filters with IIR transfer functions of the second order are a well-known technique in 

such VDFs. All of these variable notch filters effectively offer changeable features using a 

simple process that does not need delay-free loops or an increase in computing cost. Other 

VDFs with an adaptive filter orientation include notch filters with variable attenuation at 

the notch frequency and comb filters with variable bandwidth and variable attenuation. 

These subjects will be further upon in the next section. 

 

2.4 VDFs-based adaptive filtering research areas 

 

   This section begins with adaptive notch filters (ANFs), a specific instance of 

adaptive band-stop or band-pass filters. ANFs are the most well-known use of VDFs in 

adaptive signal processing, and several findings on ANFs have been published since the 

1980s. In addition to the ANFs, this section presents many more adaptive filtering-relevant 

VDFs. 

 

2.4.1 ANF using an all-pass filter 

 

     As seen in Figure 2.8[51], an ANF is crucial to the automated identification and 

suppression of an unknown sinusoid submerged in a wide-band signal, such as white noise. 

To identify and suppress the sinusoid, the ANF is controlled by an adaptive algorithm such 

that the notch frequency    converges to the unknown frequency    of the sinusoid. 

Consequently, the ANF may be seen as the VDF with a changeable notch frequency, and 

the value of    at steady state becomes an approximation of the sinusoid's frequency   . 
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ANFs are used not only for the detection/suppression of a sinusoid, but also for the 

estimate of its frequency. 

 

     The ANF seen in Figure 2.8 is designed to suppress a sinusoid, but it is also 

capable of enhancing the sinusoid and suppressing white noise. This is possible by using a 

peaking filter, also known as a resonator or an inverse notch filter, as an adaptive filter 

rather than a notch filter. The output of the notch filter may be subtracted from the input 

signal to improve the sinusoid, such systems, along with those shown in Figure 2.8, are 

used in a variety of real-world applications, including radar, sonar, telecommunication 

systems with the suppression of narrowband interference, and howling suppressors in 

speech processing. 

 

In the next section, we discuss the principles of ANFs, including their problem 

formulation and the process by which the notch frequency is controlled. As seen in Figure 

2.8, ANF problem statements often define the input signal as the sum of a sinusoid and 

white noise. Consequently, the input signal, denoted     , is represented as:  

 

                                                 (2.13) 

 

 where   and    are the amplitude and frequency of the unknown sinusoid, 

respectively, and is the starting random phase formly distributed in       ,      is a zero-

mean white noise signal that is uncorrelated with  . Let       be the output signal of the 

ANF based on this configuration. 

 

Figure 2.8 ANF for the detection and suppression of sinusoids. 
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    Several approaches exist for describing the transfer function of the notch filter 

used in adaptive filtering. This chapter focuses on the all-pass filter based on the second 

order [35]. This notch filter is characterized by the transfer function shown below: 

 

         
 

 
                                                        (2.14) 

 

where          is the second-order all-pass filter of the form:  

         
               

                                                             (2.15) 

 

Hence Eq. (2.14) is described as 

 

         
   

 

           

                                                       (2.16) 

 

    In this notch filter, the parameter   controls the 3-dB notch width, whereas the 

parameter controls   the notch frequency   . This indicates that the notch filter supplied in 

this manner has independent control over the notch width and notch frequency. Also of 

importance is that this notch filter may be viewed as a VDF generated by the frequency 

transformation [19]: it is evident that this notch filter is created by applying the frequency 

transformation                to the prototype filter of the form: 

 

      
 

 
                                                         (2.17) 

 

     Specifically, this notch filter has the same transfer function as the Butterworth 

band-stop filter of second order [21]. Consequently, this notch filter has a gain of     

and    , and a gain of 0 at   . Moreover, the magnitude response of this notch filter is 

monotonically reducing          and monotonically growing in         . 
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The ANF block diagram based on this notch filter is shown in Figure 2.9[51]. As 

previously mentioned, when the ANF reaches steady-state, the sinusoid component of the 

input       is suppressed at a certain frequency:  

 

Figure 2.9 ANF based on the second-order all-pass filter. 

 

      The signal of output     . Here, it is important to note that many adaptive 

algorithms assume the notch width is constant and only the notch frequency is 

   controlled to estimate the sinusoid frequency. Consequently, we concentrate on how to 

regulate   . 

 

      The most common technique for controlling   ,  is to minimize a cost function 

using the gradient descent approach. ANFs vary from standard adaptive filters in that the 

cost function employed in ANFs is the mean square output, or         . In other words, 

ANFs typically do not deal with the error signal between a reference signal and the filter 

output.  The cost function           must be defined as a function of   ,  since ANFs 

regulate   . Moreover, if the input signal is supplied as in Eq. (2.13) and the ANF has 

monotonic magnitude response,          becomes unimodal. Therefore, the gradient 

descent approach may effectively locate the best notch frequency that minimizes          

in such a scenario. In reality, the best value of ω0 corresponds with    when the ANF is 

based on all passes [36, 37]. Consequently, using the gradient of          with regard to 

   in an adaptive algorithm enables    to converge to   , resulting in the 

detection/suppression of the sinusoid. 
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2.5 Conclusion 

 

This chapter reviews current research on VDFs, focusing on the approximation issue, 

the realization challenge, and adaptive filtering applications. Since this chapter has focused 

on 1-D VDFs with variable magnitude responses, other forms of VDFs, such as M-D 

VDFs and variable fractional-delay filters, have not been introduced. VDF applications 

other than adaptive filtering has also been removed for the same reason. Although VDFs 

have been researched for a considerable amount of time, many elegant discoveries are 

constantly being offered; hence, VDF research will continue to be an active field of study. 
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Chapter 3 

 

 Frequency transformation for linear state-space systems 

  
 
 

3.1 Introduction 

 

     One of the well-known strategies for designing analog and digital filters [3, 38] is 

frequency transformation. This technique, which is based on variable substitution in a 

transfer function, enables us to easily convert a given prototype low-pass filter into any 

frequency selective filter, including low-pass filters with different cutoff frequencies, high-

pass filters, band-pass filters, and band-stop filters. It is also generally known that 

converted filters preserve parts of the prototype filter's qualities, such as stability and 

magnitude response shape. For instance, if a prototype filter is stable and has the 

Butterworth magnitude response, then the filter is said to have the Butterworth magnitude 

response, any filter resulting from the frequency transformation is also stable and exhibits 

the Butterworth feature. Due to this advantageous property, frequency transformation is 

applicable not only to the construction of filters but also to the real-time adjustment of 

cutoff frequencies, which may be utilized to the design of variable filters [2] and adaptive 

notch filtering [19, 20]. Theoretically and practically, the frequency transformation plays a 

significant role in several current applications of signal processing. 

