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ABSTRACT

This thesis provides a safe communication system based on optimal sliding mode
step-by-step observers and fractional-order chaotic Chua’s systems. On the emitter
side, a fractional-order chaotic system is used as the drive system to create the en-

crypted message signal. The input secret message is modulated in the chaotic dynamics
by insertion rather than being directly inserted into the chaotic signal on the transmis-
sion line. On the receiver side, a step-by-step fractional-order chaotic observer subject to
unidentified input is suggested as the response system to obtain robust synchronization
between the emitter and the receiver. The parameters of the sliding mode observer have
been selected optimally using two optimization algorithms: the well-known intelligent
optimization Grey-Wolf Optimizer (GWO) and the artificial hummingbird algorithm
(AHA). We then made a comparison between both of them in order to achieve the best
parameters. After the chaos, synchronization is attained. On the receiver side, the state
variable estimation is successfully obtained, which leads to the precise reconstruction of
the confidential information containing a signal, plain text, and voice message.
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GENERAL INTRODUCTION

Chaotic systems are dynamic systems that exhibit complex and unpredictable behavior,

even though they are governed by deterministic equations. These systems have been

extensively studied in various fields of science and engineering, including physics, biology,

economics, and engineering. The concept of chaos was first introduced in the 1960s by

the mathematicians Edward Lorenz and Benoit Mandelbrot. Since then, chaotic systems

have been studied extensively, and their applications have been explored in various

fields, including physics, chemistry, biology, engineering, and economics. One of the

key features of chaotic systems is their sensitivity to initial conditions, known as the

butterfly effect. This means that even small differences in the initial conditions of the

system can lead to significantly different outcomes. This sensitivity to initial conditions

makes it difficult to predict the long-term behaviour of chaotic systems. Furthermore,

chaotic systems often exhibit a periodic and irregular behaviour, making them difficult

to analyze using traditional mathematical techniques. However, chaotic systems can be

studied using methods from nonlinear dynamics, which have been developed specifically

for this purpose. Some notable works on chaotic systems include: [7, 44, 72, 88, 107].

Chaotic systems continue to be an active area of research in science and engineering,

with new applications and insights being discovered regularly. Their unpredictable and

complex behavior makes them useful in various areas of research, such as cryptography,

signal processing, and control theory.

In the other hand Fractional calculus has been shown to be a powerful tool for

modeling and analyzing complex systems with non-integer dynamics, such as chaotic

systems. Fractional order differential equations have been used to describe a wide range

of chaotic phenomena, including strange attractors, bifurcations, and intermittency.

Some notable books on the use of fractional calculus in chaotic systems include:[99, 114].

One of the advantages of using fractional calculus in the study of chaotic systems is

its ability to capture memory effects, which are often present in physical systems. Tradi-

tional integer-order models do not capture these memory effects, leading to inaccurate

1
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predictions and limited understanding of the system dynamics [4, 115] Fractional calcu-

lus has been applied to various types of chaotic systems, including discrete-time systems,

continuous-time systems, and fractional-order systems. For example, fractional calculus

has been used to study chaotic dynamics in systems such as the Lorenz system, Rössler

system, and the Chua system, among others. Furthermore, fractional calculus has been

used to develop new control strategies for chaotic systems, such as chaos synchronization

and chaos control. These strategies have been shown to be effective in stabilizing chaotic

systems and suppressing the unpredictable behavior associated with chaos.

Secure communication is essential for protecting sensitive information, and chaotic

systems have been shown to be effective in providing a secure communication channel.

However, traditional chaotic systems with integer-order dynamics have some limitations,

such as being susceptible to attacks and having limited security capabilities. Fractional-

order chaotic systems have been proposed as a solution to these limitations.

Fractional order chaotic systems have gained considerable attention in recent years

due to their ability to generate complex and unpredictable dynamics. This has led to

their application in various fields, including communication, control, and cryptography.

In particular, fractional order chaotic systems have shown promise in the field of

security due to their potential use in encryption and decryption algorithms. The chaotic

behavior of these systems can provide a high level of randomness and unpredictability,

which is essential for secure communication and data protection.

Furthermore, Fractional-order chaotic systems have been applied in various secure

communication schemes, such as encryption, decryption, and key distribution. Overall,

the use of fractional-order chaotic systems in secure communication has shown great

potential in providing a more secure and robust communication channel. The complex

dynamics of these systems and their ability to be controlled using fractional calculus

make them a valuable tool for designing secure communication protocols.

2
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LITERATURE OF FRACTIONAL-ORDER CHAOTIC SYSTEMS

AND ITS APPLICATIONS IN SECURE TRANSMISSION

SCHEME

1.1 Introduction

Among the nonlinear dynamical systems, the chaotic system has gained many authors’

interest in the last thirty years. Due to its various benefits, for instance, the ability to

avoid the hypotheses related to the condition of the system, the sensitivity to initial

conditions, and being a deterministic system that exhibits complex and unexpected

behaviour, these significant advantages stimulated the researchers to introduce and

study several chaotic systems, Some of the most well-known systems are the unified

chaotic system [90], Lorenz system [88], Chen system [21], Rössler system [125], and the

Lü system [89], the chaotic attitude of these effective systems are helpful in different

fields such as business [113], electrical circuits [86], medicine [32], mathematics [87],

biology [14], chemical reactors [71], secure communication [155], and etc.

On the other hand, there has been a great deal of interest in studying the fractional cal-

culus, which is the non-integer order; it has received more attention due to its precision

compared to the integer one. Fractional calculus investigated that different applications

can be modeled elegantly and precisely with the help of fractional derivatives such as the

earthquakes, so the Researchers and the physicians depended on the strategy of using

the chaos system in fractional-order. The pioneers of this significant phenomena were

3



CHAPTER 1. LITERATURE OF FRACTIONAL-ORDER CHAOTIC SYSTEMS AND ITS
APPLICATIONS IN SECURE TRANSMISSION SCHEME

Grigorenko and Grigorenko in 2003 [42] then it spread out to several works like Lorenz

system [42], Chen system [73], Chua’s circuit [48], Duffing system [38], Lü system [91],

financial system [143], and so on.

Nowadays, the secure communication branch has become a worldwide aim in encrypting

images, audio, and other data, because of the necessity for many functions such as

online banking, instant messaging, military and architectural plans, the recording of

conferences, and business events. Among the numerous solutions, the fractional-order

chaotic system is considered the most effective one. The chaotic system utilizes the

synchronization between two similar chaotic systems, "emitter/receiver," with various

primary conditions. This achievement made the secret information possible to recover

on the receiver side after being encrypted in the emitter. Recently, the synchronization

issue has become a challenging subject. therefore, many methods have been proposed

by the researchers, some of them are the fractional extended Kalman filter proposed

in (2009) [64], Lyapunov based methods in (2014) [78], sliding mode observer in (2013)

[33], the impulsive control in (2016) [76] and the adaptive control in (2016) [15]. In the

current paper, we exhibit the secure communication system’s literature review using the

fractional-order chaotic systems.

1.2 Chaotic system and its application in secure
communication

Toshimitsu Ushio (1996)[139] suggested two control techniques for synchronising two

subsystems, which are referred to as S1 and S2, respectively. S1 refers to the master

system, while S2 refers to the slave system. The use of these principles results in the

construction of a safe half-duplex communication system, which means both sides are

able to speak with one another, but not at the same time; instead, communication can

only occur in one direction at a time.

Hector Puebla and Jose Alvarez-Ramirez (2001)[118] showed a global procedure

to modulate the information signals using low-dimensional chaotic oscillators. The

encrypting/decrypting method [111] is set up on the inverse system masking (ISM) tech-

niques. The secret message is recovered via a feedback approximation to the encoder

inverse[6, 117]. Using hyperchaotic signals was the principle thought to inconvenience

4



1.2. CHAOTIC SYSTEM AND ITS APPLICATION IN SECURE COMMUNICATION

the data signal retrieving by chaotic attractor rebuilding methods (relayed on the theorem

of Taken)[66]. Numerical examples of continuous systems were proposed To represent

the fundamental thought.

Z Li, K Li, C Wen, and YC Soh (2003)[81] proposed a digital chaotic secure communi-

cation system using the idea of the magnifying glass in order to increase the sensitivity

of the cryptosystem. The synchronization of the system is based on the impulsive control

strategy [80, 82] for synchronizing two similar chaotic systems established in the encryp-

tion and decryption where the extent of impulsive intervals are piecewise fixed, which

makes it complicated for an outsider to detect the synchronization installment [50, 144].

The equations of Chua‚Äôs circuit are given as :

(1.1)



dx1(t)
dt

= ka(x2 − x1 − f (x1))

dx2(t)
dt

= k(x1 − x2 + x3)

dx3(t)
dt

= k(−βx2 −γx3)

f(x) is the nonlinear characteristic of Chua‚Äôs diode in Chua‚Äôs circuit given by :

(1.2) f (x)= m1x+ 1
2

(m0 −m1) {| x+1 | − | x−1 |}

M Chen, D Li, and A Zhang (2004)[22] presented a universal nonlinear state-observer

for a class of universal chaotic systems to recognize a robust strong chaotic synchroniza-

tion and the followed approach was easy alive and universal [41, 145], and it showed a

satisfying result in secure communication [30, 43].

XY Wang and MJ Wang (2009)[142] presented a new scheme for secure communi-

cation stand on chaotic modulation method, this technique is depended on observer

identification [128] instead of synchronization [40, 58, 132], this observer is designed

to recognize the parameter and rebuild the information signal which is illustrated in

the parameter of chaotic Liu system. Lyapunov exponents spectrum of chaotic system

[121]has been used to analyze the parameter range to guarantee chaos. Some signals

are used as examples to exhibit the efficiency and feasibility of the process.

5



CHAPTER 1. LITERATURE OF FRACTIONAL-ORDER CHAOTIC SYSTEMS AND ITS
APPLICATIONS IN SECURE TRANSMISSION SCHEME

The chaotic system that has been used is Liu‚Äôs System, and the differential equations

that represented the system are [84]:

(1.3)



dx(t)
dt

=−ax(t)− ey2(t)

d y(t)
dt

= by(t)−kx(t)z(t)

dz(t)
dt

=−cz(t)+mx(t)y(t)

0
0.5

1
1.5

−4
−2

0
2

4

−1

0

1

x(t)y(t)

z(
t)

Figure 1.1: The Simulation of Liu’s system (1.3).

OM. Kwon, JH. Park and SM. Lee (2011)[69] presented a new synchronization scheme

of Lur’e systems [49, 151] for secure communication based on delay feedback control [17].

The encryption method was achieved by the methods of N-shift cipher and public key

[156]. A new delay-dependent synchronization criterion [63, 158] is built up using the

Lyapunov strategy and linear matrix inequality (LMI) formulation to obtain the stability

and reconstruction of the secret message.

Qu Shaocheng, Liu Di, and Wang Li (2011) [119] were the pioneers of the nonlinear

controller for hyper-chaotic Lorenz system based on Lyapunov stability theory, which

synchronized the emitter and the receiver. The transmitted signal is modulated in the

drive system on the transmitter, leading to an improvement in communications security.
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1.2. CHAOTIC SYSTEM AND ITS APPLICATION IN SECURE COMMUNICATION

The hyper-chaotic Lorenz system is defined as [141]:

(1.4)



ẋ = a(y− x)

ẏ= cx− y− xz+w

ż = xy−bz

ẇ =−kx

Xiaohui Xu (2011)[148] presented a new communication security scheme depending

on generalized function projective synchronization (GFPS) [35, 157], instead of function

projective synchronization (FPS) [26, 34, 36, 127]. On the emitter side, the secret mes-

sage is converted by an invertible function. Toward the chaotic system’s parameter, the

processed signal was modulated. The parameter and the controllers have been designed

to recognize GFPS of uncertain Liu chaotic systems and identify the receiver system’s

unknown parameter using the Lyapunov stability theory. The secret message can be

recovered successfully using the estimated parameter.

Jing Pan, Qun Ding, and Baoxiang Du (2012) [109] presented a progressed scheme

for chaotic masking for communication security depending on the Lorenz system. This

scheme could defeat the Lorenz system’s signal by changing some features to make it

more chaotic in both time and frequency domains.

Shutang Liu and Fangfang Zhang (2014) [104] designed a new scheme of communication

security complex coupled chaotic systems depending on complex function projective

synchronization (CFPS). The complex scaling functions were chosen due to their ar-

bitrariness and unpredictability. The chaotic system that has been used is a coupled

complex Lorenz system.

Figure 1.2: The block diagram of the proposed communication scheme [104].

7



CHAPTER 1. LITERATURE OF FRACTIONAL-ORDER CHAOTIC SYSTEMS AND ITS
APPLICATIONS IN SECURE TRANSMISSION SCHEME

Nie Chun Yan, Tian Hua, and Sun Hai Xin (2014) [105] proposed a new system for

secure communication that combines the synchronization theory and the fourth-order

hyper-chaotic system. In addition to producing the unexpected pseudo-random sequences

with this hyper-chaotic system.

Ammami Sonia, Djemai Mohamed, et al. (2015) [47] investigated the synchronization

of a unified chaotic system to encrypt several forms of information signals. Via the

Lyapunov theory, they confirmed the asymptotic convergence between the emitter and

the receiver.

Naderi Bashir and Kheiri Hossein (2016) [102] presented the application of the ex-

ponential synchronization of the chaotic system without linear term in communication

security, the convergence time was shorter because of the exponential stability mech-

anism while the security and synchronization were accomplished through convenient

robust controllers.

Israr Ahmad Muhammad Shafiq and M. Mossa Al-Sawalha (2018) [5] proposed a

novel strategy and scheme of the global exponential multi switching combination syn-

chronization (GEMSCS) within three unlike chaotic systems, two of them for the emitter

system and one for the receiver system. The Lyapunov theorem was applied to achieve

the global exponential stability of the synchronization error, which complicated the level

of the digital message and made the decryption process faster and more precise.

Adnan Javeed, Tariq Shah, and Attaullah. (2020) [53] They presented a novel tech-

nique to achieve secure communication using a chaotic oscillator generated by a second-

order differential equation OED. They formulated an algorithm to build a substitution

box utilizing this OED. In addition to proposing a lightweight process to encrypt images

using the duffing oscillation and the S-box to create confusion and diffusion in the cryp-

tosystem in an advanced way.

