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General Introduction

I Introduction

Fault tolerant control has become one of the major concerns in the design of complex automated systems

[1, 2]. because of the complexity of the processes and the increase of hardware or software technological

elements that are often integrated into the control loops of these systems. Indeed, many methods and

techniques based on dynamic models have been developed for the detection of anomalies, the treatment of these

anomalies and the decision making concerning the reconfiguration of the system or its objectives [3–6].. These

topics are often addressed in the FTC (Fault Tolerant Control) literature and have been the subject of much work

by the scientific community [7, 8].. Historically, precursor work in this area has been driven by aeronautical and

space applications [9, 10].

The frequency domain techniques have been the principal tools of analysis, modeling and design of lin-

ear dynamic systems, since the early days of control and system theory. However, the dynamic systems that

can be presented by a scalar mth order linear differential equations with constant coefficients,
n∑

i=0
ai y(n−i) =

m∑
i=0

biu(m−i), (n>m) [14] are amenable to this type of analysis see [12, 13]. These systems are mono variable

have a single input and a single output (SISO). In this case, they are modeled by a transfer function, i.e. A ratio

of two scalar polynomials. The dynamic properties of the SISO systems (stability, time response, etc...) depend

to large extent on the roots of the denominator or in other words on the solution of the underlying homogeneous

differential equation [15]. The denominator of such system is a scalar polynomial and its spectral characteristics

depend on the location of its roots (poles) in the complex plane, hence the factorization (roots finding) of scalar

polynomials is an important tool of analysis and design for linear dynamic systems (Dahimene A. et.al 2009).

For the multivariable systems with multi input and multi output (MIMO), the dynamics can be presented by

high-degree coupled vector differential equations i.e. lth degree mth order vector linear differential equations

with constant matrix coefficients
l∑

i=0
A i y(l−i) =

l∑
i=0

Biu(l−i), [16, 17], and can be considered as an extension

to the scalar case resulting in matrix transfer functions. When one studies high order multivariable systems,

the dimension of the matrices involved becomes prohibitive. Therefore, there is a reappearance nowadays of

matrix transfer function (which become rational matrices) descriptions on distinguished two cases left and

right descriptions [15–17]. In this context, the properties of the studied dynamic system are to a large extent

determined by the latent roots and /or the spectral factors of a matrix polynomial. Therefore, Many research

papers have been published in the past and recent years about the matrix polynomial theory and their applications

in systems and control theory. References [18–24] are a few samples of this trend. The modern standard linear

system theory is well covered in [14, 25, 26]. The Polynomial matrix approach to linear multivariable system
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GENERAL INTRODUCTION

analysis and design became popular since 1970’s [27–30].

II Motivation and Problem Statement

In the modelling of the dynamic systems or power plants, several descriptions can be used to represent them. Two

commonly used model descriptions for linear time-invariant multivariable systems are the state space description

(SSD) and the transfer function matrix description (TFMD) or matrix fraction description (MFD) [32]. In this

thesis a linear multi-variable time-invariant system described by the following state space equations have been

considered: {
ẋ/x (k+1)= Ax(k)+Bu(k)

y(k)= Cx(k)
(1)

Where A is system or state matrix, B is control or input matrix, C is observer or output matrix and D is

coupling or transmission matrix. The behavior of these such systems can be studied via the eigenstructure, the

eigenvalues and the eigenvectors, of the system matrix A, respectively. The eigenvalues and eigenvectors are

the major‚Äôs indicators which can directly and explicitly determine the system performance and robustness

than other indicators because are present the heart of the dynamic system. Hence their assignment (placement)

eigenvalues and eigenvectors, should improve the feedback system performance and robustness distinctly and

effectively. Eigenstructure assignment (placement) (EA) is the process or technique that applying a negative

feedback to a linear, time-invariant system with the objective of forcing the eigenvalues and eigenvectors to

become as close as possible to a desired eigenstructure [32].

Many research works have been done on EA and more specially on airspace and flight control systems such

as [33–44].

The system (I.1) can be also described by a m-inputs p-outputs transfer function G (s) in matrix fractions

description as follows:

G (s)= NR (s)DR(s)−1,G (s)= DL(s)−1NL (s) (2)

Where NR (s) , NL (s) , DR(s) , and DL(s) are matrix polynomials of degree equal or less to l, and of order m or

p. l being the controllability and/or the observability index. These matrix polynomials are polynomials which

theirs coefficients are matrices of right dimensions [32].

The feedback static or dynamic gain matrix permitting the assignment of the desired set of roots (eigenvalues,

poles) is not unique, this is due, in the case of block roots placement method, to the fact that different block

roots can be constructed from the same set of eigenvalues. i.e. block roots can be placed in the right and the

left matrix polynomial, can be also placed in several forms (controller, observer, diagonal, general‚Ä¶etc.) of

block roots which contain the same eigenvalues, the degree of freedom offered by the choice of the block roots

could be exploited to satisfy some desired closed loop system performances (the system response characteristics,

robustness, tracking, decoupling, regulation, etc...). This can be done by choosing the structure of the roots to be

placed which gives the best and optimal feedback gain matrix that achieved the desired objectives. In the static

state feedback case, the problem assumes that all states considered are measurable. Unfortunately, and this is

impractical for many systems. For this reason, a static output feedback matrix gain, or dynamic compensator are

studied in this thesis. Many research papers have considered using block roots of matrix polynomials for solving

some linear algebra problems or control system problems such as [45–52].

In this thesis, we are going to investigate the effect of the bloc roots of matrix polynomial on the performance

specifications of some famous controllers laws, and trying to proposing a mathematical algorithms that we can

2
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integrating the block roots in its design, such as sliding mode control theory [16]. The selection of the optimal

and the robust block roots of matrix polynomial in some times can be considered as problem, should be solved.

Also the matrix fraction description of the studied dynamic system presented in (2) with integer-order, if we

consider this description has a no integer-order, how we can design a controller law for this important case

of system, how can assign the set of block roots for this kind of matrix polynomials of fractional order (no

integer-order), have they the same specification such as the matrix polynomials with integer order ?. All of this

problems can be solved based on, proposed algorithms and approaches using some mathematical tools, with the

extension of some famous definitions and theorems.

III Thesis Objectives

The objectives of this thesis are the following:

• Propose an approach for the design of robust state-feedback controllers in presence of uncertain system

parameters based on block roots assignments.

• Propose an approach for the design of robust output-feedback controllers in presence of uncertain system

parameters based on matrix fraction description proprieties.

• Using the metaheuristics optimization algorithms to select the best block roots that can guarantee some

desired performances despite the uncertainties.

• Design a robust interval observer for faults detection based on block roots of matrix polynomials.

• Design a robust faults detection approach based on fuzzy logic expert system.

• Trying to extend the matrix polynomials and the bloc roots concepts from the integer-order to the

fractional-order.

IV Thesis Outline

The thesis is organized in five chapters:

Chapter 1 The first chapter presents a background about the three mean points used in this thesis:

1. A background about the matrix polynomial and their applications and uses in multivariable control system

design, where a historical overview on the right and the left matrix fraction description (MFD), The Block

Roots concept, the Vandermonde matrix, and its applications in modelling, estimation and observation

domain.

2. A background about Fault Tolerant Control (FTC), and their classification into three categories: Hardware

Redundancy Techniques (HRT), Passive Fault Tolerant Control (PFTC), and Active Fault Tolerant control

(AFTC).

3. A background about Fault Detection and Diagnosis (FDD) and their classifications.
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GENERAL INTRODUCTION

Chapter 2 The second chapter proposed a state feedback controller designed based on combination of the

block roots of matrix polynomial and sliding mode algorithm, where the proposed controller is addressed to

the multivariable LTI systems, in this design all the system states assumed to be available and measured in the

output, an investigation on a gas turbine system (GE MS5001P) is carried out, which is used in electrical power

generation plants, where the dynamic model of this gas turbine is obtained based on experimental data obtained

on site, the obtained results of this implementation show the stability robustness of this proposed algorithm.

Sometimes is difficult and expensive to have the measurement of the whole state vector, because of technical

reasons (unmeasurable or un-accessible variables) or economic aspect (price of sensors). For this reason, several

control algorithms have been developed that use only output information to control the system. The next part of

this thesis treats this drawback.

Chapter 3 The third part presents an optimal static output-feedback (SOF) controller algorithm for multivari-

able LTI systems is designed. The key idea is to exploit the canonical Block Transformations (BTs) matrices

of the block controllability and observability respectively. The objective is to define the unknown closed-loop

system (CLS) dynamics that is completely characterized in terms of the block matrix called the heart matrix Ah.

The optimal Ah block matrix, that guarantees the stability of the CLS, is computed using Genetic Algorithms

(GAs), considering the best selection CLS specifications. To illustrate the performance of the proposed SOF

controller, highlight some important characteristics, and to prove its efficiency, a centrifugal gas compressor

system is introduced as case study. Based on this application, a comparative study is carried out, using several

optimization techniques (Particle Swarm Optimization (PSO) and Interior-Point Method (IPM)) and a recent

H∞ controller approach, to demonstrate the feasibility of our proposed design methodology.

Chapter 4 The fourth chapter divided into two parts:

First part presents a Robust Faults detection Based on Interval Type II Fuzzy logic, where the expert

system is designed based on Type-2 Fuzzy logic, and the Kalman observer is used to filtered the noised output

signals, where the main aim is to improve the whole studied system energy efficiency taking into account the

economic aspect, the present work is achieved by an important task which is the prediction of the remaining

time of the system under study to reach the danger and/or the failure stage based on the ARIMA model, where

the objective within the industrial application is to set of the maintenance schedules in time and precisely .The

obtained results prove the performance of the proposed faults diagnosis and detection.

Second part propose a optimal interval observer, its design is based on block roots of matrix polynomial

and grey wolf optimizer addressed to the multivariable uncertain systems, the choice flexibility of the block roots

is play a key role for the design of the observer matrix gain L, the obtained results of application of this proposed

interval observer in fault detection proves its validity and superiority comparing with the first approach.

Chapter 5 The fifth part presents a Multivariable Optimal Fractional-order PIµDλ Controller Design Subject

to Robust FTC The multivariable fractional-order PIµDλ Controller is designed based on optimal pseudo block

roots which are chosen using Grey Wolf Optimizer (GWO), the main idea is to assign a set of desired pseudo

block roots to the close loop system (CLS), and solving the obtained quasi diophantine equation and the pseudo

Sylvester matrix, using linear system equations solver tool, in order to obtained the matrices gains of the PIµDλ

Controller K p, K i and Kd respectively, the tuning of the fractional integrator and derivative parameters λ and µ

4
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respectively is done based on GWO, the proposed controller is subjected to passive FTC applied on centrifugal

gas compressor system, the obtained results show the best performance and stability of this controller despite in

the presence of the uncertainties and the injected disturbance on the whole of the studied dynamical system.
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Background in Fault Detection and Fault Tolerant

Control

1 Introduction

The increase in productivity, quality and availability of industrial systems are major issues, mainly related to the

safety and reliability of these industrial facilities (safety of people, the environment and equipment). Recently,

several modern methods have been designed to control the dependability of industrial systems, aim to increase

production rates while reducing maintenance time, these methods focus on the achievement of an effective

diagnosis to these systems. impaired by faults or malfunctions [1]. Fault tolerant control (FTC) is the name given

to all those techniques that are capable of maintaining the overall system stability and acceptable performance in

the presence of faults. In other words, a closed-loop system which can tolerate component malfunctions, while

maintaining desirable performance and stability properties is said to be a fault tolerant control system (FTCS)

[1]. In this chapter, the main concepts of fault tolerant control and fault detection are presented, as well as the

different methods and approaches used in this field. The disadvantages and advantages of each method presented

will be highlighted.

2 Background in Fault Detection strategies

2.1 Basic principle of diagnosis

The increase in monitoring can be achieved by improving the diagnostics of the functional units but also by

implementing a maintenance strategy adapted to the installation studied.

A diagnostic system must therefore be able to perform the following three essential steps: fault detection,

fault location and fault identification. The implementation of such an approach need to generate indicators of

faults or symptoms, then to correctly interpret these symptoms to determine the origin of the fault, that is to

say the element with abnormal operation and finally to make a decision for a return to normal operation of the

installation . The development of a structure such as that presented Figure. 1.1 requires the exploitation of all the

knowledge available on the installation [2–4].

9



CHAPTER 1. BACKGROUND IN FAULT DETECTION AND FAULT TOLERANT CONTROL

Figure 1.1: General structure of a diagnostic system

2.2 Diagnostic assistance approach

The different arrangements to be made beforehand in order to carry out an active diagnostic assistance approach

[2, 3, 5–8]:

• Study of the technical and economic interest of the implementation of the diagnostic system taking into

account the experience feedback on the costs of failures,

• Study of the technical reliability of the diagnostic assistance system to ensure that techniques and

technologies are available and operational for the problem to be solved,

• Creation of a project team with all stakeholder to define and write the detailed specification book,

• Validation of the specifications by the managers of the company for the launch of the realization and its

implementation,

• Training and information of stakeholder for effective use of the diagnostic support system,

• Realization and implementation of the on-site diagnostic assistance system,

• Establishment of feedback to evaluate the economic and social impacts of the diagnostic support system

[3, 9, 10].

2.3 Different stages of industrial diagnosis

The different phases of industrial surveillance essential to the design, realization and use of diagnostic assistance

techniques are illustrated in Figure. 1.2. These different stages of the industrial diagnosis are summarized as

10
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follows [12, 13].: Acquisition of data, Generation of fault indicators, Detection of faults and localization a
fault.

The purpose of the localization is to locate a detected fault occurring on the actuators, on the sensors, on the

command or the controlled system, indicating which organ or component is affected by:

Fault Identification : The determination of the size and temporal behavior of a fault.

Making Decision : This involves deciding on the steps to follow to keep the desired performance of the system

under control [2, 3].