 

This chapter's objective is to give more insight into the theory of frequency 

transformation from the perspective of internal filter qualities. In several texts on digital 

signal processing, frequency transformation is treated only in terms of input-output 

qualities, i.e. transfer function properties. In other words, few findings concerning the link 

between frequency transformation and internal attributes have been recorded. According to 

common knowledge, the internal characteristics of filters are intimately tied to the issue of 

how to create a filter structure for a particular transfer function, This issue must be 

carefully examined in order to produce analog filters with a large dynamic range and low 

sensitivity [39] or digital filters with a high degree of precision in terms of limited 
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wordlength effects [40, 43]. Consequently, it is beneficial to explore the frequency 

transformation from the perspective of the internal characteristics and to apply the 

conclusions to various practical applications. 

 

   We utilize the state-space model to explore frequency transformation from the 

perspective of the internal characteristics of filters. State-space representation is one of the 

well-known internal descriptions of linear systems, and it also offers a potent instrument 

for the synthesis of analog/digital filter structures with the aforementioned excellent 

performance. The outcomes from our talk are twofold. Initially, we demonstrate several 

advantageous aspects of frequency transformation in terms of the state-space 

representation. These features are strongly connected to the three components of linear 

state-space systems listed below: Gramian observability, and the second-order modes. In 

the characterization of internal characteristics of analog/digital filters and the synthesis of 

high-performance filter structures, these three factors are recognized to be crucial. Second, 

we apply this conclusion to the design and synthesis techniques for high-performance 

analog and digital filters. To be more explicit, we propose easy and unified frameworks for 

the design and synthesis of analog/digital filters that concurrently achieve the 

aforementioned high performance and the modification of frequency characteristics. In 

addition, this finding is extended to variable filters with high-performance structures. 

 

   The section is structured as follows. The second section examines the principles of 

the state-space representation of linear systems, such as analog and digital filters. In 

Section 3, the classical theory of frequency transformation is introduced. In Section 4, we 

analyze the frequency transformation using the state-space representation and demonstrate 

illuminating correlations between the frequency transformation and internal filter features.  

 

3.2 State-space representation, Gramians and second-order modes 

 

   In this section, state-space representations of linear systems are introduced. In 

addition, we present the aforementioned three components on the internal attributes 

controllability Gramian, observability Gramian, and second-order modes and discuss how 

they are used to the synthesis of high-performance filter structures. These subjects will be 

presented, respectively, for digital filters and analog filters. 
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3.2.1 Representation of digital filters in state space 

 

Take the following state-space equations for a   th-order stable single-input/single-

output linear discrete-time system with a single output 

: 

                                                                                                     

                                                                 (3.1) 

 

     ,      and      ∈      represent the scalar input, scalar output, and state 

vector, respectively, while  ∈       ∈     ,  ∈      and  ∈   are constant 

coefficients. We will assume that the system is stable, controlled, and observable 

throughout this whole chapter. If this state-space system represents a digital filter, then 

each entry of      corresponds to the output of the filter's delay elements. Using the   -

transform of the Eq. (3.1), we obtain: 

 

                                                                      

                                                                    (3.2) 

 

In terms of (       ), the transfer function      is described as 

 

                                                          (3.3) 

 

where    denotes the       identity matrix. 

 

  It is generally known that the transfer function      is invariant under nonsingular 

transformation matrices   ∈       of the state: if      is converted into  ̅    

        , then the space system (       ) is likewise transformed into the set ( 

 ̅  ̅  ̅  ̅  : 

    

( ̅  ̅  ̅  ̅)                                                              (3.4) 
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It is simple to demonstrate that this new set has the same transfer function as 

(       ). Consequently, several configurations exist for a digital filter with a given 

transfer function     . This nonsingular transformation is referred to as the similarity 

transformation. 

 

The controllability Gramian, observability Gramian, and second-order modes are 

introduced next. The solutions   and   to the corresponding Lyapunov equations for the 

system (       ), are known as the controllability Gramian and the observability 

Gramian, respectively: 

 

              
      

                                                                     (3.5) 

 

Since the system (       ) is supposed to be stable, controllable, and observable, 

the Gramians   and   are symmetric and positive definite, i.e.          and 

      . Consequently, all of the eigenvalues of the matrix product    are positive. 

These eigenvalues are denoted as   
    

     
   and assume that   

     
        

  and it is 

assumed that              are referred to as the system's second-order modes. In the 

literature on control system theory, second-order modes are often referred to as Hankel 

singular values since                  equal the nonzero singular values of the Hankel 

operator of       

 

The relationship between the two Gramians and the similarity transformation 

 ̅             is as follows: The controllability/observability Gramians   ̅  ̅̅̅  of the 

system described by Eq. (3.4) are provided by: 

 

  ̅  ̅̅̅                                                               (3.6) 

 

The following relationship explains why the second-order modes are invariant under 

similarity transformation: 

 

  ̅̅ ̅̅ ̅                                                              (3.7)                                                                                             
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Therefore, it follows that Gramians are dependent on system realizations but second-

order modes are dependent simply on the transfer function. 

 

    In the research on the synthesis of filter structures [40, 43], it is shown that the two 

Gramians and the second-order modes play crucial roles in the analysis and optimization of 

filter performance such as roundoff noise and coefficient sensitivity. In other words, given 

the transfer function of a digital filter, we may build cost functions in terms of the filter's 

aforementioned performance in terms of the two Gramians       , By correctly 

structuring the two Gramians such that they optimize or sub-optimize the respective cost 

functions, a high-performance filter structure may be created. 

 

   The balanced form is an example of a digital filter construction with superior 

performance [43, 41]. This structure comprises the two Gramians provided as: 

 

                                                                        (3.8) 

 

  is the diagonal matrix of the second-order mode: 

 

                                                                     (3.9) 

 

Another illustration is the minimum roundoff noise structure [40, 42], which is 

comprised of two Gramians satisfying the following relationships: 

                                                                        

                                                            
 

 
∑   

 
       

    = 1                                                                      (3.10) 

 

     corresponds to the i-th diagonal element of K. 