YJ Chen, HG Chou, WJ Wang, SH Tsai (2020)[25] presented a new synchronization of

multi-scroll Chen chaotic systems based on polynomial fuzzy control [45] for disturbance

refusal, in addition to keeping the performance into account and Inputs restraints. This

control [138] is performed according to sum-of-squares (SOS) [134, 137] that can also be

managed by the polynomial optimization Matlab toolbox SOSOPT.
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The Chen‚Äôs system is defined as :

(1.5)



dx(t)
dt

= a(y(t)− x(t))

d y(t)
dt

= (c−a)x(t)− x(t)z(t)+ cy(t)

dz(t)
dt

= x(t)y(t)−bz(t)

Van Nam Giap, et al. (2021)[103] proposed a new form of Lorenz chaotic system

by changing the original form into a Takagi-Sugeno (T-S) fuzzy model with two sub-

linear systems in order to decrease the cost of experimental equipment without affecting

the generalizability of master and slave system features. A new adaptive disturbance

observer (ADOB) with a fast convergence rate was presented for the synchronisation

system; this method was created to remove the perturbation values on both the master

and slave sides of the system. Furthermore, the transmitter and receiver systems of a

secure communication system are synchronized with the help of adaptive sliding-mode

control (ASMC).

Joseph Chang Lun Chan, et al. (2022)[19] proposed a secure communication scheme

based on chaotic systems on the transmitter side and a sliding-mode observer (SMO)

on the receiver side for purposes of estimating system states and synchronisation. The

encryption process is divided into two stages: first, using an N-cipher and encryption key

signal, and subsequently injecting the encrypted message into the chaotic dynamics of

the transmitter system. Instead of injecting the message directly into the chaotic system

on the transmitter side to encrypt the message. For further safety, the encryption key

is created separately from the transmitter’s status information. The proposed scheme

is developed to isolate the effects of the disturbances from the recovered messages. The

secret information was reconstructed using the decryption key signal and the recovered

encrypted messages (N-cipher).

Chih‚ÄëHsueh Lin, et al. (2022)[83]. Secure network-based video and audio streaming

is proposed using a novel cryptosystem-based, four-dimensional hyper-chaotic Lorenz

system. In order to get more and better random numbers, the 4-D hyper-chaotic Lorenz

system is used instead of the 3-D system. The SHA3 (Secure hash algorithm 3) method

is used to make randomness much better and to make synchronised dynamic key genera-

tors possible. With the synchronised dynamic key generators, the AES CFB (Advanced

Encryption Standard Cipher Feedback) algorithm is used to encrypt the secret message.

9
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The secret information is sent to the slave system through the public channel, where it

will be completely rebuilt using the dynamic random keys that are made at the slave

system at the same time. The 4D-LS system that has been used (1.6) is described as

follows:

(1.6)

ẋ1(t)=−ax1(t)+ax2(t)+λx3(t)

ẋ2(t)= dx1(t)+γx2(t)− x1(t)x4(t),

ẋ3(t)=−cx1(t)− x3(t)

ẋ4(t)= x1(t)x2(t)−bx4(t)

10
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1.3 Fractional-Order chaotic system and its
application in secure communication

A Kiani-B, K Fallahi,et al (2009)[64] investigated for the first time secure communication

using chaotic system with Fractional-order in order to increase nonlinearity and complex-

ity of the power spectrum. For data encryption, fractional-order Lorenz system has been

used. An extended fractional Kalman filter (EFKF) was used for the synchronization

and recovering the original message [126]. The results of fractional Lorenz system were

compared by numerical example to the integer one [67, 68].

Figure 1.3: The proposed scheme [64].

A Kiani-B, K Fallahi, et al. (2009) [64] investigated for the first time secure communi-

cation using the chaotic system with Fractional-order in order to increase nonlinearity

and complexity of the power spectrum. For data encryption, a fractional-order Lorenz

system has been used. An extended fractional Kalman filter (EFKF) was used to syn-

chronize and recover the original message [126]. The fractional Lorenz system results

were compared by numerical example to the integer one [67, 68].
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Y Xu, H Wang, et al. (2014)[149] Showed the synchronized of tow fractional-order

Lorenz-like chaotic system is established by Pecora and Carroll (PC) control method

[112] based on Laplace transformation theory [100]. A new cryptosystem technique for

the image was proffered depending on chaos synchronization [16, 110]. As a result, the

original image is well encrypted, and decrypted.

The equation of fractional-order Lorenz‚Äôs system is defined as [74] :

(1.7)


0Dq1

t x(t)=σ(y(t)− x(t))

0Dq2
t y(t)= x(t)(ρ− z(t))− y(t)

0Dq3
t z(t)= x(t)y(t)−βz(t)
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−40−2002040
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20
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x(t)y(t)
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Figure 1.4: The simulation outcome (1.7)

Xia Huang, et al. (2014)[51] investigated a novel encryption algorithm of color image

based on a fractional order hyper chaotic system. The secret keys include the parameters

and the initial conditions, while the image is encrypted using the XOR and shuffling

operations. As a result, this new study can resist the statistical attacks and it achieved a

higher security.

Luo chao (2015) [20] investigated A new method instead of synchronization, which is

the unsynchronised communication architecture, in order to guarantee better robustness
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and make the transmission errors able to be recognized in real-time and self-corrected. He

also presented a procedure with a high probability against the lack of a data-dependent

error management mechanism. The author used the fractional Order [106, 116] shifting

Chaotic system [64, 123] as a transmission signal generator to achieve a higher compli-

cation and non-linearity in both fields, time and frequency.

The fractional-order Chen‚Äôs system is defined as [92] :

(1.8)


0Dq1

t x(t)= a(y(t)− x(t))

0Dq2
t y(t)= (c−a)x(t)− x(t)z(t)+ cy(t)

0Dq3
t z(t)= x(t)y(t)−bz(t)
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Figure 1.5: (1.8)

Delavari Hadi and Mohadeszadeh Milad (2016) [28] presented a novel adaptive slid-

ing mode control (ASMC) method for finite-time synchronization between two Fractional-

order chaotic and hyper-chaotic systems [95], in addition to the presence of foreign

disturbances and system uncertainties. Stable synchronization [133] is achieved by

adequate conditions of the Lyapunov stability theorem. Relevant adaptive laws and

Particle Swarm Optimization (PSO) are used in order to estimate the unknown controller

parameters and optimize the parameters of the (ASMC), respectively.

13



CHAPTER 1. LITERATURE OF FRACTIONAL-ORDER CHAOTIC SYSTEMS AND ITS
APPLICATIONS IN SECURE TRANSMISSION SCHEME

(1.9)



dqx
dtq = a(x− yz)

dq y
dtq = by+ xz

dqz
dtq = z(c− x)+ xy

Mohammadzadeh Ardashir and Ghaemi Sehraneh (2017) [98] proposed a new scheme

of robust controller relayed on a novel self-evolving non-singleton type-2 fuzzy neural

network (SE-NT2FNN) in order to achieve the synchronization of the undetermined

fractional-order hyper-chaotic systems and estimating the unsure functions in the dy-

namic of the system.[8, 93].

Jia Hongyan, Guo Zhiqiang, et al. (2018) [54] discussed the chaotic behaviors in a

four-wing fractional-order system [56] based on frequency-domain [48] and time-domain

approach [31]. The chaos synchronization of the fractional-order system is implemented

by a novel analog circuit that has been planed. The synchronization is realized depending

on the control proposal of the observer in his previous work [55].

Shukla MK and Sharma BB (2018)[131] investigate a backstepping-based feedback

control strategy for synchronization of two similar fractional-order Rossler’s system in

master-slave configuration[131, 146], and also this strategy has been used widely for

stabilization[130]. Two signals have been transmitted, one for the message and the other

for the synchronization purpose and recover the original message.

The fractional-order Rossler‚Äôs system is defined as [73] :

(1.10)


0Dq1

t x(t)=−(y(t)+ z(t))

0Dq2
t y(t)= x(t)+ay(t)

0Dq3
t z(t)= b+ z(t)(x(t)− c)
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Figure 1.6: The simulation outcome (1.10)

Bettayeb Maamar, Al-Saggaf Ubaid Muhsen, and Djennoune Said (2018)[13] de-

signed a new step-by-step sliding mode observer [10] to obtain robust synchronization

of two fractional-order modified Chua‚Äôs systems and to recover the original message

infinite time. The encrypted and the synchronization signals are transmitted through

one channel.

Figure 1.7: The proposed secure communication scheme [13].

D-P Sergio M, M-G Rafael, et al. (2018)[29] proposed a new methodology for a class

of non-linear system depending on the fractional algebraic observability and defined the

degree of concealment to demonstrate the capacity of hiding a signal into the dynamic of
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a system. In addition to indicating where the message is settled so that it can be esti-

mated [101, 146], they introduced a closed-loop fractional-order differentiator developed

by the sliding mode process in order to obtain secure communication [27], the proposed

methodology helps to get the security in the presence of uncertainty.

Zouad Fadia, Kemih Karim, and Hamiche Hamid (2019) [161] presented a new

scheme of secure communication using the Chen fractional-order delayed chaotic system

under the receiver perturbations, this approach is developed, and the electronics circuit

is simulated with Multisim [61]. Using an H-infinity controller. achieved The synchro-

nization and recovering the transmitted signal. The secret message was injected in the

Chen fractional order’s dynamics that delayed the emitter side’s chaotic system.

Liu Jiaxun, Wang Zuoxun, et al. (2019)[85] wanted to make Secure Communication

of Fractional Complex Chaotic Systems (FCCS) possible. Hence, they used Fractional

Difference Function Synchronization (FDFS) [24] by following a specific method, which

is Extending the (DFS) to (FDFS) and investigating the general controller. In order to

validate the usefulness and benefits of (FCCS), a new protected communication system

(FDFS) was implemented. Four kinds of signals are transmitted, which include analog

signal [94], voice signal, and digital, in addition to proposing a new cryptosystem with

(FDFS) for image signal [59].

The fractional-order Genesio-Tesi‚Äôs system is defined as [57] :

(1.11)


0Dq1

t x(t)= y(t)

0Dq2
t y(t)= z(t)

0Dq3
t z(t)=−β1x(t)−β2 y(t)−β3z(t)+β4x2(t)
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Figure 1.8: The simulation outcome (1.11).

Li Ye, Wang Haoping, and Tian Yang (2019)[79] investigated a fractional-order adap-

tive non-singular terminal sliding mode control (FONTSMC). The synchronization of two

nonlinear fractional-order chaotic systems under the external disturbance was achieved

by (FONTSMC) method [23, 97]. In addition to get better performance of the controller,

they proposed terminal sliding mode (TSM)[153]. The Lyapunov theorem has been used

for analyzing the stability of the system. This method was applied to a dual-channel

secure communication system, and the simulation results guarantee the shortness in

the time of synchronization, and the secret message can be built successfully [75].

Ghiasi Amir Rikhtegar, Gharamaleki Mona Saber, et al. (2019)[39] presented a new

type of optimized time-delayed feedback control method which the Optimizing method

was based on particle swarm optimization method (PSO)[12, 60]. The primary purpose of

Using this controller is to stabilize [11] the chaotic behavior of fractional order electrical

oscillator [154] by adding a control signal to the chaotic system. The proposed method

was compared to the general (TDFC) and succeeded.

(1.12)


0Dq1

t x(t)= y(t)

0Dq2
t y(t)= z(t)

0Dq3
t z(t)=−β1x(t)−β2 y(t)−β3z(t)+β4x2(t)
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Figure 1.9: the proposed secure communication scheme [79].

Abd El-Maksoud Ahmed J, Hassan, Bahy G, et al. (2019)[1] presented the FPGA

implementation of fractional order multi-scrolls [96] Tang, Yalcin[152] and Ozoǧuz[108]

chaotic systems . After comparing all the fractional-order (Yalcin, Ozoǧuz, Tang) chaotic

systems on FPGA [129] they found that Yalcin is the highest throughput. Therefore, is

used as the chaotic and the chaotic generator in a speech encryption algorithm, this

algorithm was introduced using stream ciphering blocks and its robustness was shown

by analysis technique.

Lahdir Mourad, Hamiche Hamid, et al. (2019) [70] investigated a new cryptosystem

for image which is compression and encryption using SPIHT coding-decoding [46, 147]

and fractional-order chaotic respectively. considering that it is a fast technique for image

compression and more complexity to the cryptosystem. The synchronization was achieved

by the basic Parallel processing BPP method. The results show that the encryption and

decryption of the image were successfully achieved.
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Karthikeyan Rajagopal, Ali Durdu, et al. (2019) [120] the Adams-Bashforth-Moulton

algorithm was used to derive a new scheme of synchronization for the fractional-order

multi scroll system. So they proposed a multi scroll attractor and were able to control the

number of scrolls by proper choice of the nonlinear function. The Lyapunov exponents

of the proposed scheme are obtained to ensure the chaotic behavior of the system. This

system has many real-time applications like image and voice encryption, random number

generators, and so on.

Li Rui-Guo and Wu Huai-Ning (2019)[77] Investigated a synchronization based on

fractional-order chaotic systems in parameter uncertainty and disturbance. This process

went by designing a feedback controller using the adaptive control method and the frac-

tional calculus theory. In addition to providing a policy of optimization to the controller,

then they improved the quantum particle swarm optimization (QPSO) algorithm by in-

troducing an interval estimation strategy to it then applying it to optimize the controller

parameters. As a final step, they offered a feedback mechanism with the encrypted signal

in secret communication.

Ismail Samar M, Said Lobna A, et al. (2020)[52] investigated a novel image encryp-

tion algorithm without any data loss based on chaotic maps and edge maps to add extra

degrees of freedom to the system and offer fewer correlation coefficients, respectively

[18]. Using fractional-order edge detection filters [160] in order to get better noise per-

formance over the conventional integer filter. The system’s flexibility can be used with

different edge detectors and suitable for medical imaging security. This algorithm has

been compared with other existing cryptosystems.