Figure 1.2: Different stages of industrial diagnosis

11



CHAPTER 1. BACKGROUND IN FAULT DETECTION AND FAULT TOLERANT CONTROL

2.4 Classification of diagnostic methods based on models

In this part, we will represent a classification of diagnostic techniques, divided into two main families: Quantita-

tive techniques, based on a characterization of the signals input / output systems or techniques and techniques

using the concept of artificial intelligence, called qualitative diagnosis, as shown in Figure. 1.3.

Figure 1.3: Classification of diagnostic methods

3 Background in Fault Tolerant Control

A fault tolerant system has the ability to maintain nominal goals despite the occurrence of a fault and to

accommodate it automatically. In particular, it makes it possible to guarantee system stability and / or

acceptable performance in the presence of faults [9, 19, 20]. Despite the fact that a standard control

scheme ensures the desired stability and performance of the system in the nominal case, it is very limited and

can guide the system towards uncontrolled behavior or even instability. in the presence of a fault. To overcome

such shortcomings, particular control laws, taking into account the effect of the fault, have been developed with

the precise aim of protecting the desired performances. The FTC problem has begun to draw more and more

attention in a wider range of industrial and academic communities, due to the increased safety and reliability

demands beyond what a conventional control system can offer. FTC applications include aerospace, nuclear

power, automotive, manufacturing and other process industries.

The current FTC methods can be classified into three categories:

• Hardware redundancy techniques

• Analytical redundancy techniques: passive fault tolerant control (PFTC)

• Analytical redundancy techniques: active fault tolerant control (AFTC).

3.1 Hardware Redundancy Techniques

In principle, the tolerance to control system failures can be improved if two or more sensors/actuators, each

separately capable of satisfactory control, are implemented in parallel. This approach is referred to as hardware

redundancy. A voting scheme is used for the redundancy management, comparing control signals to detect and

12
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overcome failures.With two identical channels, a comparator can determine whether or not the control signals

are identical; hence, it can detect a failure but cannot identify which component has failed. Using three identical

channels, the control signal with themiddle value can be selected (or voted), assuring that a single failed channel

never controls the plant. A two-channel system is considered fail-safe because the presence of a failure can be

determined, but it is left to additional logic to select the unfailed channel for control. The three-channel system

is fail-operational, as the task can be completed following a single failure. Systems with four identical control

channels can tolerate two failures and still yield nominal performance. Problems encountered in implementing

hardware redundancy include: selection logic, reliability of voting, increased hardware and maintenance costs.

3.2 Passive Fault Tolerant Control Techniques

The passive FTC techniques synthesize a controller so that the closed-loop system is stable, or has some desired

performance, for some combinations of failure elements defined a priori. This is done by using the results in the

robust control area, considering faults as if they were uncertainties or system perturbations. In particular, the

term passive indicates that no actions are required by the FTCS after the prescribed faults have occurred during

the system‚Äôs operation.

This approach has the advantage of needing neither fault diagnosis schemes nor controller reconfiguration,

but it has limited fault tolerant capabilities and the price to pay for its simplicity is a loss of performance with

respect to the nominal case. Also, in passive FTC no time delay exists between the fault occurrence and the

corresponding action. For these reasons, the design of passive FTCS has attracted a lot of attention from the

academic community [4]. A good historical overview about development and research of passive FTC techniques

can be found in [5]. Some of the passive FTC approaches found in the literature are: reliable linear quadratic

(LQ), H‚àû robust control and passive FTC using LMIs.

• Reliable Linear Quadratic (LQ) Approach

• H∞ Robust Control

• Passive FTC Using Linear Matrix Inequalities (LMIs)

Figure 1.4: Different steps of fault tolerant control

3.3 Active Fault Tolerant Control Techniques

As pointed out in [2], an active FTC system can be typically divided into four subsystems:

• a reconfigurable controller
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• a fault diagnosis scheme

• a controller reconfiguration mechanism

• a command/reference governor

The inclusion of both a fault diagnoser and a reconfigurable controller within the overall control system scheme

is the main feature distinguishing active FTC from passive FTC. Key issues in active FTC consist in how to

design:

• a controller that can be reconfigured

• a fault diagnosis schemewith high sensitivity to faults and robustness against model uncertainties, variations

of the operating conditions, and external disturbances

• a reconfiguration mechanism that allows recovering the pre-fault system performance as much as possible,

in presence of uncertainties and time delays in the fault diagnosis, as well as constraints on the control

inputs and the allowed system states

Based on the online information of the post-fault system, the reconfigurable controller should be designed to

maintain stability, desired dynamic performance and steady-state performance. In addition, in order to ensure

that the closed-loop system can track a desired trajectory under fault occurrence, a reconfigurable feedforward

controller often needs to be synthesized. Also, a command/reference governor that adjusts the reference trajectory

automatically should be added to avoid potential actuator saturation and to take into consideration the degraded

performance after fault occurrence.

Some of the existing active FTC techniques that can be found in the literature are the following: linear

quadratic (LQ), pseudo-inverse method (PIM), intelligent control (IC), gain-scheduling (GS), model following

(MF), adaptive control (AC), multiple model (MM), integrated diagnostic and control (IDC), eigenstructure as-

signment (EA), feedback linearization (FL)/dynamic inversion (DI), model predictive control (MPC), quantitative

feedback theory (QFT) and variable structure control (VSC)/sliding mode control (SMC).

Anyway, even if each individual control design method has been developed separately, in practice a combi-

nation of several of thesemethods may bemore appropriate to achieve the best performance.

Figure 1.5: Different steps of fault tolerant control
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Figure 1.6: Different steps of fault tolerant control
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Fault Tolerant Control (FTC) techniques

Hardware Redundancy Techniques Active FTC TechniquesPassive FTC Techniques

Optimal Control (LQ) Approach

Pseudo-inverse Method (PIM)

Intelligent Control (IC)

Gain-Scheduling (GS)

Model Following (MF)

Adaptive Control (AC)

Multiple Model (MM)

Integrated Diagnostics and Control (IDC)

Eigenstructure Assignment (EA)

Feedback Linearization (FL)

Dynamic Inversion (DI)

Model Predictive Control (MPC)

Quantitative Feedback Theory (QFT)

Variable Structure Control (VSC)

Fractional Order Controllers (FOC)

Block Roots Assignment (BRA)

Reliable Linear Quadratic (LQ) Approach

H∞ Robust Control

Linear Matrix Inequalities (LMIs)

Stable coprime factorizations

Graphic-based method

Return difference matrices

Parameter space method

Pole placement technique

PI control strategy

Adaptive control

Hamilton-Jacobi inequality

Variable structure control

Passivity theory

Lyapunov-based theory

Fuzzy control

Sliding Mode Control

Figure 1.7: General structure of a diagnostic system
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4 Conclusion

In this chapter we have presented different methods for the realization of FDI structures using observers. The

diagnosis of failures and degradation is an essential element in the industry where each company chooses one

or more diagnostic methods according to its maintenance policy and according to the field of applications. It

is done in three stages. The first step is the detection of faults that solves the problems of thresholding of the

residues, the second step corresponds to the location step for obtaining optimal structures of fault signatures.

And finally, the identification stage that defines the default type that appears in this situation. As a result of this

work, we became interested in model-based diagnostic methods obtained by artificial intelligence techniques for

the treatment of gas turbine system vibration problems. The next chapter aims to make the vibration detection

and localization step more robust.
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1 Introduction

The loss of monitoring in the stability of some important industrial processes causes a dramatic accidents

that can lead to many severe problems and damages, such as human accident, loss of production, damage

of equipments and assets...etc.

The main contribution of the present work is to developed a stability control algorithm which is based on

state feedback matrix static gains, where the availability and the measurability of the states in the outputs should

to be ensured, the design of the proposed controller is based on matrix fraction description and the block roots of

matrix polynomials, in this chapter, the proposed and the developed stability control technique is applied on a gas

turbine system which presents a very complex industrial systems. This system is an internal combustion engine

which uses the gaseous energy of air, convert the chemical energy of the fuel into mechanical energy, indeed, gas

turbines are also called combustion turbines, and it is one of the most important parts of modern industry using

this type of machinery, different comparison study is introduced in this chapter to prove the domination of the

proposed controller.

2 Preliminaries and Problem Statement

Let consider the following linear single-input continuous-time dynamic model of spring-mass-damper system,

which is described by dynamic state as:

(
ẋ1

ẋ2

)
=

(
0 1

α β

)(
x1

x2

)
+

(
0

1

)
u (2.1)

Define a line in the state space, shown in Figure. 2.1, as follows:

s (t)= x2 (t)+λx1 (t) , λ> 0 (2.2)
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x(k)

x1(t)

x(k + 1)x2(t)

s < 0

s > 0

s(t/k) = 0

Figure 2.1: Phase portrait under Sliding mode control effect

When s = 0, the line passes through the origin of the state space, and this line will be called the sliding line.

The first objective is to ensure that the system will reach this line from any initial conditions in a finite time and

will remain on this line after reaching it. The condition to achieve this objective is called reaching or attractive
condition Slotine and Coet see [1] and is described as

ṡ =−δsgn (s) , δ> 0 (2.3)

where the sign function sgn(s) is defined as follows:

sgn (s)=
{

+1 if s > 0

−1 if s < 0
(2.4)

When s > 0, ṡ is a negative constant δ, and s will decrease linearly to s = 0 in a finite time. Similarly, when s < 0,

ṡ is a positive constant δ, and s will increase linearly to s = 0 in a finite time. The condition (2.3) is also written

as

sṡ < 0 (2.5)

When the system remains on the sliding line, ṡ = 0. The corresponding input u is called the equivalent control,
ueq, and is obtained by differentiating (2.2) and using state equations (2.1):

ṡ =αx1 +
(
β+λ)

x2 +u (2.6)

For ṡ = 0,

ueq =−αx1 (t)− (
β+λ)

x2 (t) (2.7)

Therefore, to satisfy the reaching condition (2.3), the control law is

u (t), ueq (t)−δsgn (s) (2.8)

On the sliding line, u (t)= ueq and state equations (2.1) become(
ẋ1

ẋ2

)
=

(
0 1

0 −λ

)(
x1

x2

)
(2.9)

The eigenvalues of this system are 0 and -λ. The zero eigenvalue reflects the fact that the system is constrained

to remain on the s = 0 line. Hence, the effective dynamics on the sliding line is represented by -λ, which is in the
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left half of the complex plane when λ> 0. Here, the effective dynamics can also be derived from (2.2) by using

the first state equation and s = 0:

ẋ1 +λx1 = 0 (2.10)

In summary, the sliding mode control input has two parts: linear and nonlinear. The nonlinear part, sgn function,

ensures the reaching condition. After the system has reached the sliding line, the control law is linear full state

feedback seen (2.7).

Problem statement Generalized this full state feedback sliding mode controller to the class of discrete-time

multi-inputs/multi-outputs (MIMO) systems using the concept of the matrix polynomials, and obtaining the

robust matrix G which achieves the global stability in closed loop system as shown in Figure. 2.2, and this based

on block roots assignments and tangent hyperbolic function. The next section presents the proposed algorithm

steps which solve this problem with detail.

∑

(G, η, s, sgn)

Origin X

U

Linear MIMO
System

Figure 2.2: Schematic of SSF controller gain stabilization.

3 Main results

The MIMO linear invariant discrete-time system can be described in dynamic state equation as follows:

x(k+1)= Ax(k)+Bu(k) (2.11)

Where A ∈Rn×n, B ∈Rn×m

For m inputs, there are m new planes in the state space obtained by this definition:

si(k)= gT
i x(k) , i = 1 2 ... m (2.12)

These new planes pass through the origin of the state space, by deriving (2.12) with respect to k and substituting

into (2.11) we obtain

si(k+1)= gT
i x(k+1)= gT

i Ax(k)+ gT
i Bu(k) (2.13)

(2.13) can be rewritten in a matrix form as follows:

s(k+1)=GAx(k)+GBu(k) (2.14)

Where, s(k) = [ s1(k) s2(k) . . . sm(k) ]T , and G = [ g1 g2 . . . gm ]T , from (2.12), it is also

noted that

s(k)=Gx(k) (2.15)
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To ensure that the state variable x(k) slides toward the surface, the two conditions have to be satisfied, s(k)= 0

and =⇒ s(k+1)= 0, this is the case where the intersection of the all m sliding plans, crosses the origin of the

state space, therefore from (2.14) the equivalent control ueq(k) can be written as follows:

ueq(k)=−(GB)−1GAx(k) (2.16)

The matrix GB has been assumed to be nonsingular.

In order to reduce the undesirable chattering phenomenon, the hyperbolic tangent function (Tanh) was proposed

in several previous works as shown in Figure. 2.3, [2–5]. Indeed, it presents a robust compensator which provides

and switches the control action smoothly and ensures avoiding the chattering phenomenon. This robust compen-

sator is continuously differentiable with respect to the both variables, the time variable k, and the surface control

variable s(k) which guarantees the asymptotic stability. In comparison with the conventional bang-bang signum

(Sign) and saturation (Sat) functions, it can be said that the superiority of the robust compensator based on

hyperbolic tangent function in ensuring a smooth control input and the stability convergence of the closed-loop

system can be achieved [5], consequently, the discontinuous (switching) control ud can be expressed as follows:

ud =βtanh (s(k)) (2.17)

Where, the whitening sliding gain matrix β is chosen as a diagonal positive matrix, and a much better reaching

law condition for each plane is given by [6] and described in Figure. 2.1 It takes the following form:

|s(k+1)| < |s(k)| (2.18)

A suitable control law u satisfying the reaching condition law as presented in (2.18), will guarantee to all the

state trajectories to be remaining within a domain of decreasing or at the worst case within a domain of non

increasing radius. The inequality presented in (2.18) can be decomposed into two inequalities as follows:

[s(k+1)− s(k)] tanh (s(k))< 0 (2.19)

and

[s(k+1)+ s(k)] tanh (s(k))≥ 0 (2.20)

The sliding control law which satisfies all conditions takes the following form:

u = ueq +ud (2.21)

Finally, the control law is selected as follows:

u(k)= ueq(k)+βtanh (s(k)) (2.22)
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Sign

Sat

Tanh

−1

Figure 2.3: Comparison between the Sign, Sat and Tanh functions

3.1 The calculation of robust sliding matrix gain G

The similarity transformation proposed in this paper is defined as follows:

p(k)= Fx(k) (2.23)

Where,

F =
(

Nr
... B

)
(2.24)

Nr : Right kernel (null space) of matrix BT , such that

BT Nr = 0 (2.25)

The state variable is obtained as follows:

x(k)= F−1 p(k)

Based on (2.11) and (2.23) the following system is obtained:

p(k+1)= As p(k)+Bsu(k) (2.26)

Where, As = F AF−1 and Bs = FB.