 

We conclude by discussing the relevance of second-order modes from two practical 

perspectives. First, the literature indicates that the second-order modes characterize the 

optimum values of the aforementioned cost functions. The best performance is thus 

defined by the second-order modes of a particular transfer function. In the area of balanced 
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model reduction [44], the second-order modes are proven to give the upper limit for the 

approximation error between the reduced-order system and the original system. 

 

3.2.2 Representation of analog filters in state space 

 

An N th-order linear continuous-time system (with analog filter) may be represented 

in state space as follows: 

                                                   
     

  
             

                                                                (3.11) 

 

where     ,     , and     ∈       are the scalar input, the scalar output, and the 

state vector of the system, respectively, and  ∈       ∈     ,  ∈      and  ∈

     are constant coefficients. Assume that the system            is stable, observable, 

and controlled. If this system is a continuous-time analog filter with   integrators, then the 

state vector corresponds to the integrators' output signals. 

 

Laplace transform of the expression (3.11) yields: 

 

                       

                    ,                                         (3.12) 

 

resulting in the subsequent transfer function: 

 

                      .                                       (3.13) 

 

    As in the discrete-time example, the transfer function is invariant under similarity 

transformation: if      is transformed by a nonsingular matrix  ∈       into        , 

then the resultant state-space system                   is an equivalent realization to 

          of the transfer function     . Consequently, several circuit topologies exist for 

an analog filter with a given transfer function     . 
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The solutions to the following Lyapunov equations provide the controllability 

Gramian   and the observability Gramian   of a continuous-time state-space system.: 

 

                                                             
      

       

                                                            (3.14) 

 

where       represents the       zero matrix. Under the condition that           

is stable, controllable, and observable, the Gramians   and   are proved to be symmetric 

and positive definite. As in the discrete-time situation, the second-order modes            

      are found as the positive square roots of    eigenvalues. 

 

    In the case of continuous time, the connection between similarity transformations, 

Gramians, and second-order modes is identical to that of discrete time. The new Gramians 

( ̅  ̅̅̅ ) of a transformed continuous-time system provided by a similarity transformation   

are proven to be          
    

    , indicating that the Gramians are dependent on the 

system's realizations. In contrast, the second-order modes are invariant due to the fact that 

  ̅̅ ̅̅ ̅           holds. 

 

    As in discrete-time systems, Gramians and second-order modes of continuous-

time systems play crucial roles in the synthesis of high-performance filter architectures 

[39]. You may achieve a high-performance structure by optimizing or sub-optimizing a 

predefined cost function in terms of the controllability and observability Gramians. This 

cost function may be interpreted as a measure of the dynamic range and sensitivity of an 

analog filter. The best values of such cost functions are also determined by the second-

order modes. 

 

3.3 Frequency transformation 

 

3.3.1 Digital filter frequency transformation 

 
Oppenheim [45] and Constantinides [3] provide examples of frequency 

transformations of digital filters. Oppenheim's research is applied to finite impulse 

response (FIR) transfer functions, whereas Constantinides' research is used to Infinite 
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Impulse Response (IIR) transfer functions. The frequency transformation of digital filters 

is limited to the work of Constantinides in this chapter. 

 

Let      be the transfer function of a digital low-pass filter of order  -th. The 

discrete-time frequency transformation is described as: 

 

               |          ⁄                                           (3.15)                                              

 

resulting in a brand-new composite transfer function         . For this 

transformation, the function      ⁄  is defined as  -th order stable all-pass function of the 

type: 

  

                                                      
 

    
           

    
    

       ∑    
   

                                                (3.16)                   

 

The well-known common frequency transformations use the four following all-pass 

functions [4]: 
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corresponding to the low-pass-low-pass (LP-LP), low-pass-high-pass (LP-HP), low-

pass-band-pass (LP-BP), and low-pass-band-stop (LP-BS) transformations, respectively. 

The cutoff frequencies of the modified filters are determined by the parameters   and  . 

On the block diagram of a digital filter, frequency transformation signifies that every delay 

element     in      is replaced with an all-pass filter       . 
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3.3.2 Frequency transformation using analog filters 

 

Let      represent the transfer function of an analog low-pass filter of order  . The 

following variable substitution describes the frequency transformation of analog filters: 

[38]: 

  

 (    )      |         ⁄                                                 (3.18) 

 

Consequently, the frequency transformation produces a new composite transfer 

function  (    )  from the prototype transfer function     . In general, the prototype 

low-pass filter has a cutoff frequency of 1 rad/s. From a circuit perspective, the substitution 

         ⁄  signifies that each integrator 1/s in the prototype filter      is substituted 

with another system whose transfer function is      ⁄ . 

 

The transformation function      ⁄  is defined as the Foster reactance function [38] 

shown below: 

 

 

    
 

    

    
  

(      
 ) (      

 ) (      
 )  

 (      
 )(      

 )(      
 )   

                 (3.19)  

 

where     and                                   . The Foster 

reactance functions are defined so that the degree of difference between      and      is 1, 

i.e. |                   |    . In the case of the well-known typical LP-LP, LP-HP, 

LP-BP, and LP-BS transformations, the corresponding reactance functions are given as [4]: 

 

                                                      
 

      
 

 

 
                          

                                                   
 

      
                                

                                                   
 

      
 

  

      
                                                               (3.20) 

                                                   
 

      
 

 (      
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Cutoff frequencies of modified filters are determined by the parameters       and 

  . 
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    It is vital to note that the Foster reactance functions fall into two distinct 

categories: suitable reactance functions and improper reactance functions.          and 

         correspond to strictly correct reactance functions in the usual frequency 

transformations of Eq.(3.20), while          and          are improper reactance 

functions. 

 

3.4 Analysis of frequency transformation in state space 

 

    This section examines frequency transformation from the perspective of internal 

characteristics. In other words, we demonstrate a multitude of intriguing outcomes of the 

frequency transformation in terms of the state-space representation. 

 

      This study stems from the work of Mullis and Roberts [46], in which they 

proposed a simple state-space formulation of frequency transformation for digital filters 

and demonstrated an essential characteristic of the second-order modes, namely that they 

are invariant under frequency transformation. In addition, they discussed design and 

synthesis implications of these discoveries for high-performance digital filters. 