Ayub Khan, Lone Seth Jahanzaib, and Pushali Trikha (2020) [62] introduced a

novel 4-D fractional-order chaotic system that has been synchronized with its parallel

systems in dislocated phase and anti-phase synchronization by building non-linear

control functions [150]. Consider the novel fractional-order chaotic system as (1.13):

(1.13)



Dqz1 = az2 −az1 + z3z4

Dqz2 = z1(a− z3)− z2 + z1

Dqz3 = z1z2 −bz3 +|z3|
Dqz4 = z2z3 − cz4
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1.4 Conclusion

In this chapter, the literature review on the secure communication system using the

chaotic system and the fractional-order chaotic system has been illustrated due to the

numerous researchers that have been trying to develop the application of the chaotic

system in this field (communication security). In addition to the fractional calculus that

received more attention, especially with the chaotic system, due to its precision and

sensitivity, this review explains that most of the studies achieved recently in secure

communication are depending on the fractional-order chaotic system.
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2
FUNDAMENTALS OF DYNAMICAL SYSTEMS AND CHAOS

BASED FRACTIONAL-ORDER

2.1 Introduction

Dynamic systems and chaos theory are fascinating fields that have revolutionized the

way we think about complex systems in the natural world. These disciplines use mathe-

matical models to analyze and describe the behavior of systems that evolve over time,

such as populations of animals, weather patterns, or the motion of celestial bodies. By

understanding the underlying dynamics of these systems, scientists can make predic-

tions about how they will behave in the future and develop strategies for controlling or

manipulating them.

Dynamic systems theory is a broad field that encompasses many different types of

systems, from linear to nonlinear, deterministic to stochastic, and continuous to discrete.

One of the central concepts in dynamic systems theory is the idea of a state space, which

is a mathematical representation of all possible states of a system. By analyzing the

state space, scientists can gain insights into the long-term behavior of the system and

identify critical points or attractors, which are stable states that the system tends to

move towards.

Chaos theory, on the other hand, is concerned with systems that are extremely

sensitive to small changes in initial conditions. These systems are often nonlinear

and may exhibit seemingly random or chaotic behavior, even though they are entirely
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deterministic. Chaos theory explores the underlying mechanisms that give rise to this

behavior and provides tools for predicting and controlling it. One of the key concepts in

chaos theory is the idea of a strange attractor, which is a fractal object that describes the

long-term behavior of a chaotic system.

The study of dynamic systems and chaos theory has many practical applications,

from modeling and predicting the behavior of complex systems in biology, ecology, and

physics, to developing new technologies in fields like engineering, finance, and computer

science. These fields provide a deep understanding of the underlying principles that

govern complex systems and offer powerful tools for predicting and controlling their

behavior. By mastering the fundamentals of dynamic systems and chaos, we can unlock

a deeper understanding of the natural world and the complex systems that govern it.

Fractional calculus is a branch of mathematical analysis that extends the traditional

notions of differentiation and integration to non-integer orders. In recent years, it has

gained increasing interest in the field of dynamic systems, which studies the evolution of

complex systems over time. Fractional calculus provides a powerful tool for modeling

and analyzing systems that exhibit non-locality, long memory, and complex dynamics.

It has been applied to a wide range of fields, including physics, engineering, finance,

and biology, and has led to new insights into the behavior of complex systems. In this

introduction, we will explore the fundamentals of fractional calculus and its application

to dynamic systems.

2.2 Dynamical systems

Dynamical systems refer to mathematical models that describe how a system changes

over time. These systems can be used to represent a wide range of phenomena, from the

motion of planets to the behavior of populations or the dynamics of economic systems.

The behavior of dynamical systems is determined by the interaction of different variables

or parameters that influence the system’s evolution. Dynamical systems can be classified

as either continuous or discrete, depending on whether time is treated as a continuous or

a discrete variable. In continuous dynamical systems, the variables evolve continuously

over time, while in discrete systems, the variables change in discrete steps at specific

time intervals. One of the key concepts in dynamical systems theory is the notion of

attractors, which are states to which the system tends to evolve over time. Attractors

can be fixed points, limit cycles, or strange attractors, depending on the nature of the

system. Dynamical systems theory is used in many fields, including physics, engineering,
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biology, economics, and ecology, among others. It provides a powerful framework for

analyzing and understanding the behavior of complex systems and can help identify

patterns, predict future behavior, and control the evolution of the system.

2.3 Linear and nonlinear dynamical systems

Linear and nonlinear dynamical systems are two types of dynamic systems that differ in

how they respond to inputs and how they evolve over time. Linear dynamical systems

are systems that satisfy the principle of superposition, meaning that the output of the

system is proportional to the input. In other words, if the input is doubled, the output is

also doubled. Linear systems are characterized by a set of linear differential equations,

and their behavior can be analyzed using techniques such as Laplace transforms and

matrix algebra. Nonlinear dynamical systems, on the other hand, are systems that do

not satisfy the principle of superposition.

This means that the output of the system is not proportional to the input, and the behav-

ior of the system is often more complex and difficult to predict. Nonlinear systems can be

described by nonlinear differential equations, and their behavior can be analyzed using

techniques such as numerical simulation, bifurcation analysis, and chaos theory. One

important difference between linear and nonlinear systems is their stability properties.

Linear systems are generally more stable than nonlinear systems, and their behavior

can be more easily predicted and controlled. Nonlinear systems, on the other hand, can

exhibit a wide range of behaviors, including chaos, bifurcations, and multiple steady

states, making them more challenging to analyze and control. Overall, both linear and

nonlinear dynamical systems have their own unique characteristics and applications.

Linear systems are often used in control systems and signal processing, while nonlinear

systems are used in areas such as chaos theory, biology, and economics. Understanding

the behavior of both types of systems is crucial for advancing our understanding of the

natural world and developing new technologies.

2.4 Continuous time and discrete time systems

Continuous-time and discrete-time systems are two types of dynamical systems that

differ in the way they model the evolution of a system over time. A continuous-time

system represents a system in which the state changes continuously over time. The

system is modeled by a set of differential equations that describe the rates of change of
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the system’s state variables with respect to time. Examples of continuous-time systems

include physical systems such as the motion of a pendulum, electrical circuits, and

chemical reactions. On the other hand, a discrete-time system represents a system in

which the state changes only at specific time instances. The system is modeled by a

set of difference equations that describe how the state of the system changes from one

time step to the next. Examples of discrete-time systems include digital filters, digital

signal processing, and computer algorithms. Both continuous-time and discrete-time

systems can be analyzed using tools from dynamical systems theory, such as stability

analysis, bifurcation analysis, and Lyapunov stability analysis. However, the analysis

techniques used for these systems differ, with continuous-time systems requiring the

use of calculus and differential equations, while discrete-time systems require the use

of difference equations and discrete mathematics. The choice between continuous-time

and discrete-time modeling depends on the nature of the system being studied and

the available data. Continuous-time modeling is often used when the system evolves

continuously over time and data is available at a high sampling rate, while discrete-time

modeling is used when data is only available at specific time instances or when the

system is inherently discrete, such as in digital signal processing.

2.5 Autonomous and non-autonomous dynamical
systems

Autonomous and non-autonomous dynamical systems are two types of mathematical

models used to describe the behavior of systems over time.

An autonomous dynamical system is a system that does not explicitly depend on

time. In other words, its behavior is determined solely by the current state of the system,

without any explicit reference to the time variable. Autonomous systems are often

represented by systems of ordinary differential equations of the form:

(2.1)
dx
dt

= f (x)

where x is a vector of state variables and f (x) is a vector function that describes

the system’s behavior. Autonomous systems are also sometimes called time-invariant

systems because their behavior does not change over time.

On the other hand, a non-autonomous dynamical system is a system that explicitly

depends on time. In other words, its behavior changes over time, and this change is
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explicitly described by a function of time. Non-autonomous systems are often represented

by systems of ordinary or partial differential equations of the form:

(2.2)
dx
dt

= f (x, t)

where x is a vector of state variables and f (x, t) is a vector function that describes the

system’s behavior as a function of both the state variables and time.

The distinction between autonomous and non-autonomous systems is important

because it affects the mathematical techniques used to analyze and control the sys-

tem. For example, autonomous systems have certain mathematical properties, such

as the existence of invariant sets and Lyapunov stability, that are not present in non-

autonomous systems. Non-autonomous systems can also exhibit time-varying behavior,

such as periodic or chaotic oscillations, that are not possible in autonomous systems.

In practice, many real-world systems can be modeled as either autonomous or non-

autonomous systems, depending on whether they exhibit time-invariant or time-varying

behavior. Engineers and scientists use a variety of mathematical tools and techniques

to analyze and control both types of systems, such as phase portraits, stability analysis,

bifurcation theory, and numerical simulations.

2.6 The behaviour of dynamical systems

The behavior of dynamical systems refers to how their states evolve over time, and how

they respond to changes in their inputs or initial conditions. The behavior of dynamical

systems can be classified into different types, depending on their stability, periodicity, or

complexity.

One common classification of dynamical behavior is based on the system’s equilib-

rium points or fixed points. An equilibrium point is a state where the system’s behavior

does not change over time, and it is characterized by a state vector where the system’s

derivative or rate of change is zero. Depending on the stability of the equilibrium point,

the system can exhibit the following behaviors:

1. Stable equilibrium: If the system’s behavior converges to the equilibrium point

when it is perturbed, the equilibrium point is said to be stable. This means that the

system returns to its original state after a disturbance or a small change in the initial

conditions.
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2. Unstable equilibrium: If the system’s behavior diverges from the equilibrium

point when it is perturbed, the equilibrium point is said to be unstable. This means that

the system moves away from its original state after a disturbance or a small change in

the initial conditions.

3. Semi-stable equilibrium: If the system’s behavior converges to the equilibrium

point along some trajectories and diverges along others, the equilibrium point is said to

be semi-stable.

Another important classification of dynamical behavior is based on the system’s

periodicity or oscillations. A periodic or oscillatory system exhibits behavior that repeats

over time, with a fixed or variable period. Depending on the amplitude and stability of

the oscillations, the system can exhibit the following behaviors:

1. Limit cycle: If the system’s oscillations are stable and converge to a fixed periodic

orbit, the system is said to exhibit a limit cycle.

2. Chaotic behavior: If the system’s behavior is sensitive to initial conditions and

exhibits complex, unpredictable, and non-repeating patterns over time, the system is

said to exhibit chaotic behavior.

3. Quasi-periodic behavior: If the system’s behavior is not periodic but can be

decomposed into a combination of two or more periodic oscillations with incommensurate

frequencies, the system is said to exhibit quasi-periodic behavior.

Overall, the behavior of dynamical systems can be very rich and complex, and it

can exhibit a wide range of patterns, including steady states, oscillations, bifurcations,

chaos, and other nonlinear phenomena. Understanding and predicting the behavior of

dynamical systems is an important task in many fields, including physics, engineering,

biology, economics, and social sciences.

2.7 Attractors

In dynamical systems, an attractor is a subset of the system’s state space that the

system tends to approach or "attract" over time, regardless of its initial conditions or
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perturbations. An attractor can be a point, a curve, a surface, or a higher-dimensional

object that represents a stable state or a pattern of behavior in the system.

The behavior of a system near an attractor can be characterized by its stability

and its basin of attraction. The stability of an attractor refers to the tendency of the

system’s trajectories to converge to or remain in the attractor’s vicinity, while the basin

of attraction is the set of initial conditions that lead the system to the attractor.

Attractors can be classified into different types, depending on their geometry and the

system’s dynamics. Some common types of attractors are shown in Fig 2.1 and include:

Fixed point or point attractor: A fixed point is an attractor that corresponds to a

stable equilibrium point in the system’s state space. The system tends to approach the

fixed point and remain there indefinitely.

Limit cycle or periodic attractor: A limit cycle is an attractor that corresponds to

a stable periodic orbit in the system’s state space. The system tends to oscillate around

the limit cycle with a fixed or variable period.

Strange attractor: A strange attractor is a fractal or chaotic attractor that exhibits

complex and non-repeating behavior in the system’s state space. The system’s trajectories

converge to the attractor, but the attractor has a complex and irregular geometry that

cannot be described by a simple equation.

Torus attractor: A torus attractor is a type of strange attractor that exhibits complex,

non-repeating behavior in the state space of a dynamical system. It has a torus-like

geometry, with two or more independent frequencies of oscillation that are not necessarily

harmonically related.

The concept of attractors is widely used in many fields of science and engineering,

including physics, biology, ecology, economics, and computer science. Attractors can

provide insight into the long-term behavior and stability of dynamical systems, and they

can be used to predict the system’s future behavior, control its dynamics, or optimize its

performance.
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Figure 2.1: Different types of attractors constructed [2].

2.8 stability of dynamical systems

Stability of dynamical systems refers to the behavior of a system over time and how

it responds to small changes or perturbations in its initial conditions. A system is

considered stable if it remains close to its initial state after a small perturbation, whereas

an unstable system diverges rapidly from its initial state.

There are several types of stability that can be used to describe the behavior of a

dynamical system:

1. Lyapunov stability: A system is Lyapunov stable if it remains bounded in a
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small neighborhood around its equilibrium point over time, even if it is subject to small

perturbations. This type of stability is named after Russian mathematician Aleksandr

Lyapunov, who developed a criterion for determining the stability of a dynamical system

based on the sign of the derivative of a Lyapunov function.

2. Asymptotic stability: A system is asymptotically stable if it returns to its steady-

state or equilibrium point over time, regardless of its initial conditions. In other words,

if the system is disturbed from its equilibrium, it will eventually converge back to the

equilibrium point as time goes to infinity.

3. Exponential stability: A system is exponentially stable if the perturbations decay

exponentially fast to zero as time goes to infinity. This type of stability is commonly used

in the analysis of linear time-invariant systems.

4. BIBO stability: A system is BIBO (bounded input-bounded output) stable if,

for any bounded input signal, the output of the system remains bounded. This type of

stability is commonly used in the analysis of linear time-invariant systems.

5. Input-output stability: A system is input-output stable if its output remains

bounded for any bounded input signal. This type of stability is commonly used in the

analysis of nonlinear systems.

6. Conditional stability: A system is conditionally stable if its stability depends

on the values of its parameters or initial conditions. For example, a system may be

asymptotically stable for some values of its parameters but unstable for others.

7. Unstable: A system is unstable if it does not return to its equilibrium point over

time or if it diverges from its initial conditions. An unstable system can exhibit chaotic

or explosive behavior, which can be difficult to predict or control.