The singular value decomposition (SVD) of a matrix BT ∈Rm×n may be written as

BT =UΣV T (2.27)

The right null space Nr of a matrix A is the columns of V corresponding to singular values equal to zero. From

[7] and [8], the columns of the n× (n−m) matrix Nr are composed of basis vectors of the right null space of BT .

Because of the special structure of the matrix F, the first (n−m) rows of Bs turn out to be zeros. Hence, the

new state vector p(k) is decomposed as follows:

p(k)=
(

p1(k)

p2(k)

)
(2.28)
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Where p1(k) and p2(k) are (n−m) and m dimensional vectors, respectively, partitioning the dynamic state

(2.26) (
p1(k+1)

p2(k+1)

)
=

(
As11 As12

As21 As22

)(
p1(k)

p2(k)

)
+

(
0

Bsr

)
u(k) (2.29)

The sliding planes can take the following forms

s(k)= p2(k)+K p1(k) (2.30)

Where K ∈Rm×(n−m) is gain matrix

s(k)=
(

K Im

)(
p1(k)

p2(k)

)
(2.31)

s(k)=
(

K Im

)
Fx(k)

Equating (2.15) with (2.31), the sliding matrix G is obtained such as

G = [K Im]F (2.32)

(2.32) indicates that the determination of the sliding matrix G elements depends on the calculation of the matrix

K elements. The stability of the dynamic system can be ensured on the intersection of the all sliding plans, when

the condition of s(k)= 0. Consequently, the following expression is obtained:

p2(k)=−K p1(k) (2.33)

(2.25) yields, {
p1(k+1)= As11 p1(k)+ As12 p2(k)

p2(k+1)= As21 p1(k)+ As22 p2(k)+Bsru(k)
(2.34)

From the first dynamic state of (2.34), p2(k) is considered as the input, whereas (2.33) presents the state feedback

law, [8] demonstrated that (As11, As12) are controllable if (A,B) are controllable.

The design of the matrix gain K can be achieved based on the use of the MFD theory by assigning robust

block roots, that allow to ensure the stability of the eigenvalues of the new matrix (As11 −K As12) ( their values

are kept within the unit circle). To prove the effectiveness of the proposed control, a comparison with classical and

advanced algorithms, such as pole placement [9], Discrete-time linear quadratic regulator [10], Eigen-structure

assignment [11], and State and State Derivative Feedback [12] is presented in this paper.

From (2.11) and (2.16), the system dynamics on the intersection of sliding planes is given by

x(k+1)= (
A−B(GB)−1GA

)
x(k) (2.35)

3.2 The computation of matrix gain K via robust block roots assignment

3.2.1 A polynomial matrix

Given a set of complex matrices {A0, A1, . . . , Al} of dimension Rm×m, the set of the following matrix is the

matrices coefficients of the λ polynomial matrix of degree l and order m.

A (λ)= A0λ
l + A1λ

l−1 + . . .+ Al−1λ+ Al (2.36)

Consider the system described by the following Discrete-time dynamic state equation

p1(k+1)= As11 p1(k)+ As12 p2(k) (2.37)
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where, As11 ∈R(n−m)×(n−m) and As12 ∈R(n−m)×(m) the transformation of the system into the block controllable

form needed to checking both essential conditions

• The number (n−m)/m = l is an integer.

• The matrix Wc is of full rank (n−m).

Remark 1. If l is not an integer, the dimensions of the system (2.11) and first dynamic (2.34) do not verify the

previous condition then, according to [13], the system can be extended by adding a set of low (non-dominant)

stable eigenvalues on the diagonal entries of the state matrix A so that the condition is fulfilled.

Block controllability matrix

Wc =
(
As12 As11 As12 . . . As

l−1
11 As12

)
(2.38)

Then, the transformation matrix Tc [14] is given as follows:

Tc =



Tcl

Tcl As11
...

Tcl As
l−2
11

Tcl As
l−1
11


, Tcl = (Om Om . . . Im)W−1

c (2.39)

The new dynamic system state equation becomes:

p1(k+1)= Ac p1(k)+Bc p2(k) (2.40)

with, Ac = Tc As11Tc
−1, Bc = Tc As12

Ac =



Om Im · · · Om

Om Om · · · Om
...

Om

...

Om

· · ·
· · ·

...

Im

−Al −Al−1 · · · −A1


,Bc =



Om

Om
...

Om

Im


.

3.2.2 The concept of block roots (solvents)

The l block roots R ∈ Rm×m are the solvents of the λ polynomial matrix A (λ), there exist two types of roots

right and left, in this algorithm just focusing for assigning a right block roots.

3.2.3 The right solvent

Given the polynomial matrix of order m and degree l defined by:

DR (z)= Imzl + A1zl−1 + . . .+ Al (2.41)

A right solvent defined by R ∈Rm×m matrices satisfying:

DR (R)= A0R l + A1R l−1 + . . .+ Al−1R+ Al = 0m (2.42)

25



CHAPTER 2. MULTIVARIABLE ROBUST STATIC STATE-FEEDBACK CONTROLLER DESIGN

How To choose the closed-loop block roots (Regulator Block Roots) The characteristic polynomial matrix

of the feedback gain matrix is obliged to equal a wanted polynomial matrix Dd(λ), which may be extracted from

a set of desired block roots R ∈Rm×m, these right block roots are to be selected from class of stable eigenvalues

chosen in the dominant zone and without consuming the dynamics of the system in the same time, there are

many forms will be selected (controller/observer and diagonal/general forms), the diagonally form is restricted

in this research.

R =



λ1...(n−m)︷ ︸︸ ︷
λ1 0 0

0
. . . 0

0 0 λm


︸ ︷︷ ︸

R1

, . . . ,


λn−2m 0 0

0
. . . 0

0 0 λn−m


︸ ︷︷ ︸

Rl


(2.43)

The condition of complete set roots Consider the set of solvents {R1,R2, . . . ,Rl} extracted from the eigenval-

ues (λ1,λ2, . . . ,λn) of a matrix Ac, where {R1,R2, . . . ,Rl} is a complete set of roots if and only if:
σ (Ri)∪σ

(
R j

)=σ (Ac)

σ (Ri)∩
(
R j

)=;

det(Vr (R1,R2, ... , Rl )) 6= 0

(2.44)

Where, σ Denotes the spectrum of the matrix and Vr is the Right Block Vandermonde matrix corresponding to

{R1,R2, . . . ,Rl} given as:

Vr (R1,R2, . . . ,Rl)=


Im Im · · · Im

R1 R2 · · · Rl
...

...
. . .

...

R1
l−1 R2

l−1 · · · Rl
l−1

 (2.45)

The conditions for the existence of the complete set of roots have been proved by [15].

Remark 2. A right block vandermonde matrix extracted from a complete set of roots of a polynomial matrix is

assumed and must to be nonsingular.

Remark 3. Based on the characteristics of the matrices diagonalization [7], and by using the definition presented

by [7], if the matrix of the desired block roots diag([λ1 · · · λm]) is diagonalizable or a diagonal matrix, there

exists an invertible matrix Pr which can transform it into an equivalent matrix R which is also diagonalizable

or a diagonal matrix and it maintains its same previous eigenvalues. The transformation equation is given as

follows:

R, Prdiag([λ1, · · · ,λm])Pr
−1 (2.46)

The invertible matrix Pr is chosen initially randomly until the optimal eigenvectors are obtained.

Firstly, this transformation is used to select the best eigenvectors, which means that to obtain the desired

optimal block roots R, the optimal eigenvalues and the optimal eigenvectors are chosen separately. Secondly, to

avoid falling into cases of ill-conditioned and singularity problems, especially in the right block Vandermonde

matrix Vr, when VrV−1
r 6= I(n−m) which is corresponding to the case presented in this work.
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3. MAIN RESULTS

The extracting from a complete set of right block roots Let us consider a complete set of right block roots

{R1,R2, . . . ,Rl} for the polynomial matrix D(λ), if R j is a right block roots of D(λ) :

R j
l +D1R j

l−1 + . . .+Dl−1R j +Dl =Om (2.47)

D1R j
l−1 + . . .+Dl−1R j +Dl =−R j

l (2.48)

Replacing j from 1 to l, the following is obtained:[
Ddl ,Dd(l−1), . . . ,Dd1

]=−
[
R l

1,R l
2, . . . ,R l

l

]
Vr

−1 (2.49)

Where Vr is the right block Vandermonde matrix.

The state feedback design Consider the linear discrete-time dynamic system described by the previous first

state dynamic (2.34).

by applying of the state feedback p2 =−K p1(k) on the dynamic state equation, where K ∈Rm×(n−m) gain

matrix, after the transformation to the block controllable form, the following is obtained:

p2(k)=−Kc p1(k) (2.50)

K = KcTc =
[
Kcl ,Kc(l−1), . . . ,Kc1

]
Tc (2.51)

where, Kci ∈Rm×m i = 1 2 3 . . . l

Then, the dynamic state feedback equation is shown below

p2(k+1)= (Ac −BcKc) p1(k) (2.52)

Where

(Ac −BcKc)=



Om · · · Om

Om · · · Om
... · · · ...

Om · · · Im

− (Al +Kcl) · · · − (A1 +Kc1)


The polynomial matrix of the dynamic system under the feedback gain matrix control is

D (λ)= Imλ
l + (A1 +Kc1)λl−1 + . . .+ (Al +Kcl) (2.53)

From a set of desired eigenvalues (Regulator eigenvalues) constructed a set of right block roots ( Regulator block

roots), then the obtained characteristic polynomial matrix is extracted, by putting

Dd(λ)= D(λ)

Getting the coefficients Kci = Ddi − A i as follows:

Kci = (Ddi − A i) i = 1 2 3 . . . l (2.54)

Finally, the robust gain matrix K is obtained by the following formula

K = KcTc (2.55)
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4 The proposed algorithm steps

Summarizing all the important steps of the proposed controller

Algorithm 1 Robust static state-feedback controller algorithm

Step 1 Checking the ratio (n−m)/m = l must be an integer.

Step 2 Checking the rank of block controllability matrix Wc of system (2.11) which must equal to n (full rank).

Step 3 Calculating the transformation sliding matrix F via Right kernel (null space) matrix Nr, based on the
SVD decomposition, equations (2.24), (2.25) and (2.27).

Step 4 Decomposing the new transformation system p(k+1) into two variables states p1(k+1), p2(k+1) and
constructing the matrices As11 and As12, as in (2.26) and (2.27).

Step 5 Obtaining the formula of the sliding matrix G in terms of matrix gain K , see (2.33).

Step 6 Computation of matrix gain K using Block roots (solvents) based on the theory of MFD, as follows:

Step 7 Checking the block controllability Wc should be full rank (n−m), see (2.38).

Step 8 Transforming the system into block controllable form, see (2.38), (2.39) and (2.40).

Step 9 Choosing the desired l set right block roots, as stable and diagonally, see (2.43).

Step 10 Calculating the right block Vandermonde matrix Vr, as in equation (2.45), and which must be
nonsingular.

Step 11 The gain matrix K obtained from (2.50) to (2.55).

Step 12 Finally, The sliding matrix G calculated via (2.32).

5 Experimental application on gas turbine GEMS5001P system

5.1 Parametric model of the studied Gas turbine system

The studied model of the GEMS5001P gas turbine in this chapter is A MIMO system obtained based on

parametric system identification based on real data acquired within the normal mode operation rang on site[25],

the studied system has two main outputs: the rotor speed and the exhaust temperature that are affected and

interacted directly by three main inputs: the gas control valve (GCV), the axial temperature compressor discharge

(TCD), and the axial pressure compressor discharge (PCD). A schematic diagram is presented in Figure. 2.4,

which clarifies the inputs/outputs and the main components and sections (axial compressor, combustion chambers

and turbine) and the electricity alternator as load, [25].

The studied system is presented in linear discrete-time state space block observable canonical form and takes

the following form: x (k+1)= Ax (k)+Bu (k)

y (k)= Cx (k)+Du (k)
(2.56)

where the system has order n = 12 with three inputs (m = 3) and two outputs (p = 2) and their matrices are

presented in (A.1), (Appendix A).
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Figure 2.4: Schematic bloc diagram of gas turbine (GE MS5001P) with inputs/outputs model identification

In order to achieve the main purpose of the present paper the proposed algorithm is applied on the studied

system flowing the steps aforementioned as follows:

X The ratio v = n/m equals to 12/3= 4, it is an integer.

X The block controllability matrix is satisfied as rank (Wc)= 12 (full rank).

X The transformation sliding matrix F of dimension R12×12 is calculated following (2.35), (2.36) and (2.37).

X The decomposition matrices As11 ∈R9×9 and As12 ∈R9×3 are calculated via (2.40) and (2.41).

X The block controllability of the decomposition matrices is satisfied (As11, As12), rank (Wc)= 9 (full rank).

X The transformation of the system into bloc controllable form based on the matrix transformation Tc ∈R9×9,

following (2.50), (2.51) and (2.52).