 

   This chapter begins with an introduction to this work, followed by a discussion of 

the link between frequency transformation and state-space representation of discrete-time 

systems. Additionally, we give comparable findings for continuous-time systems. 

 

3.4.1 State-space formulation of frequency transformation for digital filter filters 

and invariance of second-order modes 

 

   The first explicit state-space formulation of frequency transformation was 

published by Mullis and Roberts [46] as follows.            is a state-space representation 

of the prototype filter     . The transfer function H(F( )) obtained by the frequency 

transformation od Eq.(3.15) with a  -th order all-pass function         may therefore be 

expressed clearly as follows: 

 

                                                 (3.21) 
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Using the coefficients shown below: 

 

                                           

                                   

                                                                        (3.22) 

                                                                              

  

where            is a state-space representation of       ,  and   is the 

Kronecker product for matrices. 

 

   The relevance of the description provided by Eq.(3.22) resides in the fact that, 

using this description, it is simple to perform frequency transformations on a state-space 

structure and a transfer function. Additionally, notice that this explanation contains no 

delay-free loops. 

 

   In add to the state-space model shown above, Mullis and Roberts detailed the 

Gramians and second-order modes of the transformed system            The two 

Gramians, indicated by the symbols   and  , are presented as follows: 

 

                                                               

                                                             (3.23) 

 

where   is the controllability Gramian for the all-pass system            We may 

deduce readily from this relationship: 

 

                                                               (3.24)     

 

Consequently, the eigenvalues of the matrix product    are identical to those of 

   with multiplicity  . This demonstrates that the second-order modes of converted 

filters are identical to those of a particular prototype filter. Therefore, the modes of second-

order digital filters are invariant under frequency transformation. 
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The practical value of this characteristic of invariance is addressed below. As 

indicated in Section 2, second-order modes generate optimum cost function values with 

regard to word length effects. Using the knowledge that the least roundoff noise is defined 

by second-order modes, [46] demonstrates that the minimum value of the roundoff  noise 

of digital filters is independent of the frequency transformation-controlled filter features. 

Similarly, the upper limit of the approximation error owing to the balanced model 

reduction is invariant under frequency transformation. 

 

In addition, in the case of LP-LP transformation, [46] gives the unique state-space-

based frequency transformation that preserves optimum realizations. This particular 

transformation is provided by: 

 

                                    

                    √               

                   √                                                (3.25) 

                                                                              

  

   By setting the prototype state-space filter           to its ideal realization and 

using Eq.(3.25), arbitrary low-pass filters with the same optimal realization as the 

prototype filter may be obtained. 

 

Figure 3.1 Gramian-preserving frequency transformation. 
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3.4.2 Gramian-preserving frequency transformation in digital filtering 
 

    Here, we focus on the controllability and observability of Gramians and present a 

novel state-space formulation of frequency transformation that maintains the invariance of 

these Gramians. The Gramian-preserving frequency transformation is a new state-space-

based frequency transformation that contains the formulation of Eq.(3.25) as a specific 

instance. 

 

    Before presenting the mathematical definition of the Gramian-preserving 

frequency transformation, we explain its relationship to the design and synthesis of digital 

filters. Figure 3.1 provides straightforward examples of the design/synthesis of low-pass, 

high-pass, band-pass, and band-stop filters. Assume here that we are given a prototype 

low-pass filter with the transfer function      shown on the left side of this figure. 

Moreover, let the controllability and observability Gramians of this filter prototype be   

and  , respectively. Then, by applying the Gramian-preserving frequency transformation 

to this prototype filter, we can turn it into various arbitrary low-pass, high-pass, band-pass, 

and band-stop filters with the same controllability/observability Gramians as the prototype 

filter. 

 

   The Gramian-preserving frequency transformation is a particularly effective 

method for simultaneously designing and synthesizing high-performance digital fitlers. In 

other words, if we prepare the structure of a given prototype low-pass filter as a high-

performance structure, such as the balanced form and the minimum roundoff noise form, 

the Gramian-preserving frequency transformation allows us to obtain other types of filters 

with the same high-performance structure, this is also true for analog filters. 

 

    The mathematical description of the Gramian-preserving frequency transformation 

is now presented. Given a state-space digital filter prototype           with the transfer 

function      and a  -th order all-pass function       , the following description offers 

the Gramian-preserving frequency transformation to construct the composite transfer 

function        [47]: 

                  ̃   ̃     ( ̃ ̃)  * (    ̃ )
  

+ 

                   ̃   ̃   (    ̃ )
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                   ̃   ̃    (    ̃ )
  

                                        (3.26)     

                    ̃     ̃ (    ̃ )
  

                                          

 

and that    ̃  ̃  ̃  ̃  is a state-space representation of        and the 

controllability/observability Gramians are equal to the identity matrix, i.e. 

 

 ̃ ̃   ̃ ̃ =  ̃  ̃   ̃  ̃                                               (3.27) 

 

This relationship indicates that the set   ̃  ̃  ̃  ̃  is a balanced form. Observe that 

such a set always exists if        is stable. 

 

  Now we will examine the mathematical formulation of the Gramians of (  ̃ ,  ̃,  

 ̃,   ̃), which are denoted by  ̃ and  ̃, respectively. They are presented as follows in 

terms of the Gramians of the prototype filter: 

 

                                                         ̃       

 ̃                                                                (3.28) 

 

   Thus,  ̃ and  ̃ form block diagonal matrices with   diagonal blocks that are all 

identical to   and  . As indicated above,  ̃ and  ̃ respectively become the same as   

and   as multiplicity M. Therefore Eq.(3.26), the Gramians are preserved via frequency 

transformation. 

 

    The Gramian-preserving frequency transformation is next discussed from a 

realization standpoint. First, we see from Eq.(3.27), that in order to implement the 

Gramian-preserving frequency transformation, the structure of the all-pass filter          

must be constructed so that its state-space representation assumes a balanced form. 

Although it is known that the formulation of the balanced form for a given transfer 

function is not unique, we offered a beneficial approach: Given an all-pass transfer 

function       , the normalized lattice structure converts into a balanced form, enabling 

the Gramian-preserving frequency transformation to be implemented. This is the result of 

seeing that       is all-pass. Recall that the frequency transformation of digital filters 
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necessitates the replacement of each delay element in a prototype filter with an all-pass 

filter (and the subsequent deletion of any delay-free loops). 