Stability is an important concept in many fields, including control theory, signal

processing, and physics. The study of stability is an important topic in dynamical systems,

as it allows us to predict the long-term behavior of a system and design control strategies

to stabilize or manipulate the system’s dynamics.

2.8.1 Stability in the sense of Lyapunov

Lyapunov stability is a concept used in the analysis of dynamic systems, which describes

how small perturbations to the system evolve over time. A system is considered Lyapunov

stable if small perturbations to its initial conditions result in a trajectory that stays

close to the original trajectory for all time. In this sense, Lyapunov stability provides a

measure of the system’s robustness to small disturbances.
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One classic example of Lyapunov stability is a simple pendulum. A pendulum is

said to be in a stable equilibrium when it is hanging vertically and undisturbed, and

an unstable equilibrium when it is balanced horizontally at the top of its swing. By

analyzing the potential energy of the pendulum as a Lyapunov function, we can show

that the stable equilibrium is Lyapunov stable and the unstable equilibrium is Lyapunov

unstable.

Another example is the Lorenz system, which is a set of three coupled ordinary

differential equations that describe the behavior of a simplified atmospheric convection

model. The Lorenz system exhibits chaotic behavior, with trajectories that are sensitive

to initial conditions. However, by analyzing the Lyapunov exponents of the system,

we can show that it is still Lyapunov stable in a statistical sense. That is, although

individual trajectories may exhibit chaotic behavior, the overall behavior of the system is

still predictable and stable over the long-term.

Lyapunov stability can also be used to analyze feedback control systems, where the

goal is to design a controller that stabilizes the system in the presence of disturbances.

By analyzing the Lyapunov function associated with the system and the controller, we

can design a controller that ensures Lyapunov stability of the closed-loop system, and

thus guarantee the robustness of the system to small perturbations.

Overall, Lyapunov stability is a fundamental concept in the analysis of dynamic

systems, and has wide-ranging applications in physics, engineering, and other fields.

It provides a powerful tool for understanding the behavior of complex systems, and

designing controllers that ensure stability and robustness in the face of disturbances.

Consider the following dynamical system:

(2.3) ẋ = f (x, t)

Where f is the nonlinear function.

Definition: The equilibrium point x∗ of system 2.3 is said to be:

- Stable if:

(2.4) ∀ε> 0,∃δ> 0 :
∥∥x (t0)− x∗

∥∥< δ⇒ ∥∥x (t, x (t0))− x∗
∥∥< ε,∀t > t0

- Asymptotically stable if:

(2.5) ∃δ> 0 :
∥∥x (t0)− x∗

∥∥< δ⇒ lim
t→∞

∥∥x
(
t, x (t0)− x∗

)∥∥= 0

- exponentially stable if:
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(2.6) ∀ε> 0,∃δ> 0 :
∥∥x (t0)− x∗

∥∥< δ⇒ ∥∥x (t, x (t0))− x2∥∥< a
∥∥x (t0)− x∗

∥∥exp(−bt),∀t > t0

- Unstable if: equation 2.4 is not satisfied.

2.9 Chaotic systems

Chaotic systems are a class of dynamic systems that exhibit complex and unpredictable

behavior, even though they may have relatively simple underlying rules. Chaotic systems

are characterized by their sensitivity to initial conditions and their non periodic, aperiodic,

and seemingly random behavior.

In chaotic systems, small differences in initial conditions can lead to vastly different

outcomes over time, making long-term prediction and control of the system difficult or

impossible. This sensitivity to initial conditions is known as the butterfly effect, named

after the idea that a butterfly flapping its wings in one location can potentially set off a

chain of events that leads to a tornado in another location.

Chaotic systems can arise in a wide range of contexts, from weather patterns and

fluid dynamics to economics and population dynamics. One of the most famous examples

of a chaotic system is the Lorenz system, which was introduced by meteorologist Edward

Lorenz in the 1960s as a simplified model of atmospheric convection.

The Lorenz system is a set of three nonlinear differential equations that describe the

behavior of a simplified model of the atmosphere:

(2.7)


dx/dt =σ(y− x)

d y/dt = x(ρ− z)− y

dz/dt = xy−βz

where x, y, and z are variables that represent the state of the system, and σ,ρ, and β

are parameters that control the behavior of the system.

The behavior of the Lorenz system is highly sensitive to initial conditions, and small

changes in the initial state can lead to wildly different trajectories over time. The system

also exhibits strange attractors, which are complex, non periodic patterns in the system’s

behavior that can be visualized using techniques like phase-space plots.

Chaotic systems like the Lorenz system are difficult to predict and control, but they

also have important applications in a range of fields, including weather forecasting,
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cryptography, and chaos-based communication systems. They also provide a rich source

of mathematical and computational challenges for researchers to explore.

2.9.1 Chaotic system characteristics

Chaotic systems are characterized by a number of distinctive properties that distin-

guish them from other types of dynamic systems. Here are some of the most important

characteristics of chaotic systems:

1. Sensitivity to initial conditions: Chaotic systems are highly sensitive to their

initial conditions, meaning that small changes in the starting state of the system can

lead to vastly different outcomes over time. This is often referred to as the butterfly

effect.

2. Nonperiodicity: Chaotic systems do not exhibit periodic behavior, meaning that

their trajectories do not repeat themselves over time. Instead, chaotic systems may

exhibit aperiodic or seemingly random behavior.

3. Boundedness: Chaotic systems are typically bounded, meaning that they do not

grow infinitely over time. However, the bounds of a chaotic system may be difficult to

predict or control.

4. Mixing: Chaotic systems are often said to exhibit mixing, meaning that the

different parts of the system become increasingly intertwined over time. This can lead to

a complex, tangled pattern of behavior that is difficult to analyze or predict.

5. Strange attractors: Chaotic systems often exhibit strange attractors, which are

complex, nonperiodic patterns in the system’s behavior that can be visualized using

techniques like phase-space plots. Strange attractors are often fractal in nature and can

have a rich, intricate structure.

6. Nonlinearity: Chaotic systems are typically nonlinear, meaning that the rela-

tionship between the system’s inputs and outputs is not a simple, linear one. This

nonlinearity is what gives rise to the complex, unpredictable behavior of chaotic systems.

Together, these characteristics make chaotic systems a fascinating and challenging

area of study, with important applications in fields ranging from physics and engineering

to economics and finance. While chaotic systems can be difficult to analyze and predict,

they also offer rich opportunities for exploration and discovery
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2.10 Conclusion

In conclusion, the use of chaotic systems in secure communication has shown promising

results due to the unique properties of chaos, such as unpredictability, sensitivity to

initial conditions, and high complexity. The fundamental principles of chaos theory, such

as the butterfly effect and the strange attractors, provide a basis for understanding the

dynamics of chaotic systems and their potential applications in secure communication.

Various techniques, such as chaos shift keying, chaos masking, chaos synchronization,

chaotic modulation, and chaotic encryption, have been proposed and tested for chaos-

based secure communication. However, the effectiveness of these techniques depends

on several factors, such as the selection of appropriate chaotic systems, synchronization

between the transmitter and receiver, and the level of noise and interference in the com-

munication channel. Overall, the integration of chaos theory into secure communication

provides a promising area for further research and development of robust and secure

communication systems.
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3
THE TRANSMITTER AND RECEIVER SYSTEMS

CONFIGURATION

3.1 Introduction

Fractional calculus is an area of mathematical analysis that has attracted the attention

of several academics due to its intriguing potential as an unique modelling tool in a

variety of scientific and engineering disciplines. Because it was found that modelling

experimental dynamics by fractional differential equations offers better performance and

greater results, which allows you to make powerful controllers. Among the many benefits

of this field, model generalisation and long-term memory stand out, and fractional order

modelling is superior when trying to establish a link between any two points. Data for the

case of interest can be obtained at any moment from a fractional order model. But with an

integer order model, we can only get information that applies to this situation. Choosing

the best operator for your model is based on the issue and the data that has been collected.

One of the most common definitions of a fractional derivative in use today is the one

suggested by Caputo. as well as studying several possibilities besides the anomalous

behaviour of dynamical systems in multiple fields like electrochemistry, viscoelasticity,

physics, and biology. Numerous useful applications of fractional calculus can be seen

in modern theory ([3, 37, 122]). Chaos theory is a difficult subject of mathematics

characterised by unexpected and complex behavior, which concentrates on deterministic

laws and underlying patterns that are hyper-sensitive to the initial conditions. Chaotic
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systems have become a topic of interest in the last three decades, such as the Lorenz

system, the Unified chaotic system, the Rössler system, the Lü system, and the Chen

system ([88–90, 124]. There are many applications for these highly effective systems that

benefit from their chaotic, unpredictable behavior [140], including commerce, electricity,

healthcare, math, chemical, and biological reactors, and security ([3, 14, 32, 71, 113, 155]),

and they have been applied successfully in a great number of control fields, among them

secure communication. Whereas the researchers found that combining the fractional

calculus with the chaos theory would give better results in secure communication because

the FOCS display much more complicated behavior. In this study, we used a powerful

tool, the optimal SBS-SMO; the use of the observer has unique characteristics, such

as generating a sliding movement on the synchronization error, which guarantees that

a sliding mode observer generates a collection of states estimates that are precisely

proportional to the transmitter’s actual output. Therefore, it is obvious that a lot of

effort was and is still dedicated to the development of the synchronization of chaotic

systems with fractional order using a sliding mode observer, and several papers have

been published as an outcome like ([28, 135]). This study proposed a novel method for

the security of communication employing two fractional-order Chua oscillators and an

ideal SBS-SMO to achieve synchronization between them. The message is included in

the chaotic system’s third-state derivative of fractional order (in the emitter section).

Because the receiving process is thought to be broken, a SBS-SMO is used to check if the

master and slave are in sync and get the secret information.

3.2 The secure communication system design

Chaotic systems have been used in the past to enhance secure communication systems

due to their inherent properties of unpredictability, sensitivity to initial conditions,

and nonlinearity. The idea is to use a chaotic system as the basis for generating a

secret key, which can then be used for encryption and decryption of messages. One way

to use a chaotic system for secure communication is through a process called chaos

synchronization. In this process, two chaotic systems are coupled together in such a way

that they synchronize their chaotic behavior. One of the chaotic systems is held by the

sender, and the other is held by the receiver. By synchronizing the two systems, a shared

secret key can be generated that can be used for encryption and decryption of messages.

Another way to use a chaotic system for secure communication is through a process

called chaotic masking. In this process, the message to be transmitted is combined with

36



3.2. THE SECURE COMMUNICATION SYSTEM DESIGN

a chaotic signal generated by a chaotic system. The resulting signal is then transmitted

over the communication channel. At the receiver end, the chaotic signal is removed

from the transmitted signal, revealing the original message. Both chaos synchronization

and chaotic masking can be used to enhance the security of a communication system.

However, it is important to note that the security of the system depends on the complexity

and randomness of the chaotic system used. Therefore, it is important to carefully choose

a chaotic system that meets the necessary security requirements. Additionally, it is

important to ensure that the communication channel used is also secure and cannot be

easily intercepted by an attacker.

The suggested system is composed of two components, the transmitter where the

encryption process is done, and the receiver where the decryption process happens. The

three state variables x(t), y(t) and z(t) are used in the transmitter part and the hidden

message m(t) inserted through the third state variable z(t) of the dynamic system, the

first state variable is the driving signal y(t), which will be delivered from the master to

the slave Y (t)= x(t). At the slave side, the synchronization must be achieved between

the emitter and the receiver in order to rebuild the secret information. An attractive

approach to chaos synchronization based on the concept of observer design has been

introduced by [? ]. In this theses, a novel plan for synchronizing two fractional-order

chaotic system based on an optimal step-by-step sliding mode observer in order to provide

a safe communication process. the original information m(t) is recovered successfully

in the receiver section by the estimate information m̂(t) in finite period of time. Fig 1

shows the general idea for the secure communication scheme, and the proposed secure

communication scheme in 3.2.
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Figure 3.1: The secure communication scheme.

Figure 3.2: The proposed secure communication scheme.

3.3 The fractional-order Chua’s chaotic oscillator

Chua’s oscillator is a well-known chaotic system that was first introduced by Leon O.

Chua in 1986. The system is composed of a set of nonlinear differential equations that

exhibit chaotic behavior. The fractional-order Chua’s chaotic oscillator is an extension
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of the original Chua’s oscillator, where the order of differentiation is not limited to

integer values. Chua‚Äôs oscillator is an extremely famous system due to its simple

structure and chaotic attitude, and many other chaotic systems have been enlarged with

non-integer order derivative [13]. Fig 2 represents circuit of the fractional-order Chua’s

system that was proposed by [136], The piecewise-linear nonlinearity is replaced with an

appropriate cubic nonlinearity in this circuit, which differs from the usual one. resulting

in remarkably similar behavior. The three factors represented by an inductor L which is

the real coil and two super-capacitors C1 and C3, R is a constant resistor, i0 is a biasing

constant current source, I controlled current source, and NR is the nonlinear resistor.

Figure 3.3: Circuit of the fractional-order Chua’s system.

Definition 01. Caputo presented a novel definition of the derivative of fractional

order, which is used here and described as follow [65]:

(3.1) Daf(x)= 1
Γ(1−α)

∫ t

0
(t−π)−α

df(τ)
dτ

dτ

The following equation indicates the mathematical description of the circuit.

(3.2)


C1Dq1 x(t)=−y(t)+αx2(t)+βx3(t)

LDq2 y(t)= x(t)−R y(t)− z(t)
C3Dq3 z(t)= i0 −γy(t)

where the fractional order of the system is qi,0 < qi < 1 and qi ∈R+, i = 1,2, . . . ,n.

After division, we obtain:
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(3.3)


Dq1 x(t)= 1

C1
[−y(t)+αx2(t)+βx3(t)]

Dq2 y(t)= 1
L [x(t)−R y(t)− z(t)]

Dq3 z(t)= 1
C3

[i0 −γy(t)]

3.4 The transmitter system configuration

Fractional calculus can be applied to a variety of electric and magnetic phenomena.