X The desired l = (n−m)/m = 9/3= 3 right block roots (solvents) in controllable form can be constructed using

9 eigenvalues that are chosen to be diagonally assigned as follows:

R1 = Pr1.diag[0.5 0.4 0.3].Pr1
−1, R2 = Pr2.diag([-0.6 0.2 -0.1]).Pr2

−1

and R3 = Pr3.diag([0.8 0.55 0.7]).Pr3
−1

The invertible matrices Pr1, Pr2 and Pr3 are chosen randomly in order to assign the eigenvectors of the block

roots that are chosen as follows:

Pr1 =

 0.2177 0.5043 0.5931
0.2971 0.1651 0.3030
0.4913 0.2502 0.1482

 , Pr2 =

 0.8809 0.7506 0.8055
0.2668 0.2651 0.6859
0.8386 0.5681 0.2995

 , Pr3 =

 0.9350 0.3383 0.9632
0.5007 0.8265 0.6156
0.5409 0.5479 0.9454


Finally,

R1 =
 0.3810 −0.2617 0.2110

−0.0351 0.3026 0.1349
−0.0643 0.0200 0.5164

 , R2 =
 5.8922 −4.7139 −5.3206

1.9502 −1.6402 −1.7179
5.1790 −4.0508 −4.7520

 , R3 =
 0.9415 0.0051 −0.2494

0.1968 0.5282 −0.0887
0.1766 −0.0923 0.5802


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X The right block Vandermonde matrix Vr ∈R9×9, which is nonsingular is calculated following (2.54).

X The whitening sliding gain matrix β has been set to a unit matrix.

X The corresponding feedback gain matrix K is calculated based on (2.49) to (2.54) as follows:

K =
 −89.4924 111.0282 −300.6983 95.7004 −161.6562 272.3846 37.6439 −34.0074 127.2957

00.7212 −001.0538 004.9563 03.7175 −002.4314 004.5086 −05.9833 06.4046 −011.3184
15.0275 −019.3187 055.9466 −11.7331 025.2013 −049.8754 −09.1118 05.2496 −016.6305


X Based on equation (26) the resulting sliding matrix gain G is obtained:

G =
( −0.1088 −0.9578 1.7735 −0.0089 −0.5286 1.2487 −2.0173 0.0117 0.5507 0.4132 0.0215 −0.3337

0.0017 0.0062 −0.0117 −0.0007 0.0047 −0.0090 0.0126 0.0001 −0.0036 −0.0047 −0.0007 0.0074
0.0192 0.1538 −0.2859 0.0005 0.0861 −0.1986 0.3207 −0.0016 −0.0879 −0.0579 −0.0037 0.0638

)

In order to select the robust sliding matrix gain G, and to prove the effectiveness and the advantage of proposed

algorithm, a comparative study with classical and recent controllers algorithms, such as the classical pole

placement with assigning stable eigenvalues, the discrete-time linear quadratic regulator based on minimizing

criteria of trajectory and energy control, the eigenstructure assignment based on eigenvalues and eigenvectors

placement separately, and finally the state and the state derivative feedback method based on the theory of

polynomials matrix using the kronecker product.

Table 2.1: The norms (1,2,inf) of the sliding matrix G associated to each methods

K ‖G‖1 ‖G‖2 ‖G‖inf
Pole placement 36.2398 44.3571 82.0297
DLQR 22.2743 30.4674 78.2330
Eigen-S Assignment 38.1816 46.5546 95.1315
S-D-Feedback 66.3356 78.5478 115.0456
Proposed Method 23.5060 32.5326 79.7440

Table 2.5: Comparative study

Pole placement DLQR Eigen-S Assignment S-D-Feedback Proposed Method

Norm Suitable Excellent Unsuitable Unsuitable More suitable
Time specifications Unsuitable Unsuitable Suitable More suitable Excellent

Robust stability

s(λi) Unsuitable Unsuitable More suitable Suitable Excellent
M1 Unsuitable Unsuitable Suitable Suitable Excellent
M2 Unsuitable Suitable Suitable Suitable Excellent
M3 Unsuitable Unsuitable Suitable Suitable Excellent

Robust performance r(λi) Unsuitable More suitable More suitable More suitable Excellent

The obtained results from the calculation of the gain matrix K based on the application of all the steps

aforementioned of the proposed algorithm have been compared with the other methods such as pole placement,

DLQR, E-S assignment and S-D feedback and are presented in Table 2.1 to Table 2.5 This comparison has been

performed based on the obtained results under similar conditions such as the initial states values, desired poles,

and the same percent of the injected disturbances.
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5.2 Comments and Interpretations on the obtained results

• In Table 2.1, the amplitude of the gain matrix G has been calculated for the different norms of order

1, 2 and infinity with the four aforementioned methods and the proposed method. It is obvious from

these results that the proposed method and the DLQR method give the G norm with minimum values in

comparison with the other methods. But the DLQR method has less characteristics specifications. It can

be said that the obtained G matrix under the proposed method allows to ensure a high performance with

minimal energy control.

• Table 2.2 presents the time specification (Settling time and Maximum peak Mp) for each states, it is

clear that the proposed method gives the minimal settling times ts and maximal peak Mp respectively in

comparison with the other methods, this result can be explained by the effect of the diagonally assignment

of the robust block roots constructed from speed eigenvalues/eigenvectors.

• The results of the eigenvalues sensitivity after the injection of some perturbations ∆A into the dynamic

matrix A are presented in Table 2.3. It is obvious that the proposed method is more robust against the

changes in the internal dynamics in comparison with the other methods.

• The checking of the relative change in the eigenvalues r i is presented in Table 2.4. These results indicate

that there is a small change in regard to the results of the proposed method, on the other hand there are

significant changes within the results obtained based on the other algorithms, it can be said that these

significant changes may cause instability problem.

• Through the definition of the stability measures and based on the results presented in Table 5 and shown

in Figure 16, it is clear that the best algorithm which ensures the maximum values in the three measures

of Ms1, Ms2 and Ms3 and more particularly the measures of Ms1 and Ms3, is the proposed algorithm.

Consequently, the proposed algorithm can fulfill the requirement of the best stability quality measures.

• Following the results presented in Table 2.5, which summarizes all the results of the presented comparison

study. It can be concluded that the proposed algorithm can ensure the best robustness stability and the best

sensitivity performance analysis in comparison with the other algorithms presented in this paper.

5.3 The Effects of the block roots on the performance of the proposed controller

• The block roots Ri are matrices that contain the latent eigenvalues and the latent eigenvectors that can

be assigned in the same time, and this important property cannot be achieved under other algorithms.

• A transfer-function matrix of invariant-time multivariable system can be formulated in block terms after

some manipulations [16–19] is given as follows:

Y (λ)=
(

l∑
i=1

CX i(λIm −Ri)−1YiB
)
U(λ) (2.57)

Where, λ: is a complex variable, (X i,Yi,Ri) characterize the whole state space dynamic system, X i: is

the right block vector corresponding to the block root Ri and Yi: is the left block vector corresponding to

the block root Ri. It is noted that the block root is the basic component of the the left and the right block

vectors as explained in details in [16–19], so it can be said that the block roots Ri affects completely the

system due the capture of the system dynamics along the operational range. It is important to clarify that

this feature is not existing within the other algorithms.
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• The block spectral decomposition of the matrix Ac [14] and [20] can be expressed as follows:

Ac =
l∑

i=1
X ciRiYci (2.58)

After some transformations the block partial fraction expansions, expressed in terms of projectors contri-

bution can be presented as follows:

eAt =
l∑

i=1
X i eRi tYi (2.59)

Based on (2.58), it is clear that the pair (X i,Yi) presenting the right and the left block vectors affect

directly the shape of the response. On the other side, the block roots Ri alters the stability where they

affect directly the stability convergence of the controller, the transient response, the steady state and

the decay response at the same time.

• The block roots Ri assignment provides a large degree of freedom in the design of feedback gain matrix

K , where they can be placed in the left or in the right of MFD system and can be chosen under flexible

forms such as diagonal form, controllable form and observable form in order to achieve the best

performance.

• The MFD system is transformed automatically into partial subsystems (blocks) which facilitates handling

and controlling them instead of the control the fully system.

6 Conclusion

In this chapter, a new robust discrete-time sliding mode controller have been introduced, based on the assignment

of block roots for a class of MIMO linear systems. The block roots (solvents) that are extracted from the

dominant eigenvalues are assigned diagonally, where the block roots placed in the right block controllable form

(right block vandermonde matrix) of the new transformed decomposed system via matrix gain K . To validate the

proposed algorithm, the GE MS500P gas turbine is investigated in this chapter due to its importance in many

industries, especially in electrical power generation. This proposed algorithm is applied to the best chosen real

model of the gas turbine system, which is obtained from experimental data obtained on-site, using parametric

identification based on LMFD MIMO least squares. In order to prove the robustness stability of the proposed

algorithm, the stability measures have been performed to show its effectiveness and validity. Furthermore, a

comparison study among the classical and recent algorithms is presented, where the obtained results prove

clearly the high performances, robustness and effectiveness of the proposed algorithm, the effect of the assigning

block roots are very clear in the obtained results, and the very important the direct impact to improving the

power generation in this gas turbine (GE MS5001P). On the other side, the presented controller algorithm can

be consider as a promising solution for solving many problems of stability in several industrial applications.

However, the limitation of this proposed algorithm is associated to two problems:

• The ratio n/m must be integer, if not there are many propositions in literatures (ex: extending the original

system), so this problem is solved.

• The block controllability matrix must have a full rank, if this condition is not satisfied the proposed

algorithm is not valid. However, in some model systems the model order reduction can solve this problem.
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Further interesting researches can focus on the optimal block roots selection which allows to reduce the norm

(amplitude) of the sliding matrix G with less control energy control as possible. In the next chapter, a multivariable

optimal static output-feedback controller design is proposed based only on the availability of the outputs.
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1 Introduction

The hypothesis of being able to know the complete state of real processes in modern control engineering

is not always realistic. Sometimes is difficult and expensive to have the measurement of the whole state

vector, because of technical reasons (unmeasurable or unaccessible variables) or economic aspect (price

of sensors). For this reason, several control algorithms have been developed that use only output information

to control the system. The design of this kind of controllers, that only use the static output feedback (SOF)

information, has long been an active and challenging area but difficult from theoretical point of view. Moreover,

it is considered one of the basic problems in control theory, falling in the NP-hard category.

In this chapter, the optimal SOF controller algorithm has been proposed for multivariable LTI systems. The

main idea is to calculate the block transformations matrices of the model system in both the observable and the

controllable forms using similarity block canonical forms transformation [2–6]. This transformation is the key

idea of the proposed approach, where the multiplication of both transformation matrices in the left and the right,

allow to restrict the control range of the desired dynamics from the dimension space of the plant to the dimension

space of the SOF matrix gain K . In this way, the desired eigenvalues of the closed-loop system (CLS) are under

the control of the heart matrix Ah, which belong to the same dimension space of the SOF matrix gain. The

selection of the Ah matrix which achieves the stability of the CLS with optimal SOF matrix gain K is obtained

by using a constrained Grey Wolf Optimizer (GWO) [18], that takes in consideration the minimization of the

norm of the SOF matrix gain K and maintain the stability in the CLS with proper eigenvalues in the optimal

desired region of convergence (ROC) .

The proposed SOF control technique is applied for a centrifugal gas compressor system. The studied system

is installed in hassi r’mel gas field (in the south of Algeria), which is used in one of the important natural gas

compression station. The dynamic model of this system is obtained based on experimental data using parametric

system identification [2, 8, 20]. Two comparative studies have been conducted by the obtained results in order

to prove the efficiency of our proposal. The first one with the aim of choosing the best optimization algorithm,
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where the three optimization algorithms, the Genetic Algorithm (GA) [7], the Particle Swarm Optimization

(PSO) [9], and the Interior Point Method (IPM) [10], are compared with GWO [18], The second one with the

goal of evaluating the performance of the optimal proposed SOF controller when is compared with a SOF

controller which has been published in recent years [11, 12].

2 Preliminaries

Let we consider the following proper linear MIMO discrete-time system described by a state space representation:{
x(k+1)= Ax(k)+Bu(k)

y(k)= Cx(k)+Du(k)
(3.1)

with, x ∈Rn, A ∈Rn×n, B ∈Rn×m, C ∈Rp×n.

2.1 Block Canonical Forms Transformation of controllability

The block controllability matrix of the system (3.1) is given as follows [2–6]:

Ωc =
(
B, AB, A2B, ..., Al−1B

)
(3.2)

Definition 3.1. The multivariable system described in (3.1) is block controllable of index l, and can be trans-

formed into a block controller form if the following conditions are satisfied [2–6]:

• The ratio n/m = l is an integer

• The matrix Ωc has a full rank

If both conditions are satisfied, then the change of coordinates xc(k)= Tcx(k) transforms the system into the

following block controller form {
xc(k+1)= Acxc(k)+Bcu(k)

y(k)= Ccxc(k)+Dcu(k)
(3.3)

The block transformation matrix of controllability Tc is given as follows:
Tc =


Tc1

Tc1 A
...

Tc1 Al−1

 , Tc1 =
(

Om Om · · · Im

)
Ωc

−1 (3.4)

The system is given in the block canonical controllable form as follows:

Ac = Tc ATc
−1 =



Om Im · · · Om

Om Om · · · Om
...

... . . . Om

Om Om . . . Im

−Al −Al−1 · · · −A1


Bc = TcB =

(
Om Om · · · Im

)T

Cc = CTc
−1 =

(
Cl Cl−1 · · · C1

)

(3.5)

with, xc ∈Rn, A i ∈Rm×m,Ci ∈Rp×m, i = 1, l, Im and Om are m×m identity and null matrices respectively, and

the superscript T denotes the transpose.