 

In light of this, we may deduce that the Gramian-preserving frequency 

transformation is read as the replacement of each delay element in the prototype filter with 

a normalized lattice structure all-pass filter. Figure 3.2 [4] depicts this design. Given a 

state-space prototype filter as shown in Figure 3.2(a), we perform the aforementioned 

replacement and receive a changed state-space prototype filter as shown in Figure 3.2(b). 

The all-pass filter incorporated in this construction is comprised of   lattice sections 

            , with each section    shown in Figure 3.2(c). The variable  ̂  signifies the  -th 

lattice coefficient for         when    for          , and  ̂  √      

 

Finally, the mathematical formulation of the Gramian-preserving frequency 

transformation based on the normalized lattice structure is presented. The normalized 

lattice structure of        may be represented in state space as follows [48]: 

 ̃  

(

 
 
 
 

  ̂      ̂  ̂   ̂  ̂  ̂      ̂  ̂  ̂    ̂    ̂        ̂  ̂  ̂       ̂    ̂       ̂  ̂  ̂      ̂    ̂ 
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Therefore, the Gramian-preserving frequency change is carried out by substituting 

Eq.(3.29) with Eq.(3.26). Note that the state-space representation   ̃  ̃  ̃  ̃   produced in 

this manner becomes sparse because and contain numerous zero entries n  ̃ and  ̃. To be 

exact, the set   ̃  ̃  ̃  ̃  has in total             ⁄    zero entries. Consequently, 

this state-space filter is well suited for implementation. 

 

 

        (a) 

 

    (b)                                                          (c) 

Figure 3.2 Gramian-preserving frequency transformation (a) prototype state-space filter, 

(b) trnansformed state-space filter, and (c) normalized lattice section   . 
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3.5 Conclusion 

 

     In this chapter, we presented insightful and practical discoveries about the 

classical frequency transformation of analog and digital filters. While the majority of 

known results on frequency transformation are described in terms of transfer functions, the 

results presented in this chapter are based on the state-space representation, which has 

revealed many useful properties regarding the performance of filters whose internal 

properties and input-output relationship dominate. For the design and synthesis of high-

performance filters, the Gramian-preserving frequency transformation is very interesting. 
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Chapter 4 

 
 Series approximations for variable state-space digital filters 

 
4.1 Introduction 

 

Let        represent the transfer function of a low-pass filter prototype with the  -th  

order IIR. The required VDF of the transfer function      is derived from       using the 

frequency transformation shown below.[3] 

 

          |
        

                                                    (4.1) 

 

      Where       is an all-pass transfer function, the selection of       is contingent upon 

the specification of VDFs, i.e. VLPFs, VHPFs, VBPFs, and VBSFs. 

 

     This section examines the design of VLPFs. Let           be the transfer function of 

the desired VLPF, where   is the parameter for tuning the cutoff frequency (i.e., the 

bandwidth) of the VLPF. Then,          is derived by the subsequent LP-LP 

transformation using the first-order all-pass transfer function         : 

 

                                        |
            

 

         
     

      
                                                             (4.2) 

  

    Note that   must meet | |     in order to assure the stability of         . If 

   , the bandwidth of           is smaller than that of      , and it gets larger if 

   . Figure 2.1 depicts a VLPFs that has been adjusted in this manner. 
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(a) 

 

(b) 

 

Figure 4.1 Problem with straight LP-LP transformation usage: (a) first-order filter 

prototype and (b) transformed filter with delay-free loop. 

 

4.1.1 Problem with straight LP-LP transformation usage  

 

From a practical standpoint, it is difficult to directly apply the LP-LP 

transformation described above. Consider the following example of a first-order 

prototype filter: 

 

      
        

                                                                    (4.3)  

 

The structure is shown in Figure 4.1[25] by the direct form II (a). Changing the 

delay component of this filter with          generates the new filter structure, as shown 

in Figure 4.1(b). Using      and       as in Figure 4.1(b), we obtain 

 

                                                                       

                                                                                                                                                  

                                                                                                 (4.4) 
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Where      and      represent the filter's input and output, respectively. It follows 

from this connection that 

 

                                    (4.5) 

 

Since the term      appears on the right-hand side of Eq.(4.5), it is now clear that 

     cannot be computed. Consequently, the delay-free loops produce an unrealizable 

structure. It is common knowledge that delay-free loops can be prevented by manipulating 

difference equations. In the above example. Eq.(4.5) is rewritten to  

 

     
 

     
                                      (4.6) 

 

Consequently,      may be omitted, resulting in the following set of differential 

equations without delay-free loops: 

 

                                                         
    

     
       

 

     
                                                             

                                                                                        (4.7)   

 

Although delay-free loops may be deleted in this manner, the process is difficult and 

time-consuming. For high-order filters or highly complex structures, such as lattice 

structures, great attention must be paid to effectively executing manipulations of difference 

equations. Moreover, it is evident from Eq.(4.7) that the deletion of delay-free loops often 

involves expensive hardware-intensive division operations. 

 

Recalculating the transfer function          coefficients is another method for 

avoiding delay-free loops in the LP-LP transformation. In the case of those mentioned 

above, first-order, applying the LP-LP transformation to Eq.(4.3) and rearranging the 

numerator and denominator of          results in the expression: 

 

         

      

     
 

      

     
   

  
    

     
   

                                                (4.8)                                      
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    Therefore, by recalculating each coefficient in Eq.(4.8) according to the update, 

the VLPF may be implemented without delay-free loops. In the case of higher-order filters, 

both coefficients in Eq.(4.7) and Eq.(4.8) include division operations and become much 

more difficult. For instance, when       is the IIR filter of second order shown below:  

 

      
              

             
                                                   (4.9)  

 

The transfer function of           becomes 

 

        = 

           

           
        (    )     

              
           
             

  
      (    )     

              
         
             

        (4.10) 

 

Which coefficients are more complex than the coefficients in the first-order case. For 

these reasons, the use of the LP-LP transformation directly is impractical for realization. 