Chua’s oscillator is an extremely famous system due to its simple structure and chaotic

attitude, and many other chaotic systems have been enlarged with non-integer order

derivatives. The transmitter system is described as follow:

(3.4)


Dq1 x(t)= δ1

[−y(t)+αx2(t)+βx3(t)
]

Dq2 y(t)= δ2[x(t)−R y(t)− z(t)]
Dq3 z(t)= δ3

[
i0 −γy(t)

]
With δ1 = 1

C1
,δ2 = 1

L ,δ3 = 1
C3

.

D[q] = [Dq1 Dq2 . . .Dqn]T represents the order fractional differentiation vector operator

qi ∈R+, i = 1,2, . . . ,n. If all the orders of the derivative qi are equal, which is qi = q, i =
1,2, . . . ,n, system is said to be of equivalent fractional order (commensurate) if and only

if the fractional orders are equal. take the example of commensurate fractional-order

system which is defined as:

(3.5)
Dqx(t)= f (x(t))+ g(x(t))u(t)

y(t)= h(x(t))

The table 3.1 provides a representation of the parameters that have been used in the

transmitter system, while the state variables’ initial conditions (x,y,z) are set at zero.

Figure (??) illustrated the states time responses of (x, y, z) and (3.4) the three-dimensional

space of the chaotic attractor in (x,y,z) respectively.

Table 3.1: Fractional-order chaotic system values.

Parameters q1 = q2 = q3 α β γ δ1 δ2 δ3 R i0
Value 0.9 1.5 -1 0.0035 100 1 1 0.1 0.0005
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Figure 3.4:
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Figure 3.5: a
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The secret information m(t) is injected into the third derivative z(t) rather than m(t)
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in order to enhance safety of the communication system, and it will be sent as a bias

current i0 in the dynamic of the state. So, the master system model will be written as.

(3.6)


Dq1 x(t)= δ1

[−y(t)+αx2(t)+βx3(t)
]

Dq2 y(t)= δ2[x(t)−R y(t)− z(t)]
Dq3 z(t)= δ3

[
i0 +m(t)−γy(t)

]
Remark 1: The secret message m(t) is considered as an unknown in order to be estimated

and can be considered as a signal, voice, or image; in the next chapter, interactive

examples have been investigated.

When this parameter is available, with q1 = q2 = q3 = q, the system will be described

as:

(3.7)

{
Dq(x, y, z)(t)= f (x, y, z)+ g(x, y, z)m(t)

Y (x, y, z)= h(x, y, z)

With

(3.8) g(x, y, z)=


0

0

δ3


3.4.1 The Observability of the fractional-order chaotic system

The observability matrix is given as follows:

(3.9) OM =


dh
dfh

...

dn−1
f h


L f h indicated by:

(3.10) L f h = ∂ f (x, y, z)
∂(x, y, z)

h(x, y, z)
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ŸÑÿ•he nonlinear fractional-order system is giving as follows:

(3.11)

{
Dq(x, y, z)(t)= f (x, y, z)(t)

Y (x, y, z)= h(x, y, z)(t)

where

f (x, y, z)=


δ1

[−y+αx2 +βx3]
δ2[x−Ry−z]

δ3
[
i0 −γy

]
 , h(x, y, z)= x

Then, the observability matrix will be:

OM =


1 0 0

a −δ1 0

b c δ2


Where

a = δ1x(2α+3β)

b =−15β2δ1x4 +8αβδ1x3 +9βαδ1x2 + (
4αδ1 +3βδ1 y

)
x+ (δ2 +2αδ1 y) x

c = 3βδ1x2 +2αδ1x+δ2R

The determinant of the observability matrix is

|OM| =
∣∣∣∣∣ −δ1 0

c δ2

∣∣∣∣∣
Since δ1 ̸= 0 and δ2 ̸= 0 we find rank(OM)= 3 (Fullrank)

The system is completely observable.
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3.5 Step-By-Step Sliding Mode Oobserver model

SBS-SMO design for integer-order nonlinear systems typically follows a step-by-step

approach based on the injection of successive virtual inputs derived by employing (SBS-

SMO) of iterative first order ([9]). Our goal is the estimation of the secret message

m(t) and xi, i = 1,n. Similar to what was done with integer-order systems, the following

equations (3.12) explain how the measured output signal is used by the sliding mode

observer.

(3.12)

dq(x̂ j−1, ŷj−1, ẑ j−1)(t)
dt

= ρ j−1(x̂ j, ŷj, ẑ j)(t)+ψ j−1
(
Y (t), (x̃ j, ỹj, z̃ j)(t)

)
+E j−2µ j−1 sign

(
ẽ j−1

)
dq(x̂ j, ŷj, ẑ j)(t)

dt
= E j−1µ j sign

(
ẽ j

)
Where j = 2...(n−1)

(3.13) is a triangular representation of the commensurate fractional-order nonlin-

ear system. y(t) ∈ R is the output that was measured, m(t) ∈ R is the secret message,

nonlinear functions are denoted by the symbols a(x), b(x) and Ψi, i = 1,2, . . . ,n−1,. The

parameters ρ i ∈R+ are all non-zero constants. Consider that the system (3.13) is Bounded

Input Bounded State and b(x), a(x), and m(t) are bounded, i.e.

Assumption
1.|xi(t)| ≤ di, i = 1,n, |m(t)| ≤ Ms.

2.|a(x)| ≤ As, |b(x)| ≤ Bs and b(x) ̸= 0 for all x ∈D ⊂Rn.

(3.13)

dq(x j−1, yj−1, z j−1)(t)
dt

= ρ j−1(x j, yj, z j)(t)+ψ j−1(x j, yj, z j)(t))

dq(x j, yj, z j)(t)
dt

= a(x, y, z)+b(x, y, z)m(t)

Y (t)= x(t)

The terms µi are parameters that are only positive and developed to guarantee the

observer’s convergence. The secret message estimation is defined as follow:

(3.14) m̂(t)= b(x̃, ỹ, z̃)−1 (−a(x̃, ỹ, z̃)+E j−1µ j sign
(
ẽ j

)
The following are the definitions of the auxiliary variables (x̃i, ỹi, z̃i) :
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(3.15) (x̃, ỹ, z̃)(t)= (x̂, ŷ, ẑ)+ 1
ρ i

E i−1µi−1 sign(ẽ i−1) , i = 2,n

The intermediate estimation errors ẽ i(t) are provided by

(3.16) ẽ i(t)= (x̃i, ỹi, z̃i)(t)− (x̂i, ŷi, ẑi)(t), i = 1,n

With x̃(t) = x(t) = Y (t) by means of construction. While the estimation errors are

characterized as

(3.17) e i(t)= (xi, yi, zi)(t)− (x̂i, ŷi, ẑi)(t), i = 1,n

Remark 2: To obtain the convergence condition, the rule of the switching logic E i must

achieve:

(3.18) E i, i = 1,n−1

{
∥x̃i(t)− x̂i(t)∥ ≤ ε, ε≪ 0

E i = 0 other

In the following theorem, the observer converges is confirmed.

Theorem . Assume that (assumption) is accurate. with the existence of positive para-

meters µi, i = 1,2, . . . ,n, in this situation the observer states (x̂, ŷ, ẑ) and the estimated

input m̂(t) converges to (x, y, z) and to the secret message m(t), respectively, in a finite

period of time [13].

3.6 The Receiver system configuration

To simplify the design of the receiver that is based on a Step By Step Sliding Mode

Oobserver (SBS-SMO), which makes the synchronization obtained successfully, Eqn (3.6)

is reformulated here :

(3.19)


Dq1 x(t)= ρ1 ŷ(t)+ψ1(x(t))

Dq2 y(t)= ρ2 ẑ(t)+ψ2(x(t), y(t))
Dq3 z(t)= a(x)+b(x)m(t)

Y (t)= x(t)
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Where

ψ1(x(t))=αx2(t)+βx3(t)

ψ2(x(t), y(t))= δ2(x(t)−R y(t))

ρ1 =−δ1

ρ2 =−δ2

a(x)= δ3
[
i0 −γy(t)

]
b(x)= δ3

The sliding mode observer, shown below, describes the receiver.

(3.20)


Dq1 x(t)= ρ1 ŷ(t)+ψ1(Y (t))+µ1 sign(x(t)− x̂(t))

Dq2 y(t)= ρ2 ẑ(t)+ψ2(x(t), ỹ(t))+E1µ2 sign( ỹ(t)− ŷ(t))
Dq3 z(t)= E2µ3 sign(z̃(t)− ẑ(t))

The auxiliary variables ỹ(t), z̃(t) are denoted by

ỹ(t)= ŷ(t)+ 1
ρ1

E1µ1 sign(x(t)− x̂(t))

z̃(t)= ẑ(t)+ 1
ρ2

E2µ2 sign( ỹ(t)− ŷ(t))

The recovered message m(t) is given by

m̂(t)= γ ỹ− i0 + 1
δ3

E2µ3 sign(z̃(t)− ẑ(t))

3.7 Optimal selection of a SBS-SMO parameters

3.7.1 Comparison between the Hummingbird Optimizer and
Grey Wolf Optimizer algorithms:

The Hummingbird Optimizer and Grey Wolf Optimizer algorithms are both nature-

inspired optimization algorithms used for solving optimization problems. However, there

are several differences between these algorithms, which are discussed below:

Inspiration: The Hummingbird Optimizer is inspired by the behavior of humming-

birds in nature, while the Grey Wolf Optimizer is inspired by the social behavior and

hunting strategies of grey wolves.
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Search Strategy: The Hummingbird Optimizer algorithm utilizes a local search

strategy, where solutions are found by exploring and exploiting the neighborhood of the

current solution. In contrast, the Grey Wolf Optimizer algorithm uses a global search

strategy, where solutions are searched across the entire solution space by simulating the

social hierarchy and hunting behavior of wolves.

Parameterization: The Hummingbird Optimizer uses only one parameter, which

is the number of iterations, to control the optimization process. On the other hand, the

Grey Wolf Optimizer uses three parameters, namely the population size, the number of

iterations, and the alpha parameter that controls the rate of convergence.

Performance: Both algorithms have been shown to perform well on a variety of

optimization problems, but their performance may vary depending on the problem

characteristics. In general, the Grey Wolf Optimizer algorithm has been shown to perform

better for high-dimensional optimization problems, while the Hummingbird Optimizer

algorithm may perform better for low-dimensional problems.

Convergence rate: The Grey Wolf Optimizer algorithm is generally faster in terms

of convergence rate compared to the Hummingbird Optimizer algorithm.

Complexity: The Hummingbird Optimizer algorithm is generally simpler and more

straightforward to implement compared to the Grey Wolf Optimizer algorithm.

In summary, both the Hummingbird Optimizer and Grey Wolf Optimizer are powerful

optimization algorithms with their unique strengths and weaknesses. The choice between

these algorithms ultimately depends on the specific optimization problem being solved

and the preferences of the user.

In summary, the numerical simulation has been used to illustrate the efficiency of the

suggested strategy. Using certain parameters for the sliding mode is crucial in retrieving

information in a short amount of time with ensuring high quality, especially in real time.

To choose the appropriate parameters for the sliding mode observer, comparison experi-

ments were performed between two optimization methods, the artificial hummingbird

algorithm (AHA) and the grey wolf optimizer (GWO). And we concluded that (AHA)

is faster than (GWO) so the parameters
{
µ1 µ2 µ3

}
are set by AHA algorithm as

(123.9434,28.8376,59.1636), respectively.
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Figure 3.8: Best score of GOW and AHA during iteration.

Table 3.2: Parameters and values that obtained from the comparison.

AHA GWO

Search Agents 15 15

Max iteration 50 50

Best score 0.4972 40.4972

Convergence time 26 40

Parameters [u1 u2 u3] [123.9434,28.8376,59.1636] [123.8894,28.8187,59.1849]
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3.7.2 Hummingbird Optimizer algorithms

The Hummingbird Optimizer algorithm is a nature-inspired optimization algorithm

that is based on the behavior of hummingbirds. Hummingbirds are known for their

exceptional ability to hover in mid-air and navigate through complex environments with

great agility and precision. The Hummingbird Optimizer algorithm mimics the behavior

of these birds to solve optimization problems.

The algorithm utilizes a local search strategy, where solutions are found by exploring

and exploiting the neighborhood of the current solution. The exploration is done by

randomly selecting a new solution from the neighborhood of the current solution, while

the exploitation is done by selecting the best solution from the neighborhood. This search

strategy allows the algorithm to quickly converge to a near-optimal solution.

The Hummingbird Optimizer algorithm requires only one parameter, which is the

maximum number of iterations. The algorithm has been shown to perform well on a

variety of optimization problems, especially on low-dimensional problems.

In summary, the purpose of this section is to select the suitable parameters of the

receiver system that achieve the synchronisation by using the new artificial hummingbird

algorithm (AHA). The AHA is chosen among several optimization techniques because it

is a simple yet effective that is inspired by the behavior of hummingbirds in nature. It

utilizes a local search strategy to efficiently explore and exploit the search space, with only

one parameter to control the optimization process, in addition to the high performance

that it provides in more than 50 benchmark optimization problems, compared to the

other meta-heuristic algorithms. AHA was introduced by ([159]). The general structure of

AHA is demonstrated in Figure (3.9). The AHA algorithm solves the convex optimization

problem, which is written as an objective function (3.21) that attempts to minimise the

mean square error (MSE) between the emitter and receiver states.

(3.21) [H]J =min
∑


x(t)− x̂(t)
y(t)− ŷ(t)
z(t)− ẑ(t)︸ ︷︷ ︸

e


2
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Figure 3.9: structure of AHA.

This part illustrates the efficiency of the suggested strategy. Using certain parameters

for the sliding mode is crucial in retrieving information in a short amount of time while

ensuring high quality. However, in particular works of literature, the parameters are

randomly selected. Figure (3.12) show how the appropriate parameters for the SBS-SMO

are obtained. Table (3.3) represents the parameters and values used in the simulation.
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Figure 3.10: The greatest possible AHA score attained during iterations.

Figure 3.11: The optimization vector of the AHA algorithm and its dynamic changes.

Figure 3.12:
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Table 3.3: Parameters and values used in simulation.