37



CHAPTER 3. MULTIVARIABLE OPTIMAL STATIC OUTPUT-FEEDBACK CONTROLLER DESIGN

2.2 Block Canonical Forms Transformation of observability

The block observability matrix of the system (3.1) is given as follows [2–6]:

Ωo =
(
CT , ATCT , ..., (AT )

l−1
CT

)T
(3.6)

Definition 3.2. The multivariable system described in (3.1) is block observable of index l, and can be transformed

into a block observer form if the following conditions are satisfied [2–6]:

• The matrix Ωo has full rank.

• The ratio n/p = l is an integer.

Based on the previous conditions, we can convert the state equation into block observer form using the

following similarity transformation xo = Tox{
xo(k+1)= Aoxo(k)+Bou(k)

y(k)= Coxo(k)+Dou(k)
(3.7)

The block transformation matrix of observability To is given as follows:{
To =

(
Tol ATol ... Al−1Tol

)
, Tol =Ω−1

o

(
Om Om · · · Im

)T
(3.8)

The system is given in the block canonical observable form as follows:

Ao = To
−1 ATo =



Op · · · Op −Al

Ip · · · Op −Al−1
...

...
...

...

Op · · · Op −A2

Op · · · Ip −A1



Bo = To
−1B =


Bl

Bl−1
...

B1

,Co = CTo =


Op

Op
...

Ip



T
(3.9)

3 Constraints optimization problem

The following metaheuristics optimization algorithms: GA, PSO, IPA, and GWO are used to solve a convex

multidimensional optimization problems with constraints, to finds the minimum of a problem specified by

Find z which minimizes the objective function f (z) (3.10)

subject to certain set of constraints:
g i(z)≤ 0, i= 1, ...,n

h j(z)= 0, j= 1, ...,m

lb ≤ zk ≤ ub, k= 1, ...,p

(3.11)
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where, z is the solution vector with p variables z = [
z1,z2, ...,zp

]
, gi(z) and hj(z) represent the inequality

constraints and equality constraints respectively, n is the number of inequality constraints, m the number of

equality constraints and lb and ub are the lower and upper bounds for each variable respectively.

There are several ways for dealing with optimization problems with constraints. It is possible, for reasons of

robustness and ease of implementation, to transform a constrained problem into a series of problems without

constraint. This transformation is done by adding penalties to the objective function [7].

The objective function f (z) of the problem is then replaced by the following function to be minimized[7]:

Ψ(z,ai,bi)= f (z)±
(
ai

n∑
i=1

gi(z)+bj
m∑

j=1
hj(z)

)
(3.12)

where, Ψ(z,ai,bi) is the new fitness function to be optimized, ai and bj are called penalty parameters, they take

positive values.

4 Problem statement

Consider the following Linear discrete-time uncertain system described by a state space representation:

{
x(k+1)= A(θ)x(k)+B(θ)u(k)

y(k)= C(θ)x(k)
(3.13)

where, θ is the vector of the uncertain parameters with the bounded values by an compact set Θ as

Θ=
{
θ ∈Rnθ

∣∣∣ θi 6 θi 6 θi, i = 1, . . . ,n
}

A (θ)6 A (θ)6 A (θ)

B (θ)6B (θ)6B (θ)

C (θ)6C (θ)6C (θ)

(3.14)

where • and • denote the lower and the upper bound of each matrix, respectively. Note that the inequalities in

(3.14) should be understood as element-wise inequalities. Therefore, the uncertainties in matrices A (θ), B (θ)
and C (θ) can be decomposed as A (θ) = An +∆A (θ), B (θ) = Bn +∆B (θ) and C (θ) = Cn +∆C (θ) , where An,

Bn and Cn are the matrices of the system (3.13), and the nominal part of the system matrices A (θ), B (θ) and

C (θ), respectively.

where x(k) ∈Rn, u(k) ∈Rm and y(k) ∈Rp are the state, the input and the output vectors.

After applying the static output feedback control u(k) =−K y(k) and using a zero set-point, as shown in

Figure. 3.1.

The system represented in (3.13) can be rewritten in the following form:

{
x(k+1)= A(θ)x(k)−B(θ)K y(k)

y(k)= C(θ)x(k)
(3.15)
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Figure 3.1: Schematic of SOF controller gain stabilization.

The closed-loop system (3.15) can be further expressed as:{
x(k+1)= (A(θ))x(k)

y(k)= C(θ)x(k)
(3.16)

where, A(θ) is the desired closed-loop matrix (A(θ)−B(θ)KC(θ))

The problem is how to find the output static feedback matrix K that guarantees stability of the closed-loop

system. In this paper, an algorithm is been proposed that combines the block transformation and the Grey Wolf

Optimizer.

5 Main results

Generally the SOF controller is affected by both control and observer B(θ) and C(θ) matrices respectively from

the right and left. This provides an opportunity to exploit the both block transformations BTs of the controllability

and the observability that is a new idea in the proposed SOF controller design approach.

From (3.16) the desired closed-loop system matrix given as follows:

A(θ)−B(θ)KC(θ)= A(θ) (3.17)

and

B(θ)KC(θ)= A(θ)− A(θ) (3.18)

both sides of the equality from the left and the right by the block transformation matrices Tc(θ) and To(θ)

respectively

Tc(θ)B(θ)KC(θ)To(θ)= Tc(θ)(A(θ)− A(θ))To(θ) (3.19)

From the above definition 1 and definition 2 of Tc, To, Bc, Co we obtain

Bc(θ)KCo(θ)=


Om

...

Im

(
Op · · · K

)
(3.20)
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and 
Om

...

Im

(
Op · · ·K

)=


Om · · · Om
...

. . .
...

Om · · · K

 (3.21)

Hence 
Om · · · Om

...
. . .

...

Om · · · K

= Tc(θ)(A(θ)− A(θ))To(θ) (3.22)

By fixing Tc(θ)(A(θ)−A(θ))To(θ)=∆(θ)co, the static output feedback matrix gain K can be obtained as follows:

K =∆(θ)co(n−m+1 : n,n− p+1 : n) (3.23)

The condition regarding the structure of A(θ) so that the system achieve a desired closed-loop performance be

determined as follows:

A(θ)co = Tc(θ)A(θ)To(θ)=


Γ1(θ) Γ2(θ)

Γ3(θ) Γ4(θ)

 (3.24)

where

Γ1(θ)= A(θ)co(1 : (n−m) , 1 : (n− p))

Γ2(θ)= A(θ)co(1 : (n−m) , (n− p+1) : n)

Γ3(θ)= A(θ)co((n−m+1) : n , 1 : (n− p))

Γ4(θ)= A(θ)co((n−m+1) : n , (n− p+1) : n)

From (3.24) and in terms of Tc(θ), To(θ), Γ1(θ), Γ2(θ), Γ3(θ) and Γ4(θ), the desired closed-loop matrix can be

parameterized as follows,

Tc(θ)A(θ)To(θ)=


Γ1(θ) Γ2(θ)

Γ3(θ) Γ4(θ)

−


Om · · · Om

...
. . .

...

Om · · · K

 (3.25)

and

Tc(θ)A(θ)To(θ)=


Γ1(θ) Γ2(θ)

Γ3(θ) Γ4(θ)−K

 (3.26)

and

A(θ)= Tc(θ)−1


Γ1(θ) Γ2(θ)

Γ3(θ) Γ4(θ)−K

To
−1 (3.27)
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The transformation matrices Tc(θ) and To(θ) are assumed to be nonsingular.

∆co(θ)=


Om · · · Om

...
. . .

...

Om · · · K

⇒ K =Γ4(θ)− Ah(θ) (3.28)

where K , Γ4(θ) and Ah(θ) ∈Rm×p

Based on (3.27) and (3.28), we conclude that the heart block matrix Ah(θ) characterizes completely the

closed-loop system. Moreover, it contains the whole set of information about the closed-loop spectrum, because

is the only variable that governs the behavior of the eigenspace of the system. Figure. 3.2 shows the importance

of the BT which compress the unknown desired dynamic and they determined in a small block matrix Ah(θ) in

the corner of the matrix A(θ).
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Figure 3.2: Diagram of the desired dynamic matrix A

5.1 The selection of the heart matrix Ah(θ)

The eigenvalues (poles) placement approach is very well known. However, their use in the design of the SOF

matrix gain controllers is very limited for these reasons: The allowable dimension of the SOF controller space is a

bit small, i.e dim(K) ≤ dim(A(θ)), consequently not all desired stable eigenvalues have image in the space of the

SOF controller [4]. Thus, the selection of the desired stable eigenvalues is unavailable in this case. In general, the

matrices B(θ) and C(θ) are rectangular which mean they have nontrivial kernels (null space). Consequently, the

search for a K is a non-convex problem and thus only allows for local optimal solution. To avoid these problems

and limitations, the choose of the best heart matrix Ah(θ) is formulated as convex optimization problem and

solved by the grey wolf optimizer (GWO).

Optimization procedure The grey wolf optimizer (GWO) is a meta-heuristic algorithm proposed by Mirjalili
et al, [18]. It has been selected as tool in this design to solve the convex multidimensional optimization problems

with constraints presented in (3.10) and (3.11), from among several meta-heuristic and evolutionary algorithms

such as GA [7] and PSO [9] respectively, due to their fast convergence behavior without any complexity (just

adjusting two parameters, Max-iter and number of agents) comparing with the existed algorithms [18]. The

GWO imitates the social manners of grey wolves. These wolves live in a group contains 20-30 members. In this
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group, the strict dominance hierarchy is practiced where the group has a leader named alpha α, supported by

secondary ones named beta β, which aid α in decision-making. The rest members of the group are named δ

and ω as shown in Pyramid Figure. 3.3 The procedure of hunting the prey by the grey wolves is: looking for the

prey, surrounding the prey, hunting, and attacking the prey. The arithmetic model of surrounding the prey [19], is

written as follows

~D =
∣∣∣~C · ~X pi − ~X i

∣∣∣ (3.29)

and

~X i+1 = ~X pi − ~A ·~D (3.30)

where ~X i is the place of the grey wolf, ~X pi is the place of the prey, ~D is the distance, ~A and ~C are vectors

calculated as following

~A = 2~a ·~r1 −~a (3.31)

and

~C = 2 ·~r2 (3.32)

where,

~a = 2
(
1− t

Max-iter

)
(3.33)

where~r1 and~r2 are random numbers between [0, 1]. The parameter a is a variable which is linearly reduced

from 2 to 0 while the iterations increased. The process of looking for the prey position (exploration) could be

attained by diverging the search entities, when
∣∣∣~A∣∣∣> 1. The process of getting the prey (exploitation) could be

attained by the convergence of the search entities, when
∣∣∣~A∣∣∣< 1. The hunting is led by α entities with β and

δ entities support as in (36), (37) and (38). Figure. 3.3 shows the flowchart of the GWO algorithm steps. Like

other meta-heuristic algorithms, The GWO can be disposed to stagnate in a local minimum but the parameters ~A

and ~C can help the GWO algorithm to avoid stagnation [18, 19].

~Dα =
∣∣∣~C1 · ~Xαi − ~X i

∣∣∣
~Dβ =

∣∣∣~C2 · ~Xβi − ~X i

∣∣∣
~Dδ =

∣∣∣~C3 · ~Xδi − ~X i

∣∣∣
(3.34)

~X1 = ~Xαi − ~A1 ·~Dα

~X2 = ~Xβi − ~A2 ·~Dβ

~X3 = ~Xδi − ~A3 ·~Dδ

(3.35)

~X i+1 =
~X1 + ~X2 + ~X3

3
(3.36)
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Figure 3.3: Flowchart of the Grey Wolf Optimizer

To selected the optimal heart matrix Ah(θ), an optimization problem should to be solved, the objective

function f (z) is chosen as follows:

f (z)= ‖K(z)‖∞ = ‖Γ4(θ)− Ah(z)‖∞ (3.37)

We find z which minimizes the objective function ‖K(z)‖∞ subject to certain set of constraints:∣∣∣eig(A(θ))
∣∣∣−ε< 0, ε ∈]0 1[, i= 1, ...,n

(A(θ)−B(θ)KC(θ))− A(θ)= 0n×n, j= 1, ...,m

rank(Ωc)+ rank(Ωo)−2n = 0n×n, j= 1, ...,m

lb ≤ zk ≤ ub, k = 1, ...,p

(3.38)

The inequality constraint condition has been chosen to guarantee the stability of the closed-loop system, where

the eigenvalues are enforced to be placed in the region of the convergence (ROC), inside the unit circle. The
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equality constraints have been chosen in order to ensure the existence of the heart matrix Ah(θ) chosen from the

optimizer and check the block transformations, if are they achieved. The lower and the upper bound of the vector

zk are chosen so which have produced values nearly to the values of the elements of the matrix Γ4(θ).

6 The proposed algorithm steps

Summarizing all the important steps of the proposed controller

Algorithm 2 Optimal static output-feedback controller algorithm

Step 1 Check the ratio n/m = l, which must be an integer.

Step 2 Check the rank of the block controllability and block observability matrices of the nominal model Ωc
and Ωo of (3.2) and (3.6) respectively, which must equal n (be full rank).

Step 3 Calculate the similarity transformations Tc and To of the nominal model as in (3.4) and (3.8).

Step 4 Defined the uncertainties level of the studied model.

Step 5 Compute the matrix Aco(θ), see (3.24).

Step 6 Truncate the matrix Γ4(θ) from the matrix Aco(θ), see (3.24).

Step 7 Compute the optimal static output feedback matrix K based on the choose of matrix Ah(θ) using the
GWO, as follows:

(a) Find the elements of the heart matrix Ah(θ) which minimize the norm of the static output feedback
matrix gain K as in (3.37).

(b) Check the verification of the inequality condition of the stability in each iteration, see (3.38).

(c) Check the equality constraints of the block transformations and the validity in each iteration, as in
(3.38).

(d) Set the values of the lower and the upper bound lb and ub respectively of the vector zk, and choose
initial value to the vector z0, see (3.38).