 

4.1.2 VLPFs approximated using the Taylor series  

 

    In [30], an effective solution to the above disadvantage is presented. Under the 

assumption that | |   , this technique applies the first-order Taylor series approximation 

for to each filter coefficient in         . This method simplifies the          filter 

coefficients that do not involve division operations. Regarding the second-order VLPF, as 

in Eq.(4.10). Applying the Taylor series approximation of the first order produces: 

 

                                                              

 
 ̅      ̅         ̅       

   ̅         ̅                                           (4.11)  

 

where 

 

                                                   ̅           
          

                                                   ̅                   

                                                   ̅                   
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                                                   ̅                                                   (4.12)                                                           

                                                   ̅                                                                                             

 

Therefore, this VLPF can be readily built with only the adder and multipliers. 

Observe that using too large of | | can severely degrade the frequency response or violate 

stability. 

 

4.2 Proposed method 

 

The suggested technique is a state-space variant of the previously described method. 

The state-space technique is preferred over the transfer function approach for two reasons. 

The state-space technique provides a more precise approximation in the VDF design, 

which is the primary reason. As previously stated, the transfer function technique employs 

the Taylor series approximation, and in most circumstances, this approximation must 

depend on the first-order approximation since considering more than second-order terms in 

valves would need an overly complex mathematical formulation. In contrast, the technique 

provided in this section can readily handle higher-order approximation in a simple 

algebraic formulation, resulting in a more precise VDF design than the transfer function 

approach. The second reason is that the state-space technique is a potent instrument that 

produces great accuracy regarding limited word length effects. As well known, the 

behaviour of finite word length effects, such as the coefficient quantization error and the 

round-off error, is highly dependent on the filter structures used. In other words, high-

precision realizations cannot be achieved using solely transfer functions due to limited 

word length effects. The direct form structure is particularly vulnerable to quantization 

effects, which is a typical realization technique based on the transfer function approach. 

Therefore, direct form filters implemented on hardware with a limited word length are 

considerably degraded by quantization effects. Please see [24] and its references for further 

information on this subject. 
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      Before presenting the suggested approach, the stat-space representation is described. 

Given an  -th order prototype filter with the transfer function      , its state-space 

representation is as follows: 

 

                                                      (4.13)  

 

Where    denotes the     identity matrix and   ∈         ∈     ,   ∈

     and   ∈   are real-valued coefficients of the state-space filter. Using this set of 

coefficients, the input-output relationship for this filter is given by the following state-

space equations: 

 

                                                                                                      

                                                             (4.14) 

 

    Where      is the input signal,      is the output signal and     ∈      is the 

state vector corresponding to the outputs of delay elements. This chapter assumes that the 

prototype state-space filter is asymptotically stable (i.e..    Has all Eigenvalues within the 

unit circle), and that it is controllable and observable. This state-space filter's block 

diagram is seen in Figure 4.2. Here, the thick arrows indicate vector signals, while the thin 

arrows represent scalar signals. 

 

 

 

Figure 4.2 Block diagram of       in state-space form. 
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      It is well-known that the set             is non-unique; thus, several realizations 

of             exist for the transfer function      . Moreover, it is essential to highlight 

that the performance of the filter in terms of finite word length effects is dependent on the 

selection of the set (         ))This suggests that a suitable design of             yields a 

state-space filter with great performance in terms of the finite word length effects. For 

information, see [24] and the citations therein. 

 

 

 

Figure 4.3 Block diagram of           in state-space form with delay-free loops. 

 

Our state-space VLPFs, VHPFs, VBPFs, and VBSFs are now shown. 

 

4.2.1 Design of state-space Variable Low-Pass Filters (VLPFs) 

 

The suggested technique is based on the state-space formulation of the LP-LP 

transformation described in [46]. Let          be the transfer function of the desired 

VLPF as in Eq.(4.2), and  let (                             be a state-space 

representation of         . Then, the set (                             can be given in 

terms of (                and    as follows [46]: 

 

                                                                           

                                                       √                  

                                                     √                                               (4.15) 
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    This system is derived as described below. Figure 4.2 delay elements are first 

substituted with         , which has a normalized lattice structure [47]. The resulting 

structure is shown in Figure 4.3[25], where it should be noted that the normalized lattice 

structure realizes the all-pass filter         and generates delay-free loops. let     ∈

     represent the new state vector corresponding to Figure 4.3 delay element outputs. 

Then, the following relationships remain true for s              and      

 

                                                                          

                                                       (4.16)  

 

where       ,           , and     are determined by Eq.(4.15). Although 

Eq.(4.15) provides a unified framework for the state-space formulation of VLPFs, this 

formulation is not suitable for implementation since the coefficients contain the inverse 

matrix            and the square root √    , which significantly increases the 

hardware complexity. In light of this, we will revise the formulation of Eq.(4.15) using 

series approximations. 

 

In this part, an efficient method based on series approximations is used in a simple 

algebraic formulation that minimizes the computation complexity and improves the 

performance of all forms of VDFs [26]. First, the needed inverse matrix is computed using 

a negative binomial series theory: 

 

             ∑ (    )
  

                                                  (4.17) 

                              

Assuming that | |     decreases this expansion after   terms. It is possible to 

approximate the inverse matrix using the matrix     : 

 

Where 

 

                           (      )
  

     ∑ (    )
  

    

                                                                      (4.18) 
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    Using step response with    Iterations, as requested by the user [50], the matrix 

     is generated. When     , this technique corresponds to the previously suggested 

method and our method. Second, we use the Taylor series approximation to get a close 

value for the square root √    : 

 

√     ∑
        

             
       

                                  (4.19)    

 

Consequently, the square root √      is approximated as     : 

 

                                        √          

  ∑
        

             
       

                                  (4.20) 

 

Where   is the user-determined parameter, and      is the series approximation of 

√           : 

     ∑
        

             
       

                                  (4.21)                  

 

The user determines the value of  . 