Parameters Values
Search Agents 15
Max iteration 200
Parameters [u1 u2 u3] [1494.3,283,712.2]

3.8 Conclusion

This study proposes a new approach to improve the safety of encrypted communications

by using an optimization algorithm to enhance the performance of an observer. An

optimal Step-By-Step Sliding Mode Observer (SBS-SMO) is set up on the receiver’s

side to ensure synchronization between the sender and receiver. Based on the results

obtained, the study concludes that outsiders can only retrieve secret information if they

have access to certain details, including the type of chaotic system (such as Lorenz,

Rössler, Chua’s, and Chen’s), the dynamic parameters of the system, the order and initial

conditions of the system, the state in which the message was included, the mechanism of

the synchronization process (such as controller or observer), and the nature and behavior

of the encrypted/decrypted data (text, image, voice, and video). However, obtaining all of

this information can be extremely difficult.
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4
RESULTS AND DISCUSSION

4.1 Introduction

Fractional calculus is a branch of mathematical analysis that deals with integrals

and derivatives of non-integer orders. It extends the traditional calculus, which deals

with integrals and derivatives of integer orders, to include integrals and derivatives

of fractional orders. In fractional calculus, the concept of a fractional derivative is

used, which is a generalization of the traditional derivative to non-integer orders. It

represents the rate of change of a function with a fractional order, such as 1/2, 3/4, or

any other non-integer value. Fractional calculus has many applications in various fields

of science and engineering, such as physics, signal processing, control systems, finance,

and medicine. It has been used to model complex systems that cannot be accurately

represented using traditional calculus, such as fractional Brownian motion, fractional

differential equations, and fractional-order control systems. Overall, fractional calculus

is an important tool for modeling and analyzing complex systems that exhibit non-

integer behaviors. Chua’s oscillator is a simple nonlinear circuit that was introduced by

Leon Chua in 1983. It is a three-dimensional autonomous system that exhibits chaotic

behavior, which means that its output signal is unpredictable and appears random.

The Chua’s oscillator consists of three basic components: a resistor, an inductor, and

a capacitor, and it can be realized using electronic components. The Chua’s oscillator

is one of the most well-known chaotic systems, and it has been widely used in various

applications, such as secure communication, image encryption, and random number
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generation. The dynamics of the Chua’s oscillator are characterized by the presence of

a double-scroll attractor, which is a strange attractor with two scroll-like structures.

Overall, Chua’s oscillator is an important system in the field of chaos theory and has

many practical applications in engineering and science. Its simple structure and complex

dynamics make it an attractive candidate for various applications, especially in the area

of secure communication and encryption.

This thesis focuses on developing a secure communication system using fractional-

order chaos. However, identifying the order of the derivative and the identifiability of

fractional-order derivatives are still unresolved issues. To address this, a fractional-order

chaotic system is used to generate the encrypted message signal on the transmitter side,

where the secret message is modulated within the chaotic dynamics. On the receiver

side, a step-by-step fractional-order chaotic observer is proposed to achieve robust syn-

chronization between the transmitter and receiver, and the original message is recovered

once chaos synchronization is achieved and the state variables are estimated.

4.2 The simulation results

4.2.1 result of the states

Figure (??) depict the responses of the states (x, y, z) and their estimated (x̂, ŷ, ẑ). (4.4)

shows the three state variable estimation errors altogether. It proves that the two FOCS

can be synchronized optimally in finite time. The initial conditions are assumed to be

(x(0)= y(0)= z(0)= 0), whereas the responding system’s initial conditions are all set to

zero (x̂(0)= ŷ(0)= ẑ(0)= 0).
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Figure 4.1: dataset synchronization of x− x̂.
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Figure 4.2: dataset synchronization of y− ŷ.
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Figure 4.3: dataset synchronization of z− ẑ.

Figure 4.4: The estimation errors: x error, y error and z error.
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4.2.2 Security level study

The Fig (4.5,4.6,4.7) depict the responses of the state (x, y, z) and their estimations (x̂, ŷ, ẑ).

and Fig 4.8 demonstrates the three state variables’ estimation errors all together. It

proves that the two fractional-order chaotic systems can be synchronized. The initial

conditions are assumed to be (x(0)= y(0)= z(0)= 0.1), whereas the responding system’s

initial conditions are all set to zero (x̂(0)= ŷ(0)= ẑ(0)= 0.02).

Figure 4.5: dataset synchronization of x− x̂.

Figure 4.6: dataset synchronization of y− ŷ.

Figure 4.7: dataset synchronization of z− ẑ.
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Figure 4.8: The estimation errors: x error, y error and z error..

Fig (4.9,4.10,4.11) plots the three state responses (x, y, z) and their estimations (x̂, ŷ, ẑ)

and Fig 4.12 is the synchronization errors with the following values, the fractional order

of the drive system is = 0.9801, the Fractional order of the responding system = 0.98,

and initial conditions of the transmitter are all set as: (x(0)= y(0)= z(0)= 0.1) and the

reciver system are: (x̂(0)= ŷ(0)= ẑ(0)= 0.02). In order to ensure the convergence and the

synchronization.

Figure 4.9: dataset synchronization of x− x̂.

Figure 4.10: dataset synchronization of y− ŷ.
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Figure 4.11: dataset synchronization of z− ẑ.

Figure 4.12: The estimation errors: x error, y error and z error..

Here in Fig (4.13,4.14,4.15 and 4.16 ) we kept the fractional order of the drive sys-

tem and the responding at 0.9, the but the initial conditions for the drive system are:

(x(0)= y(0)= z(0)= 0.02), and the responding system kept at zero (x̂(0)= ŷ(0)= ẑ(0)= 0).

Figure 4.13: dataset synchronization of x− x̂.
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Figure 4.14: dataset synchronization of y− ŷ.

Figure 4.15: dataset synchronization of z− ẑ.

Figure 4.16: The estimation errors: x error, y error and z error..

4.2.3 Robustness study

To prove the strength of the system, we changed the values of the fractional order of the

drive system = 0.95, the Fractional order of the responding system = 0.95005, and initial
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conditions of the transmitter and the receiver (x(0)= y(0)= z(0)= 0.025) (x̂(0)= ŷ(0)=
ẑ(0)= 0.01 ) respectively. as shown in fig ??

Figure 4.17: dataset synchronization of x− x̂.

Figure 4.18: dataset synchronization of y− ŷ.

Figure 4.19: dataset synchronization of z− ẑ.
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Figure 4.20: The estimation errors: x error, y error and z error..

4.2.4 Retrieving the secret message

In this part, we try to exploit the features and characteristics of the SBS-SMO (syn-

chronization and estimating inputs that are unknown) to harness it in the information

encryption. First, we include the secret information, which we consider as: sin, square,

and voice functions, given by m(t) = 0.1sin(2t),m(t) = 0.1square(2t)and,m(t) = voice,

respectively. As shown in Figures (??), the recovered messages in the receiver system are

similar to the original ones, and Table (4.1) illustrates the compression of our work to

the work of ([13]) in four different error messages (sin, square, sawtooth, and voive) The

MSE errors in our work are about zero in all cases, taking into consideration that ([13])

did not achieve the voice message, but we tried it in order to compare it with our voice

signal.
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Figure 4.21: The original message (sinusoidal wave m(t)= sin(t)) and the recovered m̂(t).
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Figure 4.22: The original message m(t)= square(t) and the recovered m̂(t).
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Figure 4.23: The original message m(t)= sawtooth(t) and the recovered m̂(t).
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Figure 4.24: The original message m(t)= voice and the recovered m̂(t).
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Table 4.1: Comparative study in several kinds of messages.

Methods Sin message Square message Sawtooth message Voice message
Proposed 7.8278×10−05 2.2965×10−04 2.1986×10−05 6.5561×10−04

[13] 8.2397×10−04 0.0024 0.0022 0.0069

4.2.5 Security analysis of the proposed scheme

In order to evaluate the amount of security provided by the suggested secure transmission

scheme, two principal modifications have been made; the initial condition and the order of

the transmitter or the receiver. The original voice message was picked among the previous

messages due to its importance. In Figure (4.25). We only made a tiny modification in the

initial conditions of the transmitter system’s first state (x(0) = 10−6¬†, y(0) = z(0) = 0).

Based on our analysis, the receiver side completely lost the included message. The second

check involved a small modification in the first state order of the transmitter system.

q1 = 0.905, q2 = 0.9, q3 = 0.9 , as shown in Figure (4.26). And we discovered that the

embedded message is absolutely lost as well.
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Figure 4.25: The original message m = voice and the recovered m̂(t).x(0) = 10−6, y(0) =
z(0) = 0. and (x̂(0) = ŷ(0) = ẑ(0) = 0). And both order of transmitter and receiver are
q1 = q2 = q3 = 0.9.
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Figure 4.26: The original message m = voice and the recovered m̂(t). (x(0)= y(0)= z(0)=
0) and (x̂(0)= ŷ(0)= ẑ(0)= 0). And the order of transmitter are q1 = 0.905, q2 = q3 = 0.9.
while of the receiver are set all 0.9.
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4.3 Conclusion

In this work, a new way to improve the safety of encrypted communications is suggested

by using a new optimization algorithm to make the observer’s performance as good as

possible. We set up an optimal SBS-SMO on the receiver side to make sure that the

emitter and receiver are synchronized. Based on the obtained results, we conclude that

the secret information can be retrieved by outsiders only when the following items are

provided:

- Chaotic system type such as Lorenz, Rössler, Chua’s and the Chen....etc.

- Dynamic Parameters of the chaotic system.

- The order and the initial conditions of the system and in which state was the message

included.

- The mechanism of the synchronization process such as controller or an observer and

which type of them.

- What is the nature and the behavior of the encrypted/decrypted data like ( text, image,

voice and video But it is extremely difficult to get all this equipment together.
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GENERAL CONCLUSION

In this thesis, we have designed and implemented a fractional-order chaotic safe com-

munication system, which has demonstrated the potential to provide a high level of

security for transmitting sensitive information. The system consists of a transmitter and

a receiver, with the transmitter utilizing a fractional-order chaotic system to create an

encrypted message signal, and the receiver employing an optimal Step-By-Step Sliding

Mode Observer to ensure synchronization between the emitter and receiver.

Our research has shown that retrieving secret information from the system requires

knowledge of several key components, including the type and dynamic parameters of

the chaotic system, the order and initial conditions of the system, the state in which the

message was included, and the mechanism of the synchronization process. This suggests

that the system has a high level of security, as it would be difficult for outsiders to access

the encrypted data without possessing this knowledge.

Furthermore, our study has highlighted the importance of designing a secure commu-

nication system that can protect against potential security threats. While the fractional-

order chaotic system has shown promise as a means of achieving this goal, continued

research and development will be necessary to ensure its continued effectiveness in the

face of evolving security threats.

In conclusion, our work has demonstrated the potential of fractional-order chaotic

systems as a means of providing secure communication, and has highlighted the impor-

tance of designing and improving such systems to ensure the highest level of security

possible. We believe that our research will contribute to the ongoing efforts to develop

secure communication systems that can protect against potential security threats, and

we hope that it will inspire further research in this important field.
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Three types of simple dde’s describing tumor growth.

Journal of Biological Systems, 15(04):453–471, 2007.

[15] Abdesselem Boulkroune, Amel Bouzeriba, Toufik Bouden, and Ahmad Taher Azar.

74



BIBLIOGRAPHY

Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems.

In Advances in chaos theory and intelligent control, pages 681–697. Springer, 2016.

[16] Samuel Bowong.

Stability analysis for the synchronization of chaotic systems with different order:

application to secure communications.

Physics Letters A, 326(1-2):102–113, 2004.

[17] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrish-

nan.

Linear matrix inequalities in system and control theory.

SIAM, 1994.

[18] Weijia Cao, Yicong Zhou, CL Philip Chen, and Liming Xia.

Medical image encryption using edge maps.

Signal Processing, 132:96–109, 2017.

[19] Joseph Chang Lun Chan, Tae H Lee, and Chee Pin Tan.

Secure communication through a chaotic system and a sliding-mode observer.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[20] Luo Chao.

Asynchronous error-correcting secure communication scheme based on fractional-

order shifting chaotic system.

International Journal of Modern Physics C, 26(06):1550065, 2015.

[21] Guanrong Chen and Tetsushi Ueta.

Yet another chaotic attractor.

International Journal of Bifurcation and chaos, 9(07):1465–1466, 1999.

[22] Ming-jie Chen, Dian-pu Li, and Ai-jun Zhang.

Chaotic synchronization based on nonlinear state-observer and its application in

secure communication.

Journal of Marine Science and Application, 3(1):64–70, 2004.

[23] Xiangyong Chen, Ju H Park, Jinde Cao, and Jianlong Qiu.

Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding

mode control.

Neurocomputing, 273:9–21, 2018.

75



BIBLIOGRAPHY

[24] Yawen Chen, Haibo Zhang, and Fangfang Zhang.

Difference function projective synchronization for secure communication based on

complex chaotic systems.

In 2018 5th IEEE International Conference on Cyber Security and Cloud Comput-
ing (CSCloud)/2018 4th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom), pages 52–57. IEEE, 2018.

[25] Ying-Jen Chen, Hao-Gong Chou, Wen-June Wang, Shun-Hung Tsai, Kazuo Tanaka,

Hua O Wang, and Kun-Ching Wang.

A polynomial-fuzzy-model-based synchronization methodology for the multi-scroll

chen chaotic secure communication system.

Engineering Applications of Artificial Intelligence, 87:103251, 2020.

[26] Yong Chen and Xin Li.

Function projective synchronization between two identical chaotic systems.

International Journal of Modern Physics C, 18(05):883–888, 2007.

[27] Kevin M Cuomo and Alan V Oppenheim.

Chaotic signals and systems for communications.

In 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing,

volume 3, pages 137–140. IEEE, 1993.

[28] Hadi Delavari and Milad Mohadeszadeh.

Robust finite-time synchronization of non-identical fractional-order hyperchaotic

systems and its application in secure communication.

IEEE/CAA Journal of Automatica Sinica, 6(1):228–235, 2016.

[29] Sergio M Delfín-Prieto, Rafael Martínez-Guerra, Ivan Trejo-Zúñiga, and Juan J

Montesinos-García.

A robust state estimation for fractional-order liouvillian systems: with application

to secure communications.

IFAC-PapersOnLine, 51(33):97–102, 2018.

[30] Mario Di Bernardo.

An adaptive approach to the control and synchronization of continuous-time chaotic

systems.

International Journal of Bifurcation and Chaos, 6(03):557–568, 1996.

[31] Kai Diethelm, Neville J Ford, and Alan D Freed.