(e) All the optimization procedures steps are illustrated in the Flowchart shown in Figure. 3.3

Step 8 When the stopping criterion is satisfied and the algorithm converge, the best heart Ah(θ) matrix was
selected.

Step 9 Finally, The SOF matrix gain K is calculated based on (3.28).

7 Experimental application and results

The centrifugal gas compressor system studied in this chapter is shown in Figure. 3.4, and its characteristics are

presented in Table B.1, (Appendix B). This studied system is driven by a two shaft gas turbines (GE MS5002C))

as shown in Figure. 3.5. It is a multivariable process with two inputs, the aspiration temperature T1 and the

aspiration pressure P1 and two outputs, the discharge pressure P2, and the discharge temperature T2. The

parametric model of this system has been obtained based on experimental data acquired via several tests to get

the optimal data that are covering all possible dynamic behavior of this centrifugal gas compressor [8, 20].
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Figure 3.4: The studied centrifugal gas compressor system BCL 505 installed in the natural gas compression
station

Gas Turbine GE MS5002C Centrifugal Gas

Compressor BCL 505
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Figure 3.5: Schematic block diagram of the studied centrifugal gas compressor system driven by two shaft gas
turbines.

The studied system is represented by its state space model as follows [8]:

{
x(k+1)= A(θ)x(k)+B(θ)u(k)

y(k)= C(θ)x(k)
(3.39)

where, this discrete-time state space dynamic model of the examine system is a large scalae of order, n = 10, and

with two inputs (m = 2) and two outputs (p = 2), and its characteristic matrices A,B,C are mentioned in (B.1),

(Appendix B). where, this discrete-time state space dynamic model of the examine system is a large scalae of

order, n = 10, and with two inputs (m = 2) and two outputs (p = 2).
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7.1 Implementation of Proposed optimal SOF controller

To achieve the main purpose of this paper, the proposed algorithm is applied to the studied system, following the

aforementioned steps as follows:

1. The ratio l = n/m equals 10/2 = 5 and is an integer.

2. The block controllability and observability matrices of the nominal model are satisfied, as rank(Ωc) =

rank(Ωo) =10 (are full rank).

3. The similarity transformations matrices {Tc,To} ∈R10×10 are calculated based on (3.4) and (3.8) respec-

tively. Their values are presented in (B.2) and (B.3), (Appendix B).

4. The uncertainties level applied on the studied nominal model is −50%≤∆θ ≤+50%. Where, −50%A ≤
∆A(θ)≤+50%A, −50%B ≤∆B(θ)≤+50%B and −50%C ≤∆C(θ)≤+50%C.

5. The matrix Aco(θ) is calculated based on the (3.24). Their nominal value is presented in (B.4), (Appendix

B).

6. Truncate the matrix Γ4(θ) ∈R2×2 from the matrix Aco(θ), based on (3.24), their nominal value is given as

follows:

Γ4 =
(
−6.0654 −3.0397

4.2343 3.4407

)

7. Compute the static output feedback matrix K based on the choose of the heart matrix Ah ∈R2×2 using

GWO, as follows:

• Minimize the norm of ‖K‖∞ = ∥∥Γ4(θ)−zi j
∥∥∞ as in (3.37).

• Subject to:
∣∣∣eig(A(θ))

∣∣∣−0.6< 0, where ε= 0.6 is the unit circle diameter.

• (A(θ)−B(θ)KC(θ))− A(θ)= 10−14

• rank(Ωc)+rank(Ωo)−2n = 20−20= 0

• The values of the lower and the upper bound lb and ub of the vector is z ∈ [−10 10], where

z ∈R1×4. This interval presents the search space as shown in Figure. 3.6.

Initialisation of the vector z0 is take this value z0 = [0 , 0 , 0 , 0].

The typical parameters for GWO is given as follows: the maximum number of iterations, Max-iter =

400, and the number of search agents, Sea-agent = 20, as shown in the Figure. 3.6 and the Figure. 3.7

respectively.

8. The stopping criterion is satisfied and the algorithm converge, and the best heart matrix is chosen as

follows:

Ah(z)=
(
−3.4879 −1.6071

2.6081 1.4287

)
Finally, the optimal SOF matrix gain K is obtained based on applying all steps of the proposed algorithm

and is given as follows:

K =
(
−0.1881 −0.2351

−0.0419 0.6566

)
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7.2 Comparative study and discussion results

In order to examine the proposed optimal SOF controller, and to prove its effectiveness and advantage, two

comparative studies have been made. The first one with three well known optimization algorithms, GA, PSO and

IPM methods [7, 9, 10], to prove the good choice of GWO as a optimizer, while the second one with recent and

well known controllers. The first one is H∞ SOF controller based on optimization considering pole constraints

[12], while the second one is robust structured MIMO H∞ design [11].

Based on the obtained results presented in Table 3.1, it is clear that the GWO provides a good optimization

result compared with GA, PSO and IPM optimizers in all the two criteria (‖.‖∞ and ROC), Figure. 3.12 shows

the flexibility to place the desired poles in any place in the unit circle, while in IPM method the stability of CLS

is not ensured (limit of stability ), and in the GA, PSO and IPM methods the infinity norm of the controller gain

is too big and the constraint of the stability is violated | A |> ε= 0.6. So the GWO optimizer is a good choice in

our proposed controller. Figure. 3.6 and Figure. 3.7 show the GWO evolution curves during the optimization

process and the fitness function curve during the iterations, where it stops at Max-iter = 400. On the other hand,

in the second comparison with the two controllers, the results show the superiority of the proposed controller in

the infinity norm 0.69 of the controller where, the stability in the CLS is ensured with lowest possible energy,

and differently from the two controllers [11, 12], where a great energy consumption from the controllers to

ensure the stability in CLS is required.

Table 3.1: Comparison the (‖.‖∞ , ROC and BTs) characteristics of each SOF matrix gain K methods

Method & Optimizer SOF Matrix Gain K ‖K‖∞ ROC BTs

Proposed SOF Using GWO
( −0.1881 −0.2351
−0.0419 0.6566

)
0.69 [0.26 , 0.60] Verified

Proposed SOF Using GA [7]
(

0.5761 −0.4052
−0.5179 1.1118

)
1.37 [0.39 , 0.96] Verified

Proposed SOF Using PSO [9]
( −1.2452 −0.2846

0.3177 1.0178

)
1.45 [0.37 , 0.99] Verified

Proposed SOF Using IPM [10]
(

1.4358 0.1793
−0.8239 0.6081

)
1.66 [0.61 , ∼1] Verified

Method Based H∞ [11]
( −1.8155 −0.5717

0.6240 1.1656

)
2.17 [0.37 , 0.98] Verified

Method Based H∞[12]
( −1.0684 −1.0548

0.4757 1.5049

)
2.11 [0.48 , 0.98] Verified

Table 5.1 presents the specifications regarding the time-response of the closed-loop system (Rise time (tr),

Settling time (ts), Settling min (SMin), Settling max (SMax), Overshoot (Oshoot), Undershoot (Ushoot), Peak

(Peak) and Peak time (tp)) for the proposed controller and the compared methods [11, 12], Based on the

assessment of the obtained results, the proposed controller reach the desired value in best time specification in

all the response characteristics in comparison with the other methods, except in some undershoot and overshoot

Ushoot and Oshoot characteristic, outperforms the compared methods, which allows the system to maintain its

performances under the considered uncertainty.
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Table 3.2: Comparison the time specifications of dynamic system response in each methods

Inputs Outputs Characteristics Method Based H∞ [12] Method Based H∞ [11] SOF Using GWO

Fr
om

in
pu

tT
1 To

ou
tp

ut
P

2
tr 159 172 4
ts 284 306 6
SMin -79.6770 -185.6374 0.3645
SMax -71.7362 -167.4240 0.3821
Oshoot 0 0 0.2641
Ushoot 1.6783 0.4381 0
Peak 79.6770 185.6374 0.3821
tp 519 479 7

To
ou

tp
ut

T
2

tr 161 173 5
ts 275 301 11
SMin 639.7949 590.5383 0.7118
SMax 709.8274 654.5301 0.7881
Oshoot 0 0 0
Ushoot 0.0113 0.0122 10.1520
Peak 709.8274 654.5301 0.7881
tp 519 479 69

Fr
om

in
pu

tP
1 To

ou
tp

ut
P

2

tr 159 172 4
ts 285 307 7
SMin -144.7808 -295.2633 0.6721
SMax -130.5518 -266.2478 0.7182
Oshoot 0 0 0.0838
Ushoot 1.9586 0.5964 0
Peak 144.7808 295.2633 0.7182
tp 519 479 11

To
ou

tp
ut

T
2

tr 161 173 6
ts 276 302 12
SMin 1.1661×10+3 940.8059 0.7255
SMax 1.2938×10+3 1.0428×10+3 0.8008
Oshoot 0 0 0
Ushoot 0.0032 0.0040 5.1504
Peak 1.2938×10+3 1.0428×10+3 0.8008
tp 519 479 69

Table 3.3 presents the eigenvalues sensitivity of the uncertainty perturbed system. It is obvious that the

proposed method is more robust against the changes in the internal dynamics in comparison with the other

methods, and this due to the best selection of the SOF matrix gain K based on BT and GWO.

Table 3.3: Robust stability (Eigenvalues sensitivity s(λ))

K s(λ1) s(λ2) s(λ3) s(λ4) s(λ5) s(λ6) s(λ7) s(λ8) s(λ9) s(λ10)

SOF Using GWO 26.2867 32.8166 14.5680 3.4064 3.4064 4.6529 4.5529 4.0717 1.2853 5.2853
Method Based H∞ [11] 35.1612 48.9137 23.5602 4.2572 4.2572 12.3833 4.5859 4.5859 2.1985 2.1985
Method Based H∞ [12] 3.9905 3.9905 42.4162 60.9825 5.4663 5.4663 20.0368 32.7376 2.2328 2.2328

The relative change in the eigenvalues r(λ) and the three stability measures M1,2,3 are presented in Table 3.4

and Table 3.5 respectively. The results indicate that there is a bit of change concerning the perturbed eigenvalues

of the proposed controller and a significant change in the perturbed eigenvalues of the comparison methods

which may cause instability problem. On the other hand, and based on the definition of the stability measures, the

proposed algorithm provides the best values in the all measures M1,2,3. Consequently, the proposed algorithm

can fulfill the requirement of the best stability quality measures.
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Table 3.4: Robust performance (Relative change r in the eigenvalues λ under perturbation)

K r(λ1) r(λ2) r(λ3) r(λ4) r(λ5) r(λ6) r(λ7) r(λ8) r(λ9) r(λ10)

SOF Using GWO 0.0341 0.0260 0.0104 0.0029 0.0029 0.0047 0.0047 0.0046 0.0046 0.0046
Method Based H∞ [11] 0.0463 0.0407 0.0145 0.0037 0.0037 0.0072 0.0049 0.0049 0.0049 0.0049
Method Based H∞ [12] 0.0035 0.0035 0.0518 0.0477 0.0049 0.0049 0.0123 0.0192 0.0050 0.0050

Table 3.5: Stability measures

Stability measures

Methods M1 M2 M3

SOF Using GWO 0.0171 0.0012 0.0276
Method Based H∞ [11] 0.0196 0.0033 0.0192
Method Based H∞ [12] 0.0204 0.0019 0.0147
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Figure 3.13: Singular values of CLS

Frequency domain, singular values, stability and robustness analysis In this subsection a stability and

robustness of the uncertain centrifugal gas compressor system is studied, where Figure. 3.8 shows the bode

frequency response of the CLS usys(e jωTs), it’s clear that the system remained stable during all time under

applied uncertainties, when the phase take the angle phase φ=−180 the magnitude is less then 0. Figure. ??
shows the nyquist plot, the stability is determined by analysing how Nyquist contourΓc is mapped by usys(e jωTs),

the open-loop system is stable (P= 0), then (N =Z). The stability of the system is then ensured because the map

of Γc does not encircle the critical point (−1,0).

The frequency response plot in Figure. 3.10 shows the robust stability margin for the uncertain model, this

stability margin is relative to the uncertainty level specified by −50%≤∆θ ≤+50%. A robust stability interval

is greater than 1 in all frequency range [0 100](rad/s), means that the system is stable for all values of its

modeled uncertainty, and except to the interval less than 1 in the neighborhood of the critical point frequency

=71 (rad/s), corresponding to stability margin = 0.9057, means that the system becomes unstable for some values

of the uncertain elements within their specified ranges, but the global system rest and maintain its stability.
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Figure. 3.11 shows the nominal and worst-case gains of the uncertain system in frequency domain, the gain

refers to the largest singular value of the frequency response, accordingly after the uncertainties applied on the

nominal system we can said that there is not a big change in the largest singular value σ̄. Figure. 3.13 shows

the singular values of the frequency response of uncertain CLS, it is frequency response extend to the Bode

magnitude, is useful for robustness analysis, through the plot we note that no significant change for the largest

singular value σ̄, and this is due to the effective selection of the SOF matrix gain K with minimum infinity norm.

7.3 The proposed controller algorithm presents some limitations with suggested solutions

• If the ratio n/m be not an integer, there are some results available in the literature, e.g. extending the

original system by adding no-dominant states to make the value of the ratio to be integer [6]. Or by our

proposal of decoupling the model and decomposed into two parts, the first one is block transformable, and

the second one is controlled separately [3], so this limitation can be fixed.

• If the both block controllability and observability conditions are not satisfied (not have full rank). However,

in some model systems, model order reduction can solve this problem, by eliminating the uncontrollable

and the unobservable states (Minimal realization).