 

From Eq.(4.18) and Eq.(4.20), the state-space coefficients of VLPFs can be given in 

terms of             ) and   as follows: 

 

                                                       (      )     

                                                                  

                                                                                                                     (4.22) 

                                                                                                                                                      

 

4.2.2 Design of state-space Variable High-Pass Filters (VHPFs) 

 

     Applying the LP-HP transformation [3] transforms a prototype low-pass filter       

into a high-pass filter           with an all-pass function           to get the desired 
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transfer function          : 

 

                                                          |             

          
        

         
                                                       (4.23) 

 

    The parameter    adjusts the bandwidth of the transfer function          in the 

same way, as described in the preceding subsection. The following definition applies to the 

coefficients of variable high-pass filters (VHPFs): 

 

                                                        (      )     

                                                                  

                                                                                                                  (4.24)   

                                                                                                                

                                     

4.2.3 Design of state-space Variable Band-Pass Filters (VBPFs) 

 

            represents the transfer function of the needed VBPFs. Consequently, 

VBPFs are built with a two-step frequency transformation, the first is based on LP-LP 

transformation, and the second is based on LP-BP transformation [22]:  

 

                                                 ̃      |              

                                               ̃            |              

                                                                                                                (4.25) 

                                                                  

        
 ,  | |                                                                

 

Step1: The state-space VLPFs (                             is established from 

the prototype state-space                using Eq.(4.22). 

Step2: Replace              ) with the set (                             

mentioned above in Eq(20) of [24], and applying the series approximation to  the terms 

√     . As a consequence, the new state space VBPFs is as follows: 
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                                                     (
              (      )    

                               
)  

                                                     (
              

            
)                                                                       

                                                      (                   )                              (4.26) 

                                                                                                                

 

where      denotes the     zero matrix, and   and   are the parameters for 

tunning the center frequency and pass-band bandwidth, respectively. For    , the pass 

bandwidth drops, but it increase for    . For    , the central frequency rises, but it 

drops for      The state-space VBPFs stated in Eq. (4.26) tune both the center frequency 

and bandwidth, as opposed to the state-space VBPFs specified in [24], which only tune the 

center frequency. 

 
4.2.4 Design of state-space Variable Band-Stop Filters (VBSFs) 

 

           should serve as the transfer function for VBSFs. Using two-phase 

transformations, the transfer function of            is obtained as follows: 

 

                                                     ̃      |              

                                               ̃            |              

                                                                                                                      (4.27) 

                                                                

        
    | |                                         

 

If    , the output stop bandwidth is larger than the output of the prototype filter, 

and if    , it is smaller. Similar to how it works with VBPFs, the parameter    adjusts 

the center frequency. Consequently, the following are the state-space coefficients of 

VBSFs:         
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                                            (
                (      )    

                        
) 

                                                     (
              

            
) 

                                              (                      )                              (4.28) 

                                                                    . 

 

4.3 Conclusion 

 

This chapter proposes and describes a straightforward, efficient state-space-based 

technique for designing and realizing variable IIR digital filters with high-precision tuning. 

State-space-based frequency transformation was used to produce the variable filters. 

Calculating the inverse matrix and square root was necessary for this transformation to 

construct a basic state-space VDF without any computational complexity. 
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Chapter 5 

 

Results and discussions 

 
5.1 Introduction 

 

This chapter describes the utility of the suggested technique and compares it to the 

earlier methods [24, 25]. Then, each VLPF output is evaluated based on the approximation 

error. In addition, we examine the frequency response performances of various types of 

digital filters, including VLPFs, VHPFs, VBPFs, and VBSFs.  

 

5.2 Numerical examples 

 

5.2.1 Approximation error 

 

We evaluate each VLPFs performance based on its approximation error. First, the 

definition of the approximation error is as follows: 

 

       |   (     )   ̂         |                 (5.1) 

 

 ̂  (     ) is the approximated transfer function for the VLPFs for the proposed 

technique, while    (     ) is the ideal transfer function for the VLPFs (not 

approximated). The used low-pass prototype filter is a fifth-order low-pass elliptic filter 

with the transfer function shown below: 

 

      
                                                        

                                                   
 .   (5.2) 

 

The pass-band ripple, stop-band ripple, and pass-band edge frequency elliptic digital 

filters are respectively set to 0.5 dB, 40 dB, and 0.25π. These are the state-space 

coefficients of this prototype filter: 
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(

 
 

                                
                                 
                                
                               
                                )

 
 

 

                                                                         

                                                                                 (5.3) 

                                          .                                                                         

 

In order to realize the low-pass digital filters, the values   = 1 or     and     

have been selected. Figure 5.1 illustrates the assessment outcomes for           . 

When    , the suggested technique gives an approximation error much smaller than the 

prior method when    and    . Thus, the proposed algorithm provides a good 

approximation by developing the approximation of state-space coefficients. 

 

 

𝜼 
 

Figure 5.1 Evaluation of approximation errors of VLPFs: Peak errors. 

 

5.2.2 Evaluation of performance for high-order narrow band VDFS 

 

High-order narrow-band IIR filters, which are challenging to design and serve crucial 

roles in various applications, are very prone to quantization effects, resulting in significant 
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frequency response deterioration. Thus, a narrow, high-order band would illustrate the 

suggested method's practical utility. The response error is defined as follows: 

 

Absolute error = |          ̂    ̂    |                                   (5.4) 

 

                is the frequency response indicated by the proposed technique and the 

prior approach, given that  ̂          is the ideal response at frequency without 

approximations and coefficient quantization. Eight fractional bits are quantized into the 

filter coefficients. All VDFs (VLPFs, VHPFs, VBPFs, and VBSFs) are used in this part. 

The prototype low-pass filter is a 10th-order elliptic filter with 1 dB peak-to-peak ripple, 

40 dB minimum stop-band attenuation, and 0.15 rad pass-band edge frequency. 

 

5.2.2.1 Example 1 

 

In this example, we provide a comparison between proposed method [26] and the 

conventional method that depends on the structure of a cascaded direct form, also with the 

previous method published in [25], the filters used here are the VLPFs and the VHPFs. 