76



BIBLIOGRAPHY

A predictor-corrector approach for the numerical solution of fractional differential

equations.

Nonlinear Dynamics, 29(1-4):3–22, 2002.

[32] William L Ditto.

Applications of chaos in biology and medicine.

In AIP Conference Proceedings, volume 376, pages 175–201. American Institute of

Physics, 1996.

[33] S Djennoune, S Guermah, A Si-Ammour, H Hamiche, L Feddal, and S Merbouti.

Synchronization of the fractional-order chaotic chua’s system via sliding mode

observer.

In 3rd International Conference on Systems and Control, pages 111–116. IEEE,

2013.

[34] Hongyue Du, Qingshuang Zeng, and Changhong Wang.

Function projective synchronization of different chaotic systems with uncertain

parameters.

Physics Letters A, 372(33):5402–5410, 2008.

[35] Hongyue Du, Qingshuang Zeng, and Changhong Wang.

Modified function projective synchronization of chaotic system.

Chaos, Solitons & Fractals, 42(4):2399–2404, 2009.

[36] Hongyue Du, Qingshuang Zeng, Changhong Wang, and Mingxiang Ling.

Function projective synchronization in coupled chaotic systems.

Nonlinear Analysis: Real World Applications, 11(2):705–712, 2010.

[37] Adel A El-Sayed and Praveen Agarwal.

Numerical solution of multiterm variable-order fractional differential equations

via shifted legendre polynomials.

Mathematical Methods in the Applied Sciences, 42(11):3978–3991, 2019.

[38] Zheng-Ming Ge and Chan-Yi Ou.

Chaos in a fractional order modified duffing system.

Chaos, Solitons & Fractals, 34(2):262–291, 2007.

[39] Amir Rikhtegar Ghiasi, Mona Saber Gharamaleki, Elaheh Mohammadi asl Khas-

raghi, and Zahra Sattarzadeh Kalajahi.

77



BIBLIOGRAPHY

Optimized time-delayed feedback control of fractional chaotic oscillator with appli-

cation to secure communications.

In 2019 IEEE East-West Design & Test Symposium (EWDTS), pages 1–6. IEEE,

2019.

[40] Dibakar Ghosh, Papri Saha, and A Roy Chowdhury.

On synchronization of a forced delay dynamical system via the galerkin approxi-

mation.

Communications in Nonlinear Science and Numerical Simulation, 12(6):928–941,

2007.

[41] Giuseppe Grassi and Saverio Mascolo.

Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 44(10):1011–1014, 1997.

[42] Ilia Grigorenko and Elena Grigorenko.

Chaotic dynamics of the fractional lorenz system.

Physical review letters, 91(3):034101, 2003.

[43] Xin-Ping Guan, Yan-Hui He, and Zheng-Ping Fan.

Synchronization of a class of chaotic systems in the presence of perturbation by an

observer.

Acta Physica Sinica, 52(2):276–280, 2003.

[44] John Guckenheimer and Philip Holmes.

Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol-

ume 42.

Springer Science & Business Media, 2013.

[45] Souhila Hadef and Abdelkrim Boukabou.

Control of multi-scroll chen system.

Journal of the Franklin Institute, 351(5):2728–2741, 2014.

[46] Mimoun Hamdi, Rhouma Rhouma, and Safya Belghith.

A selective compression-encryption of images based on spiht coding and chirikov

standard map.

Signal Processing, 131:514–526, 2017.

78



BIBLIOGRAPHY

[47] Sonia Hammami, Mohamed Djemai, and Krishna Busawon.

On the use of the unified chaotic system in the field of secure communication.

In 2015 3rd International Conference on Control, Engineering & Information
Technology (CEIT), pages 1–6. IEEE, 2015.

[48] Tom T Hartley, Carl F Lorenzo, and H Killory Qammer.

Chaos in a fractional order chua’s system.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 42(8):485–490, 1995.

[49] Yong He, Guilin Wen, and Qing-Guo Wang.

Delay-dependent synchronization criterion for lur’e systems with delay feedback

control.

International Journal of Bifurcation and Chaos, 16(10):3087–3091, 2006.

[50] Zhenya He, Ke Li, Luxi Yang, and Yuhui Shi.

A robust digital secure communication scheme based on sporadic coupling chaos

synchronization.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 47(3):397–403, 2000.

[51] Xia Huang, Tiantian Sun, Yuxia Li, and Jinling Liang.

A color image encryption algorithm based on a fractional-order hyperchaotic

system.

Entropy, 17(1):28–38, 2014.

[52] Samar M Ismail, Lobna A Said, Ahmed G Radwan, Ahmed H Madian, and Mo-

hamed F Abu-ElYazeed.

A novel image encryption system merging fractional-order edge detection and

generalized chaotic maps.

Signal Processing, 167:107280, 2020.

[53] Adnan Javeed, Tariq Shah, and Attaullah.

Lightweight secure image encryption scheme based on chaotic differential equa-

tion.

Chinese Journal of Physics, 66:645 – 659, 2020.

[54] Hongyan Jia, Zhiqiang Guo, Guoyuan Qi, and Zengqiang Chen.

79



BIBLIOGRAPHY

Analysis of a four-wing fractional-order chaotic system via frequency-domain and

time-domain approaches and circuit implementation for secure communication.

Optik, 155:233–241, 2018.

[55] Hongyan Jia and Qinghe Wang.

Synchronization of two four-wing fractional-order chaotic systems and its applica-

tions in secure communication.

In 2016 6th International Conference on Advanced Design and Manufacturing
Engineering (ICADME 2016). Atlantis Press, 2017.

[56] HY Jia, ZQ Chen, and GY Qi.

Chaotic characteristics analysis and circuit implementation for a fractional-order

system.

IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3):845–853,

2014.

[57] Lu Jun-Guo.

Chaotic dynamics and synchronization of fractional-order genesio–tesi systems.

Chinese Physics, 14(8):1517, 2005.

[58] Lu Jun-Guo and Xi Yu-Geng.

Chaos communication based on synchronization of discrete-time chaotic systems.

Chinese Physics, 14(2):274, 2005.

[59] Sarah Kassim, Hamid Hamiche, Saïd Djennoune, and Maâmar Bettayeb.

A novel secure image transmission scheme based on synchronization of fractional-

order discrete-time hyperchaotic systems.

Nonlinear Dynamics, 88(4):2473–2489, 2017.

[60] Ali Kazemi, Reza Behinfaraz, and Amir Rikhtegar Ghiasi.

Accurate model reduction of large scale systems using adaptive multi-objective

particle swarm optimization algorithm.

In 2017 International Conference on Mechanical, System and Control Engineering
(ICMSC), pages 372–376. IEEE, 2017.

[61] K Kemih, M Ghanes, R Remmouche, and A Senouci.

A novel 5d-dimentional hyperchaotic system and its circuit simulation by ewb.

Mathematical Sciences Letters, 4(1):1–4, 2015.

80



BIBLIOGRAPHY

[62] Ayub Khan, Lone Seth Jahanzaib, and Pushali Trikha.

Secure communication: Using parallel synchronization technique on novel frac-

tional order chaotic system.

IFAC-PapersOnLine, 53(1):307–312, 2020.

[63] Vladimir L Kharitonov and S-I Niculescu.

On the stability of linear systems with uncertain delay.

IEEE Transactions on Automatic Control, 48(1):127–132, 2003.

[64] Arman Kiani-B, Kia Fallahi, Naser Pariz, and Henry Leung.

A chaotic secure communication scheme using fractional chaotic systems based on

an extended fractional kalman filter.

Communications in Nonlinear Science and Numerical Simulation, 14(3):863–879,

2009.

[65] Anatoliı̆ Kilbas.

Theory and applications of fractional differential equations.

[66] Lj Kocarev, K Sean Halle, Kevin Eckert, Leon O Chua, and Ulrich Parlitz.

Experimental demonstration of secure communications via chaotic synchroniza-

tion.

International Journal of Bifurcation and Chaos, 2(03):709–713, 1992.

[67] Géza Kolumbán, Michael Peter Kennedy, and Leon O Chua.

The role of synchronization in digital communications using chaos. i. fundamentals

of digital communications.

IEEE Transactions on circuits and systems I: Fundamental theory and applications,

44(10):927–936, 1997.

[68] Géza Kolumbán, Michael Peter Kennedy, and Leon O Chua.

The role of synchronization in digital communications using chaos. ii. chaotic

modulation and chaotic synchronization.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 45(11):1129–1140, 1998.

[69] OM Kwon, Ju H Park, and SM Lee.

Secure communication based on chaotic synchronization via interval time-varying

delay feedback control.

Nonlinear Dynamics, 63(1-2):239–252, 2011.

81



BIBLIOGRAPHY

[70] Mourad Lahdir, Hamid Hamiche, Sarah Kassim, Mohamed Tahanout, Karim

Kemih, and Sid-Ali Addouche.

A novel robust compression-encryption of images based on spiht coding and

fractional-order discrete-time chaotic system.

Optics & Laser Technology, 109:534–546, 2019.

[71] P Lamba and JL Hudson.

Experiments on bifurcations to chaos in a forced chemical reactor.

Chemical engineering science, 42(1):1–8, 1987.

[72] Daniel Lathrop.

Nonlinear dynamics and chaos: With applications to physics, biology, chemistry,

and engineering.

Physics Today, 68(4):54, 2015.

[73] Changpin Li and Guojun Peng.

Chaos in chen’s system with a fractional order.

Chaos, Solitons & Fractals, 22(2):443–450, 2004.

[74] Changpin Li and Jianping Yan.

The synchronization of three fractional differential systems.

Chaos, Solitons & Fractals, 32(2):751–757, 2007.

[75] Demin Li, Zidong Wang, Jie Zhou, Jinjin Ni, et al.

A note on chaotic synchronization of time-delay secure communication systems.

Chaos, Solitons & Fractals, 38(4):1217–1224, 2008.

[76] Dong Li and Xingpeng Zhang.

Impulsive synchronization of fractional order chaotic systems with time-delay.

Neurocomputing, 216:39–44, 2016.

[77] Rui-Guo Li and Huai-Ning Wu.

Adaptive synchronization control with optimization policy for fractional-order

chaotic systems between 0 and 1 and its application in secret communication.

ISA transactions, 92:35–48, 2019.

[78] Ruihong Li and Weisheng Chen.

Lyapunov-based fractional-order controller design to synchronize a class of

fractional-order chaotic systems.

Nonlinear Dynamics, 76(1):785–795, 2014.

82



BIBLIOGRAPHY

[79] Ye Li, Haoping Wang, and Yang Tian.

Fractional-order adaptive controller for chaotic synchronization and application to

a dual-channel secure communication system.

Modern Physics Letters B, 33(24):1950290, 2019.

[80] ZG Li, CY Wen, YC Soh, and WX Xie.

The stabilization and synchronization of chua’s oscillators via impulsive control.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 48(11):1351–1355, 2001.

[81] Zhengguo Li, Kun Li, Changyun Wen, and Yeng Chai Soh.

A new chaotic secure communication system.

IEEE Transactions on Communications, 51(8):1306–1312, 2003.

[82] Zhengguo Li, Cheong Boon Soh, and Xinhe Xu.

Stability of impulsive differential systems.

Journal of Mathematical Analysis and Applications, 216(2):644–653, 1997.

[83] Chih-Hsueh Lin, Guo-Hsin Hu, Jie-Sheng Chen, Jun-Juh Yan, and Kuang-Hui

Tang.

Novel design of cryptosystems for video/audio streaming via dynamic synchronized

chaos-based random keys.

Multimedia Systems, pages 1–16, 2022.

[84] Chongxin Liu, Ling Liu, and Tao Liu.

A novel three-dimensional autonomous chaos system.

Chaos, Solitons & Fractals, 39(4):1950–1958, 2009.

[85] Jiaxun Liu, Zuoxun Wang, Minglei Shu, Fangfang Zhang, Sen Leng, and Xiaohui

Sun.

Secure communication of fractional complex chaotic systems based on fractional

difference function synchronization.

Complexity, 2019, 2019.

[86] Yongjian Liu.

Circuit implementation and finite-time synchronization of the 4d rabinovich hy-

perchaotic system.

Nonlinear Dynamics, 67(1):89–96, 2012.

83



BIBLIOGRAPHY

[87] Yongjian Liu and Qigui Yang.

Dynamics of a new lorenz-like chaotic system.

Nonlinear Analysis: Real World Applications, 11(4):2563–2572, 2010.

[88] Edward N Lorenz.

Deterministic nonperiodic flow.

Journal of the atmospheric sciences, 20(2):130–141, 1963.

[89] Jinhu Lü and Guanrong Chen.

A new chaotic attractor coined.

International Journal of Bifurcation and chaos, 12(03):659–661, 2002.

[90] Jinhu Lü, Guanrong Chen, Daizhan Cheng, and Sergej Celikovsky.

Bridge the gap between the lorenz system and the chen system.

International Journal of Bifurcation and Chaos, 12(12):2917–2926, 2002.

[91] Jun Guo Lu.

Chaotic dynamics of the fractional-order lü system and its synchronization.

Physics Letters A, 354(4):305–311, 2006.

[92] Jun Guo Lu and Guanrong Chen.

A note on the fractional-order chen system.

Chaos, Solitons & Fractals, 27(3):685–688, 2006.

[93] Runzi Luo, Haipeng Su, and Yanhui Zeng.

Synchronization of uncertain fractional-order chaotic systems via a novel adaptive

controller.

Chinese Journal of Physics, 55(2):342 – 349, 2017.

[94] Emad E Mahmoud and SM Abo-Dahab.

Dynamical properties and complex anti synchronization with applications to secure

communications for a novel chaotic complex nonlinear model.

Chaos, Solitons & Fractals, 106:273–284, 2018.

[95] Fuhong Min, Chuang Li, Lei Zhang, and Chunbiao Li.

Initial value-related dynamical analysis of the memristor-based system with

reduced dimensions and its chaotic synchronization via adaptive sliding mode

control method.

Chinese Journal of Physics, 58:117 – 131, 2019.

84



BIBLIOGRAPHY

[96] Amit K. Mishra, Subir Das, and Vijay K. Yadav.

Finite-time synchronization of multi-scroll chaotic systems with sigmoid non-

linearity and uncertain terms.