8 Conclusion

In this experimental study, a novel design of optimal SOF controller has been introduced, based on block

transformations and GWO. The proposed algorithm is very simple to implement unlike some designs theirs

implementation are more expensive due to theirs computational complexity. To illustrate the main elements of

the new proposed, an experimental investigation was carried on the uncertain multivariable model of a natural

gas centrifugal compressor system. The obtained results show that the proposed SOF controller exhibit a good

behaviour in the terms of: norms, time responses, sensitivity, robustness and stability measures. In fact, from

practical point of view the proposed optimal SOF controller can be employed as backup controller, which is not

active during the control operation but is used in the case of faults (fault tolerant control), for their simple design

and their good performance under perturbations condition.
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4
Faults-detection approaches based on Interval Type-2

Fuzzy Logic and Interval Observer: A comparative
study

1 Introduction

In the last few years, the maintenance of industrial systems during their operating modes is one of the main

strategic problems facing the industry, from the design of a machine until to its exploitation. Therefore,

the diagnostic system is essential for ensuring the smooth and continuous operation of dynamic systems

and for increasing their performances by guaranteeing better reliability. Indeed, the diagnostic system is used to

provide the control system by the required real data of the dynamic system operating status in un-faulty (healthy)

mode and in faulty mode. On the other side, the diagnostic system has to fulfill the requirement of robustness to

avoid the practical cases of non-detection and false alarms, which means avoiding the eventual accidental and

catastrophic situations.

The proposed diagnostic approach presented in this chapter is applied on the centrifugal gas compressor

system which is used in many sectors and covers a very wide range of industrial applications. Indeed, this

system is at the heart of many industrial sectors, such as the petroleum industry, the thermal and the nuclear

power generation, the aeronautic and the space propulsion, the automobile industry, and the transport of gases

(pipelines).

First part, of this chapter focuses on the development of a robust faults diagnosis and detection approach

which aims to increase the system monitoring performance during the operating mode of the studied centrifugal

gas compressor plant. This proposed approach is based on the combination of the two FDI diagnosis model

approaches (based on the parametric identification model and on observer system), with the intelligent expert

fuzzy type-II system, and the ARIMA model for predicting the remaining time of the system under study to

reach the danger and/or the failure stage, the following diagram as shown in Figure. 4.1, summarizing the main

points of the proposed approach.

Second part, of this chapter proposes an interval observer framework for the design of fault detection for
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multivariable linear uncertain systems. The methodology proposed in this chapter consists in using interval

observer on block roots of matrix polynomials theory, and grey wolf optimizer in order to take into account

the noises, disturbances , parameter uncertainties and faults. The main contribution is to determine the matrix

observer gain L that ensuring the stability of observer matrix and the positivity of the estimated errors. This

methodology can be considered as an interesting alternative to classical FDI approaches.
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Figure 4.1: Schematic diagram of of the proposed FDI approach.

2 Centrifugal gas compressor BCL 505 system

Centrifugal compressors are used in many industrial sectors, such as the oil industry, the production of thermal

and nuclear energy, aerospace propulsion, automotive, water distribution, etc. Indeed, a good understanding of

the operation of these devices is essential to increase their performance and reduce their operating cost. In this

case, one of the limits of use of these systems is determined by its stability limits, limits beyond which stable

operation of systems is no longer ensured. The centrifugal gas compressor studied in this chapter is the BCL 505

type which is shown in Figure. 4.2, its characteristics are presented in Table B.1, (Appendix B).

This compressor is constructed by Nuovo Pignone company and it is used in a gas compression heavy

applications such as in gas field production and gas network transportation, it is equipped with a control room

computer-based where the ACS is a part of it which allows to take directly inputs / outputs measurements from

the installed sensors. The main function of the studied centrifugal gas compressor in this chapter, is to ensure the

pressure rise of the continuous flow of gas passing through it based on kinetic energy. Where The increase of the

gas pressure by a compressor is used to:

X Reach a level of gas pressure.

X Compensate the pressure losses related to the circulation of the gas flow in a gas network.

The compressors can be classified according to their characteristics depending on the type of gas to be

compressed such as, air compressors and gas compressors, and/or depending on the movement of the moving parts

such as, linear or rotary motion, and/or depending on the operating principle such as, volumetric compressors

and dynamic compressors which are the application area of the present chapter.

The centrifugal gas compressor dynamic model is represented by its state space model as follows [1, 2]:{
x(k+1)= Ax(k)+Bu(k)

y(k)= Cx(k)
(4.1)
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where, this discrete-time state space dynamic model of the examine system is a large scalae of order, n = 10, and

with two inputs (m = 2) and two outputs (p = 2), and its characteristic matrices A,B,C are mentioned in (B.1),

(Appendix B). where, this discrete-time state space dynamic model of the examine system is a large scalae of

order, n = 10, and with two inputs (m = 2) and two outputs (p = 2).

Aspiration

Discharge

On the drive side

Figure 4.2: Centrifugal gas compressor BCL 505 body, with real view in vertical joint plane
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Faults detection and remaining time forecasting
approach Based on: Kalman filter, Interval Type-2

Fuzzy Logic and ARIMA model

3 Outputs estimation based on Kalman filter

The Kalman filter is a set of mathematical equations which provides an efficient recursive computational

algorithm to ensure the estimation of dynamic systems outputs states, in a way to minimize the mean of the

squared error between the estimated output values and the real or the measured outputs. This filter is very useful

in several domains: robotic motion planning, signal processing and econometrics. It can achieve the estimations

of the past, the present, and even the future states. the last estimation which is dedicated to the future states is the

main target of the work presented in this chapter.

The Kalman Filter observer algorithm is used to estimate the unmeasured states and the two filtered outputs

Ŷ ∈ R2×1 of the centrifugal gas compressor model presented in (B.1), (Appendix B). The discharge pressure

P̂2 and The discharge temperature T̂2 respectively, The algorithm steps of the Kalman filter are presented in

Algorithm 5, (Appendix B).
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From these results, it can be concluded that the proposed Kalman filer allows to obtained an accurate

estimated output Ŷ for the discharge pressure P2 and the discharge temperature T2 in comparison with the

experimental measured outputs Y . Based on the zoom zones presented in Figure. 4.4 and Figure. 4.3, it can

be said that the residues presenting the deviation between the two outputs respectively are neglected and the

designed Kalman filter can be an adequate observer for the applications presented in this chapter. This observer

is used as essential and important part of the proposed faults diagnosis and detection approach which is applied

to the centrifugal gas compressor presented in this chapter.

4 Preliminary concepts about Interval Type-2 Fuzzy Logic

Initially, the concept of the fuzzy type-2 set was introduced by the founder of the fuzzy logic Lotfi Zadeh [3, 4] as

an extension of the concept of the fuzzy type-1 set. The fuzzy type-2 set is characterized by a fuzzy membership

function, that is, the degree of belonging of each element of the set is itself a fuzzy set in [0, 1]. Such sets

are advisable in the case where there is an uncertainty at the level of the value of the membership itself. The

uncertainty can be either in the form of the membership function or in one of its parameters. The transition from

an ordinary set to a fuzzy set is the direct consequence of the indeterminism of the value belonging to an element

by 0 or 1. Similarly, when the functions of an element belonging to fuzzy numbers cannot be determined in real

numbers within [0,1], then the fuzzy sets type-2 is used. For this purpose, the fuzzy sets type-1 can be considered

as an approximation of the first order of uncertainty and the fuzzy sets type-2 as a second-order approximation.

Depending on the form of primary membership, there are many types of fuzzy sets type-II, among them:

triangular, interval, gaussian, and the gaussian 2 which is used in the fuzzy type-2 system faults detection in

this chapter. The structure of a fuzzy type-2 system is represented in Figure. 4.5, it is similar to fuzzy type-1.

whereas the fifth block appears in the output processing is of the reduction type.
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Figure 4.5: The structure of the type-2 Fuzzy Logic System.

The difference between the rules of FL and FL-2, reside only in the nature of the membership functions.

Therefore, the structure of the rules in the case of FL-2 will remain exactly the same as that of FL. The only

difference is that some (or all) membership functions will be of FL-2. therefore, the jth rule of a FL-2 system

will have the following form [3, 4]:

If x1 is F̃ j
1 and x2 is F̃ j

2 . . . and xp is F̃ j
p Then y is G̃ j (4.2)
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Where, x1 ∈ X1, x2 ∈ X2,..., xp ∈ X p are the outputs, the F̃ j
1 are the sets of premises such as i = 1,2, ..., p, y ∈Y

is the output, and the G̃ j are the sets of consequences.

5 The proposed FDI setup for a centrifugal gas compressor plant

The faults diagnosis and detection approach proposed in this research chapter takes into consideration all the

phases of the operating cycle of the centrifugal gas compressor system under study, such as the evolution of the

pressure and the temperature of the gas in the centrifugal gas compressor, the evolution of mass and volume

flows as function of the gas pressure and temperature.
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Figure 4.6: Real-time faults detection diagnosis configuration for centrifugal gas compressor.
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In the same time ,it takes into account the power absorbed as a function of the gas, and other operating

conditions that allow to obtain precise information about the dynamic behavior and to maximize the availability

of this system. On the other side, it is well known that the industrial systems have complex behaviors, and they

are characterized by uncertain variables or parameters as a function of time, this constraint complicates their

control task and implies many difficulties in achieving the good performances of such systems. For this purpose,

this work proposes a real-time faults diagnosis and detection approach, where the main aim is to detect and to

localize the defective components in the studied centrifugal gas compressor system.

In this proposed diagnostic system a hybrid between the mathematical theory of estimation based on the

stochastic kalman filter observer, and the artificial intelligence algorithms based on a type-2 fuzzy system.

Figure. 4.6, shows the proposed faults diagnosis and detection approach details studied presented in this chapter.

This proposed approach is based on the calculation of the residues r(k) following (4.3), which presents the

errors between the optimal Yop and the observed Ŷ outputs respectively. On the other side, the residues are

the inputs for the fuzzy type-2 system, when the system is under healthy operating state, these residues have

generally a null average and a determined variance.

In practice, the residues do not have exactly zero value in the absence of faults as shown in the previous

figures Figure. 4.4 and Figure. 4.3, because the obtained model of the studied system in this chapter does not

take into account all the internal and external parameters, which means that only the preponderant parameters

are taken into account and that certain simplification has been considered. On the other side the measurements

performed on the system are often affected by measurement noise.

The residues are expressed as follows:

r(k)=Yop(k)− Ŷ (k) (4.3)

Where,

r(k)= [rP (k) , rT (k)]T ∈R2×1

In this context, an elementary detection method consists in comparing the value of the obtained residues with a

predefined threshold (modeling errors function). An alarm is triggered each time this threshold is crossed:

{
r(k)≤ ε⇔ d(k)= 0

r(k)> ε⇔ d(k) 6= 0
(4.4)

d(.) presents the vector of the faults.

5.1 Fault detection and isolation (FDI)

The purpose of the detection procedure is to determine the instant of fault occurrence. To achieve this objective,

the residues obtained by comparing the system optimal model outputs with the system estimated outputs.

In the presence of faults, the evolutions of the discharge temperature T2 and the discharge pressure P2

during the time interval of 7×104 minutes are registered via the ACS, where a rising vibration in the discharge

temperature T2, and in the discharge pressure P2 are remarked, comparison between the outputs dynamic

behavior of the centrifugal gas compressor with and without faults are shown in Figure. 4.7 and Figure. 4.8.
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Figure 4.8: The discharge temperature T2 with and
without faults

After the residues generation step, the next task is the detection of faults based on the obtained residues

signals. In the present work, to ensure a robust faults diagnosis and defection, the statistical process control

(SPC) is integrated in the monitoring of centrifugal gas compressor. This process control was introduced by

Walter Shewhart [5], and it occupies a prominent place among the statistical quality control (SQC) tools. It

includes a set of statistical methods to monitor and improve a production process.

The Shewhart graph is able to control the distribution of deviations instead of trying to control each individual

deviation. The horizontal axis presents the time and the vertical axis presents the quality scale. It also contains

three horizontal lines: The middle line presents the reference line of the normal operation mode output, the upper

line is the upper specification limit (USL) of the control quality, and the lowest line is the lower specification

limit (LSL) of the minimum control quality. When decisions are confined between the upper and lower limits, the

deviation is acceptable and the centrifugal gas is operating in normal conditions. The following Table 4.1 presents

the average value m, standard deviation s, and the (USL,LSL) of the two outputs signal that are calculated based

on Shewhart algorithm [5].
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Figure 4.9: The detection faults of (P2) with respect
to a threshold

0 200 400 600 800 1000 1200

Time(h)

-40

-20

0

20

40

60

E
r
r
o
r
 
o
f
 
t
e
m
p
e
r
a
t
u
r
e

Residue generation

USL / 7.2755      
°
C

LSL / -7.2755        
°
C

Figure 4.10: The detection faults of (T2) with respect
to a threshold

62



5. THE PROPOSED FDI SETUP FOR A CENTRIFUGAL GAS COMPRESSOR PLANT

Table 4.1: The threshold faults detection

Error m s (USL,LSL)

ET2 -0.0015 3.3063e-8 ±7.2755
EP2 0.0014 3.7597e-9 ±21.631

Figure. 4.9 and Figure. 4.10, show the variation of the generated residues of the discharge pressure and the

discharge temperature respectively,that are included within the upper and lower detection faults lines (USL,LSL)

of Shewhart graph for the two outputs of the studied centrifugal gas compressor system.

When the residues exceed the upper and lower allowed limits (threshold), the system operates with faults

that may not appear externally at the beginning. Therefore, the problem which needs to be solved is to find an

efficient way which allows to indicate immediately the faults when they are occurred. To solve this problem a

type-2 fuzzy logic system is suggested as an expert models in order to detect and identify the type of occurring

faults. In this case many tests have been done to select the best fuzzy sets type-2 that gives a robust performance

and good results, in this work the gaussian 2 membership function was chosen as the best one. Figure. 4.11,

shows the expert model detection of the discharge pressure P2 which contains three membership functions of

type gaussian 2, that are the small, the medium, and the large with identical intervals between the upper and

lower lines faults detection presented in Table 4.1, if there are faults, the expert model indicates "1". Figure. 4.12,

shows the detection expert model of the discharge temperature T2, it differs from the first one only by the faults

detection upper and lower lines (threshold).
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Figure 4.11: Type-2 fuzzy sets of discharge pressure P2 expert model faults detection
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Figure 4.12: Type-2 fuzzy sets of discharge temperature T2 expert model faults detection

20 faults are detected related to the discharge pressure output P2, 12 faults were accurate during the first 12

hours and 8 faults during the time interval from 968 hours to 1142 hours, regarding the discharge temperature
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output T2, around 400 faults are detected, these faults have been occurred during almost the operating time

along the interval time from 1 hour to 1208 hours.