 

 

Figure 5.2 Evaluation results for 10th-order narrow-band VLPFs: (a) Magnitude responses 

and (b) Error responses for            
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Figure 5.3 Evaluation results for 10th-order narrow-band VLPFs: (a) Magnitude responses 

and (b) Error responses for              

 

Figure 5.4 Evaluation results for 10th-order narrow-band VLPFs: (c) Magnitude responses 

and (d) Error responses for              
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Figure 5.5 Evaluation results for 10th-order narrow-band VLPFs: (c) Magnitude responses 

and (d) Error responses for              

 

Figure 5.6 Evaluation results for 10th-order narrow-band VHPFs: (a) Magnitude responses 

and (b) Error responses for            
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Figure 5.7 Evaluation results for 10th-order narrow-band VHPFs: (a) Magnitude responses 

and (b) Error responses for              

 

Figure 5.8 Evaluation results for 10th-order narrow-band VHPFs: (c) Magnitude responses 

and (d) Error responses for              
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Figure 5.9 Evaluation results for 10th-order narrow-band VHPFs: (c) Magnitude responses 

and (d) Error responses for              

 

Figures 5.2–5.9 illustrate the evaluation results for the VLPFs and the VHPFs, 

respectively. In addition, the frequency responses to the proposed methods show good 

agreement with the ideal responses, for the VLPFs and the VHPFs. The previous approach 

[25] has lower accuracy than the proposed method for      and     , as shown in 

Figures 5.4 and 5.5 for VLPFs, and Figures 5.8 and 5.9 for VHPFS. Furthermore, the 

magnitude responses of cascaded direct form are less than our technique, as shown in 

Figures 5.2 and 5.3 for VLPFs, and Figures 5.6 and 5.7 for VHPFS. As well-known, the 

direct form realization is very sensitive to quantization effects. 

 

5.2.2.2 Example 2 

 

In this example, we compare our proposed method to the previous method based on 

Gramian-preserving frequency transformation [24] and the previous method published in 

[25], where the filters used are the VBPFs and VBSFs. 
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Figure 5.10 Evaluation results for 10th-order narrow-band VBPFs: (a) Magnitude 

responses and (b) Error responses for                   , and    . 

 

Figure 5.11 Evaluation results for 10th-order narrow-band VBPFs: (a) Magnitude 

responses and (b) Error responses for                   , and    . 
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Figure 5.12 Evaluation results for 10th-order narrow-band VBPFs: (c) Magnitude 

responses and (d) Error responses for                   , and    . 

 

Figure 5.13 Evaluation results for 10th-order narrow-band VBPFs: (c) Magnitude 

responses and (d) Error responses for                   , and    . 



Chapter 5                                                                                           Results and discussions 

 

75  

 

Figure 5.14 Evaluation results for 10th-order narrow-band VBSFs: (a) Magnitude 

responses and (b) Error responses for                   , and    . 

 

 

Figure 5.15 Evaluation results for 10th-order narrow-band VBSFs: (a) Magnitude 

responses and (b) Error responses for                   , and    . 
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Figure 5.16 Evaluation results for 10th-order narrow-band VBSFs: (c) Magnitude 

responses and (d) Error responses for                   , and    . 

 

Figure 5.17 Evaluation results for 10th-order narrow-band VBSFs: (c) Magnitude 

responses and (d) Error responses for                   , and    . 
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Figures 5.10-5.17 depict the corresponding assessment findings for VBPFs and 

VBSFs. Also shown are the frequency responses of the suggested approaches and the ideal 

frequency responses. For all VDFs, The results in the proposed method are highly in 

agreement with the ideal method, In addition, the previous technique [25] is less precise 

than the one provided for   = 2 and     as shown in Figures 5.12 and 5.13 for VBPFs, 

Figures 5.16 and 5.17 for VBSFs. In addition, Figures 5.10 and 5.11 for VBPFs, and 

Figures 5.14 and 5.15 for VBSFs illustrate that the approach based on Gramian-preserving 

frequency transformation [24] adjusts only the central frequency with fixed bandwidth.  

 

   Despite the fact that the large value of the approximation parameter   has no effect 

on the computational complexity of      in [25], it remains a serious concern since 

performance deterioration is associated with reduced accuracy in approximating     , as 

shown for the VBPFs and VBSFs. This recognized disadvantage is a result of the 

Maclaurin series, but it may be addressed by using the Taylor approximation series to get 

the square root. As shown in these cases, the approximation parameter   is not specified 

and yields a high-precision approximation of     . These results demonstrate the efficacy 

of our suggested tuning precision method for limited word lengths, including high-order 

and narrow-band VDFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5                                                                                           Results and discussions 

 

78  

5.3 Conclusion 

 

In this chapter, we presented many examples to compare the previous methods and 

our proposed method. The results showed that our method is better than other methods. A 

series approximation incorporating the negative binomial and Taylor series approximations 

was used. The parameters   and   may be used to modify the accuracy of the inverse 

matrix and square root approximations. Therefore, this method delivers great tuning 

accuracy regarding the finite word length for all types of VDFs. 
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General conclusion 

 
A fundamental aspect of signal processing is filtering. With the aid of computer 

programs performing filter design algorithms, designing filters can be done relatively 

quickly. This modest research was based on the design of IIR digital filters using series 

approximations. 

 

This work has reviewed recent research activities on VDFs, focusing on the 

approximation problem, the realization problem, and the applications of adaptive filtering. 

The results given in this thesis are based on the state-space representation, which has 

revealed many useful properties with respect to the performance of filters dominated by the 

internal properties and the input-output relationship. In particular, the Gramian-preserving 

frequency transformation is very attractive for designing and synthesizing high-

performance filters. Using this new frequency transformation, we have presented variable 

digital filters that retain high performance regardless of the frequency characteristics 

change. The proposed method is based on the binomial series approximation and the 

Taylor series approximation to the state-space formulation of frequency transformations. 

This approach has enabled the state-space VDFs to be simultaneously realized without 

needing the inverse matrix and the square root. 

 

The conventional state-space VDFs require restrictions on the transfer functions, 

state-space representations and tuning characteristics, whereas the proposed method is free 

from such restrictions. In addition, in the proposed method, the approximation accuracy 

can be easily controlled by the parameters   and  , leading to high-performance VDFs 

concerning both the approximation error and the finite wordlength effects. As discussed in 

the last chapter. 

 

A low-pass, high-pass, band-pass, and band-stop IIR digital filter design examples 

are considered to investigate the filter's performance with the new method and compare the 

proposed methods' performance. A comparison was made with VDFs based on Gramian 

frequency transformation, cascade direct form structure, and other proposed methods. The 
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approximation results are better than those of other recent methods. Furthermore, this 

approach achieves good performance with high tuning accuracy concerning the finite 

wordlength effect for all types of VDFs. 

 

Finally, since many results based on the state-space representation are reported for 

two-dimensional frequency transformations [31], applying these results to VDF theory 

may yield high-performance two-dimensional state-space VDFs. Furthermore, the 

proposed VDFs may be applied to the adaptive band-pass/band-stop filtering [21], leading 

to the new adaptive band-pass/band-stop filters that significantly improve the performance 

with respect to the finite wordlength effects. 
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