Chinese Journal of Physics, 2020.

[97] Saleh Mobayen.

Chaos synchronization of uncertain chaotic systems using composite nonlinear

feedback based integral sliding mode control.

ISA transactions, 77:100–111, 2018.

[98] Ardashir Mohammadzadeh and Sehraneh Ghaemi.

Synchronization of uncertain fractional-order hyperchaotic systems by using a new

self-evolving non-singleton type-2 fuzzy neural network and its application to

secure communication.

Nonlinear Dynamics, 88(1):1–19, 2017.

[99] Concepción A Monje, YangQuan Chen, Blas M Vinagre, Dingyu Xue, and Vicente

Feliu-Batlle.

Fractional-order systems and controls: fundamentals and applications.

Springer Science & Business Media, 2010.

[100] Eginhard J Muth.

Transform methods with applications to engineering and operations research(text

book).

Englewood Cliffs, N. J., Prentice-Hall, Inc., 1977. 382 p, 1977.

[101] P Muthukumar and P Balasubramaniam.

Feedback synchronization of the fractional order reverse butterfly-shaped chaotic

system and its application to digital cryptography.

Nonlinear Dynamics, 74(4):1169–1181, 2013.

[102] Bashir Naderi and Hossein Kheiri.

Exponential synchronization of chaotic system and application in secure communi-

cation.

Optik, 127(5):2407–2412, 2016.

[103] Quang Dich Nguyen, Shyh-Chour Huang, et al.

Synthetic adaptive fuzzy disturbance observer and sliding-mode control for chaos-

based secure communication systems.

85



BIBLIOGRAPHY

IEEE Access, 9:23907–23928, 2021.

[104] Chun Nie, Hua Tian, and Hai Sun.

Research about secure communication based on fourth-order hyper-chaotic system.

Applied Mechanics and Materials, 543-547:2535–2538, 03 2014.

[105] Chun Yan Nie, Hua Tian, and Hai Xin Sun.

Research about secure communication based on fourth-order hyper-chaotic system.

In Applied Mechanics and Materials, volume 543, pages 2535–2538. Trans Tech

Publ, 2014.

[106] Keith Oldham and Jerome Spanier.

The fractional calculus theory and applications of differentiation and integration
to arbitrary order.

Elsevier, 1974.

[107] Edward Ott.

Chaos in dynamical systems.

Cambridge university press, 2002.

[108] S Ozoguz, AS Elwakil, and KN Salama.

N-scroll chaos generator using nonlinear transconductor.

Electronics Letters, 38(14):685–686, 2002.

[109] Jing Pan, Qun Ding, and Baoxiang Du.

A new improved scheme of chaotic masking secure communication based on lorenz

system.

International Journal of Bifurcation and Chaos, 22(05):1250125, 2012.

[110] Lin Pan, Wuneng Zhou, Long Zhou, and Kehui Sun.

Chaos synchronization between two different fractional-order hyperchaotic sys-

tems.

Communications in Nonlinear Science and Numerical Simulation, 16(6):2628–

2640, 2011.

[111] U Parlitz, Lj Kocarev, T Stojanovski, and H Preckel.

Encoding messages using chaotic synchronization.

Physical Review E, 53(5):4351, 1996.

86



BIBLIOGRAPHY

[112] Louis M Pecora and Thomas L Carroll.

Synchronization in chaotic systems.

Physical review letters, 64(8):821, 1990.

[113] Carmen Pellicer-Lostao and Ricardo López-Ruiz.

A chaotic gas-like model for trading markets.

Journal of Computational Science, 1(1):24–32, 2010.

[114] Ivo Petráš.

Fractional-order nonlinear systems: modeling, analysis and simulation.

Springer Science & Business Media, 2011.

[115] I Podlubnv.

Fractional differential equations academic press.

San Diego, Boston, 6, 1999.

[116] Igor Podlubny.

An introduction to fractional derivatives, fractional differential equations, to meth-

ods of their solution and some of their applications.

Mathematics in science and engineering, 198:xxiv+–340, 1999.

[117] Hector Puebla and Jose Alvarez-Ramirez.

Proportional–integral feedback demodulation for secure communications.

Physics Letters A, 276(5-6):245–256, 2000.

[118] Hector Puebla and Jose Alvarez-Ramirez.

More secure communication using chained chaotic oscillators.

Physics Letters A, 283(1-2):96–108, 2001.

[119] Shao Cheng Qu, Di Liu, and Li Wang.

Synchronization of hyper-chaotic lorenz system and its application in secure

communication.

In Key Engineering Materials, volume 467, pages 437–440. Trans Tech Publ, 2011.

[120] Karthikeyan Rajagopal, Ali Durdu, Sajad Jafari, Yilmaz Uyaroglu, Anitha

Karthikeyan, and Akif Akgul.

Multiscroll chaotic system with sigmoid nonlinearity and its fractional order form

with synchronization application.

International Journal of Non-Linear Mechanics, 116:262–272, 2019.

87



BIBLIOGRAPHY

[121] K Ramasubramanian and MS Sriram.

A comparative study of computation of lyapunov spectra with different algorithms.

Physica D: Nonlinear Phenomena, 139(1-2):72–86, 2000.

[122] SERGO REKHVIASHVILI, ARSEN PSKHU, PRAVEEN AGARWAL, and SHILPI

JAIN.

Application of the fractional oscillator model to describe damped vibrations.

Turkish Journal of Physics, 43(3):236–242, 2019.

[123] B Ross.

Fractional calculus and its applications, lecture notes in mathematics, vol. 457,

springer-verlag, new york, 1974.

[124] Otto E Rössler.

An equation for continuous chaos.

Physics Letters A, 57(5):397–398, 1976.

[125] Otto E Rössler.

Continuous chaos‚Äîfour prototype equations.

Annals of the New York Academy of Sciences, 316(1):376–392, 1979.

[126] Huawei Ruan, Tongyan Zhai, and Edwin Engin Yaz.

A chaotic secure communication scheme with extended kalman filter based param-

eter estimation.

In Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003.,
volume 1, pages 404–408. IEEE, 2003.

[127] Luo Runzi.

Adaptive function project synchronization of rössler hyperchaotic system with

uncertain parameters.

Physics Letters A, 372(20):3667–3671, 2008.

[128] VB Ryabov, PV Usik, and DM Vavriv.

Chaotic masking without synchronization.

International Journal of Bifurcation and Chaos, 9(06):1181–1187, 1999.

[129] S Sadoudi, C Tanougast, MS Azzaz, A Dandache, and A Bouridane.

Real-time fpga implementation of lü’s chaotic generator for cipher embedded

systems.

88



BIBLIOGRAPHY

In 2009 International Symposium on Signals, Circuits and Systems, pages 1–4.

IEEE, 2009.

[130] Manoj Kumar Shukla and BB Sharma.

Stabilization of a class of fractional order chaotic systems via backstepping ap-

proach.

Chaos, Solitons & Fractals, 98:56–62, 2017.

[131] MK Shukla and BB Sharma.

Secure communication and image encryption scheme based on synchronisation of

fractional order chaotic systems using backstepping.

International Journal of Simulation and Process Modelling, 13(5):473–485, 2018.

[132] Lin Sun and De-Ping Jiang.

A switch-modulated method for hyperchaotic digital secure communications based

on drive functions.

Acta Physica Sinica, 55(7):3283–3288, 2006.

[133] Zhenwu Sun.

Synchronization of fractional-order chaotic systems with non-identical orders,

unknown parameters and disturbances via sliding mode control.

Chinese Journal of Physics, 56(5):2553 – 2559, 2018.

[134] Kazuo Tanaka, Hiroto Yoshida, Hiroshi Ohtake, and Hua O Wang.

A sum-of-squares approach to modeling and control of nonlinear dynamical systems

with polynomial fuzzy systems.

IEEE Transactions on Fuzzy systems, 17(4):911–922, 2008.

[135] Xiaomin Tian, Shumin Fei, and Lin Chai.

On modified second-order sliding mode synchronization of two different fractional

order hyperchaotic systems.

International Journal of Multimedia and Ubiquitous Engineering, 10(4):387–398,

2015.

[136] Zdzislaw Trzaska.

Matlab solutions of chaotic fractional order circuits.

Engineering education and research using MATLAB, 2011.

[137] Shun-Hung Tsai and Chih-Yang Jen.

89



BIBLIOGRAPHY

h∞ stabilization for polynomial fuzzy time-delay system: A sum-of-squares ap-

proach.

IEEE Transactions on Fuzzy Systems, 26(6):3630–3644, 2018.

[138] Chung-Shi Tseng and Bor-Sen Chen.

H/spl infin/decentralized fuzzy model reference tracking control design for nonlin-

ear interconnected systems.

IEEE Transactions on fuzzy systems, 9(6):795–809, 2001.

[139] Toshimitsu Ushio.

Control of chaotic synchronization in composite systems with applications to secure

communication systems.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 43(6):500–503, 1996.

[140] Bo Wang, Hadi Jahanshahi, Christos Volos, Stelios Bekiros, Abdullahi Yusuf,

Praveen Agarwal, and Ayman A Aly.

Control of a symmetric chaotic supply chain system using a new fixed-time super-

twisting sliding mode technique subject to control input limitations.

Symmetry, 13(7):1257, 2021.

[141] Guang-Yi Wang, Yan Zheng, and Jing-Biao Liu.

A hyperchaotic lorenz attractor and its circuit implementation.

Acta Physica Sinica, 56(6):3113–3120, 2007.

[142] Xing-Yuan Wang and Ming-Jun Wang.

A chaotic secure communication scheme based on observer.

Communications in Nonlinear Science and Numerical Simulation, 14(4):1502–

1508, 2009.

[143] Zhen Wang, Xia Huang, and Guodong Shi.

Analysis of nonlinear dynamics and chaos in a fractional order financial system

with time delay.

Computers & Mathematics with Applications, 62(3):1531–1539, 2011.

[144] Ian H Witten, Radford M Neal, and John G Cleary.

Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540, 1987.

90



BIBLIOGRAPHY

[145] Chai Wah Wu and Leon O Chua.

A unified framework for synchronization and control of dynamical systems.

International Journal of Bifurcation and Chaos, 4(04):979–998, 1994.

[146] Xiangjun Wu, Hui Wang, and Hongtao Lu.

Modified generalized projective synchronization of a new fractional-order hyper-

chaotic system and its application to secure communication.

Nonlinear Analysis: Real World Applications, 13(3):1441–1450, 2012.

[147] Tao Xiang, Jinyu Qu, and Di Xiao.

Joint spiht compression and selective encryption.

Applied Soft Computing, 21:159–170, 2014.

[148] Xiaohui Xu.

Generalized function projective synchronization of chaotic systems for secure

communication.

EURASIP Journal on Advances in Signal Processing, 2011(1):14, 2011.

[149] Yong Xu, Hua Wang, Yongge Li, and Bin Pei.

Image encryption based on synchronization of fractional chaotic systems.

Communications in Nonlinear Science and Numerical Simulation, 19(10):3735–

3744, 2014.

[150] Vijay K. Yadav, Rakesh Kumar, A.Y.T. Leung, and Subir Das.

Dual phase and dual anti-phase synchronization of fractional order chaotic systems

in real and complex variables with uncertainties.

Chinese Journal of Physics, 57:282 – 308, 2019.

[151] Müstak E Yalçin, Johan AK Suykens, and Joos Vandewalle.

Master–slave synchronization of lur’e systems with time-delay.

International Journal of Bifurcation and Chaos, 11(06):1707–1722, 2001.
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  :ملخص

 

توفر هذه الأطروحة نظام اتصال آمنًا يعتمد على الوضع الانزلاقي الأمثل للمراقبين 

وأنظمة تشوا الفوضوية الجزئية. على جانب الباعث ، يتم استخدام نظام خطوة بخطوة 

فوضوي من أجل كسري كنظام محرك الأقراص لإنشاء إشارة الرسالة المشفرة. يتم 

ديناميكيات الفوضوية عن طريق الإدخال بدلاً من السري في التعديل رسالة الإدخال 

إدخالها مباشرة في الإشارة الفوضوية على خط الإرسال. على جانب جهاز الاستقبال ، 

يقُترح مراقب فوضوي من الدرجة الجزئية خطوة بخطوة يخضع لمدخلات غير محددة 

ز الاستقبال, تم اختيار كنظام استجابة للحصول على مزامنة قوية بين الباعث وجها

معاملات مراقب الوضع المنزلق خطوة بخطوة على النحو الأمثل باستخدام خوارزميتين 

للتحسين: التحسين الذكي المعروف محسن الذئب الرمادي وخوارزمية الطائر الطنان 

على جانب جهاز الاستقبال ، يتم الحصول على تقدير  تحقيق التزامن. بعد  الاصطناعي

الحالة بنجاح ، مما يؤدي إلى إعادة البناء الدقيقة للمعلومات السرية التي تحتوي متغير 

.على إشارة ونص عادي ورسالة صوتية  

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

 

 

 

 

 

Résumé : 

 

Cette thèse fournit un système de communication sûr basé sur des 

observateurs pas à pas optimaux en mode coulissant et des 

systèmes chaotiques à ordre fractionnaire de Chua. Côté émetteur, 

un système chaotique à ordre fractionné est utilisé comme 

système de lecteur pour créer le signal de message crypté. Le 

message secret d'entrée est modulé dans la dynamique chaotique 

par insertion plutôt que d'être directement inséré dans le signal 

chaotique sur la ligne de transmission. Côté récepteur, un 

observateur chaotique étape par étape d'ordre fractionnaire 

soumis à une entrée non identifiée est suggéré comme système de 

réponse pour obtenir une synchronisation robuste entre l'émetteur 

et le récepteur. Les paramètres de l'observateur pas à pas en mode 

coulissant ont été sélectionnés de manière optimale à l'aide de 

deux algorithmes d'optimisation: l'optimisation intelligente bien 

connue Optimizer loup gris et l'algorithme de colibri artificiel. Nous 

avons ensuite fait une comparaison entre les deux afin d'atteindre 

les meilleurs paramètres. Après la synchronisation est atteinte. 

Côté récepteur, l'estimation de la variable d'état est obtenue avec 

succès, ce qui conduit à la reconstruction précise des informations 

confidentielles contenant un signal, un texte brut et un message 

vocal. 
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