The detection faults of the discharge pressure and the discharge temperature respectively are shown in

Figure. 4.13 and Figure. 4.14 based on 2D thermal card, where the red color symbolizes the detected fault and

each fault is represented by stem.
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sor system examined

After the faults detection based on the output signals of the centrifugal gas compressor T2 and P2 through

the proposed faults detection setup, a maintenance schedule is required for the system to identify the nature of

the faults, the resulting damages and the affected components, where the main aim is to ensure the required

change and reparation in the system to restart the system operating mode again.

During the experimental study, the system was completely opened for performing the maintenance, checking the

inside body of the studied system and for the validation of the proposed faults diagnosis and detection presented

in this chapter and its accuracy for the determination and assessment of the fault levels. Indeed, after careful

examination, the damage observed and realized in the components of the BCL 505 gas compressor are presented

in the following figures:

X Scratch on the blades of the impeller1, as shown in Figure. 4.15.

X Light streaks at the spacers level, as shown in Figure. 4.16.

X O-ring joints defects, as shown in Figure. 4.17.
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Figure 4.15: The status of scratch on the blades of the impeller1 and after reparation.
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Figure 4.16: The status of light streaks at the spacers level and after reparation.
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Figure 4.17: The status of O-ring joints defective.

After viewing and identifying the affected parts in the centrifugal gas compressor system, the below Table 4.2

confirm the results obtained from the proposed setup for the faults detection. In comparison with the constructor

operating system documents, it can be said that the obtained results are within the norms given by the constructor.

Table 4.2: Faults identification and classification

Faults Outputs Signal Faults identification

F1
P2 ↓

• Distortions and incision in the level of blades
T2 ↓

F2
P2 ↓ • O-ring joints defective

T2 ↓ • Friction between the blades and wheel-space

F3
P2 ↓ • looseness in screws

T2 ↓ • O-ring joints defective

’ ↓’ : Rise ’ ↓ ’ : Fall

5.2 Forecasting the remaining time

In this section, it is assumed that the centrifugal gas compressor is operating under faulty mode. In this case, the

proposed approach of faults diagnosis and detection needs to be improved. It means that depending on the level

and quality of faults, the safety time for which the studied system can continue its operation mode before it falls

completely in failure and reaches the operating interruption. In order to achieve this important required task, the

ARIMA model is used to know the evolution of both temperature and pressure with respect to time, to know

when the centrifugal gas compressor be out of control (damage).
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The ARIMA model and the interpolation algorithm techniques [6, 7] are highly used in speech signal

processing and in statistics (time series), as well as in the deterministic and random case, which will be the

only one considered in this work. The ARIMA model is used to predict the value of a discrete-time signal at a

defined instant as a function of its past or all its future,. The main aim of implementation of this algorithm is to

predict the time at which the system reaches the stage of damage or danger. From the results shown in Figures

Figure. 4.18, for the discharge temperature T2 output, the time between the alarm warning and the time of the

system to be out of control is 60 hours. For the discharge pressure P2 and based on Figures. Figure. 4.19, the

time between the alarm warning and the time of the system to be out of control is 75 hours.
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Figure 4.18: Forecasting time level danger of (P2)
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Figure 4.19: Forecasting time level danger of (T2)

These results mean that the safety time for the system to operate under the detected faults until falling into

danger or damage is 60 hours, beyond this time the safety of the whole system is not guaranteed. Thus, through

these prediction, the system damages and its maintenance time loss can be avoided, furthermore, the system can

be isolated in time from critical danger. It can be said from the obtained results that the proposed and improved

faults diagnosis and detection approach in this chapter can improve the operation of centrifugal gas compressor

system and guarantee its production continuity within the whole installation.

6 Economic study

6.1 Reparation costs

During the first phase, within the time interval from 0 to 1000 hours, the centrifugal gas compressor operates

in healthy operating mode, consequently the value of the faults detection system indicates "0" Figure. 4.20.

During the second phase, along the time interval from 1000 hours to 2209 hours, the centrifugal gas compressor

operates under intermittent faulty state. Hence, the faults detection system indicates "1" as the measured signal

for faults detection pass the threshold aforementioned Figure. 4.20. It is important to clarify that the faults

occurrence in percentage rises to 38.9776% at the end of the second phase, this percentage is calculated based

on the number of zeros and ones obtained by the faults detection system during the second phase as shown in

Figure. 4.20. this percentage value means that the performances of the centrifugal gas compressor are decreased,

due to the increase of the temperature T2 and the decrease of the output pressure P2 as shown in Figure. 4.20

Consequently, at the end of the second phase, the machine is stopped to perform the maintenance of the whole
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system, not only the studied compressor. This operation is performed during the time of 744 hours (31 days)

where the main aim is to achieve all the required reparations. On the other side, the total repair cost was estimated

at 357,000C(this maintenance is performed to all the equipment without the intervention of the manufacturer or

an external company). It can be seen clearly that the reparation cost increases as the reparation time increase as

shown in Figure. 4.20. After the reparation, the centrifugal gas compressor is restarted up and connected to the

installation to work with a fully capacity again.
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Figure 4.20: The diagnosis approach impact on the financial cost

6.2 Benefits

When the intervention of reparation is performed at the time where the percentage of the fault occurrence reaches

10% based on the proposed diagnostic and faults detection system, the cost of reparation will be approximately

96,267C, furthermore the reparation period will take approximately 204 hours (8 days and a half day). In this

case it can be said that the proposed diagnostic system for early faults detection is economically efficient, where

the reparation intervention of defects will be done in time, more faster and with reduced financial burdens.
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7 Preliminaries

7.1 Interval Relations

Let the two vectors {x1, x2} ∈ Rn or the two matrices {A1, A2} ∈ Rn×n, the relations x1 ≤ x2 and x1 ≤ x2 are

understood elementwise. The relation P ≺ 0 (P Â 0) means that the matrix P ∈ Rn×n is negative (positive)

definite. Given a matrix A ∈Rm×n, define A+ = max{0, A}, A− = A+− A (similarly for vectors) and denote the

matrix of absolute values of all elements by |A| = A++ A− [9].

Lemma 4.1. [9, 10]. Let x ∈Rn×n be a vector variable, x ≤ x ≤ x for some x, x ∈Rn.

1. If A ∈Rm×n is a constant matrix, then

A+x− A−x ≤ Ax ≤ A+x− A−x (4.5)

2. If A ∈Rm×n is a matrix variable and A ≤ A ≤ A for some A, A ∈Rm×n, then

A+x+− A
+

x−− A−x++ A
−

x− ≤ Ax ≤ A
+

x+− A+x−− A
−

x++ A−x−. (4.6)

Furthermore, if −A = A ≤ 0≤ A, then the inequality (4.6) can be simplified:−A
(
x++ x−

)≤ Ax ≤ A
(
x++ x−

)
.

7.2 Nonnegative Linear Invariant-Time (LTI) Systems

7.2.1 Case of LTI Continuous-time systems

A matrix A ∈Rn×n is called Hurwitz if all its eigenvalues have negative real parts, it is called Metzler if all its

elements outside the main diagonal are nonnegative. Any solution of the linear system.{
ẋ(t)= Ax(t)+Bu(t), u :R+→R

q
+, u ∈Lq

∞
y(t)= Cx(t)

(4.7)

with x ∈ Rn×n, y ∈ Rp and a Metzler matrix A ∈ Rn×n, is elementwise nonnegative for all t ≥ 0 provided that

x(0) ≥ 0 and B ∈ Rn×q
+ [9, 11, 12]. The output solution y(t) is nonnegative if C ∈ Rp×n

+ and D ∈ Rp×q
+ . Such

dynamical systems are called cooperative (monotone) or nonnegative if only initial conditions in Rn+ are

considered [9, 11, 12].

For a Metzler matrix A ∈Rn×n its stability can be checked verifying a Linear Programming (LP) problem

ATλ< 0 (4.8)
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for some λ ∈Rn+ \ {0}, or Lyapunov matrix equation

AT P +P A ≺ 0 (4.9)

for a diagonal matrix P ∈Rn×n, P > 0 (in general case the matrix P should not be diagonal). The L1 and L∞
gains for nonnegative systems (4.7), i.e. gains of transfer function from input to output in different norms, have

been studied in [13, 14], for this kind of systems these gains are interrelated.

Lemma 4.2. [13, 14]. Let the system (4.7) be nonnegative (i.e. A is Metzler, B ≥ 0, C ≥ 0 and D ≥ 0), then it is

asymptotically stable if and only if there exist λ ∈Rn+ \ {0} and a scalar γ> 0 such that the following LP problem

is feasible: (
ATλ+CT Ep

BTλ−γEq +DEp

)
< 0.

Moreover, in this case L1 gain of the operator u → y is lower than γ.

Lemma 4.3. [13, 14]. Let the system (4.7) be cooperative (i.e. A is Metzler, B ≥ 0, C ≥ 0 and D ≥ 0), then it is

asymptotically stable if and only if there exist λ ∈Rn+ \ {0} and a scalar γ> 0 such that the following LP problem

is feasible: (
Aλ+BEq

Cλ−γEp +DEq

)
< 0.

Moreover, in this case L∞ gain of the transfer u → y is lower than γ.

The conventional results and definitions on L2/L∞ stability for linear systems can be found in [15].

7.2.2 Case of LTI Discrete-time systems

A matrix A ∈ Rn×n is called Schur stable if all its eigenvalues have absolute value less than one, it is called

nonnegative if all its elements are nonnegative (i.e. A Â 0). Any solution of the system

x(k+1)= Ax(k)+u(k), u :Z+→Rn
+, u ∈Ln

∞, t ∈Z+, (4.10)

with x(k) ∈Rn and a nonnegative matrix A ∈Rn×n+ (for the discrete-time case ‖ω‖ = supk∈Z+ |ωk | and by Ln∞
we denote the set of inputs ω : Z+→Rn with the property ‖ω‖ <+∞), is elementwise nonnegative for all k ≥ 0

provided that x(0)≥ 0 [16]. Such a system is called cooperative (monotone) or nonnegative [16].

Lemma 4.4. [11]. A matrix A ∈Rn×n+ is Schur stable if.f there exists a diagonal matrix P ∈Rn×n+ , P > 0 such

that AT P A−P ≺ 0.

7.3 Survey on matrix polynomials

Here we are going to define and explore some algebraic theory of matrix polynomials, solvent, latent structure,

spectral factors and the transformation between solvents and spectral factors.

Corollary 4.1. given the set of m×m complex matrices A0, A1, ..., Al, the following matrix valued function of

the complex variable s is called a matrix polynomial of degree l and order m:

A(s)= A0sl + A1sl−1 + ...+ Al−1s+ Al (4.11)

The matrix polynomial A(s) is called:
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• Monic if is A0 the identity matrix.

• Comonic if Al is the identity matrix.

• Regular if det(A(s)) 6= 0 .

• Nonsingular if det(A(s)) is not identically zero.

• Unimodular if det(A(s)) is nonzero constant.

Corollary 4.2. The complex number si is called a latent root of the matrix polynomial A(s) if it is a solution

of the scalar polynomial equation det(A(s)) = 0 The nontrivial vector p , solution of A(si)p = 0m is called a

primary right latent vector associated with si. Similarly the nontrivial vector q solution of qT A(si) = 0m is

called a primary left latent vector associated with si.

Remark 1. If A(s) has a singular leading coefficient (Al) then A(s) has latent roots at infinity.

From the corollary we can see that the latent problem of a matrix polynomial is a generalization of the

concept of eigenproblem for square matrices. Indeed, we can consider the classical eigenvalues/vector problem

as finding the latent root/vector of a linear matrix polynomial (sI − A) .

We can also define the spectrum of a matrix polynomial A(s) as being the set of all its latent roots (notation σ(s)

). It is essentially the same definition as the one of the spectrum of a square matrix.

Corollary 4.3. A right block root also called solvent of s-matrixA(s) and is an m×m real matrix R such that:

R l + A1R l−1 + ...+ Al−1R+ Al =Om

⇔ AR(R)=
l∑

i=0
A iR l−i =Om

(4.12)

While a left solvent is an m×m real matrix L such that:

Ll +Ll−1 A1 + ...+LAl−1 + Al =Om

⇔ AL(L)=
l∑

i=0
Ll−i A i =Om

(4.13)

The following are important facts on solvents:

• Solvents of a matrix polynomial do not always exist.

• Generalized right (left) eigenvectors of a right (left) solvent are the generalized latent vectors of the

corresponding matrix polynomial

Corollary 4.4. A matrix R (respectively: L) is called a right (respectively: left) solvent of the matrix polynomial

if and only if the binomial (sI −R)(respectively:(sI −L))divides exactly A(s) on the right (respectively: left).

Theorem 4.1. given a matrix polynomial

A(s)= A0sl + A1sl−1 + ...+ Al−1s+ Al (4.14)

• The reminder of the division of A(s) on the right by the binomial (sI − X ) is AR(X )

70



7. PRELIMINARIES

• The reminder of the division of A(s) on the left by the binomial (sI − X ) is AL(X )

Means that there exist matrix polynomials Q(s) and S(s) such that:

A(s)=Q(s)(sI − X )+ AR(X )

= (sI − X )S(s)+ AL(X )
(4.15)

Corollary 4.5. also gives the fundamental relation that exist between right solvent (respectively: left solvent)

and right (respectively: left) linear factor:

AR(X )= 0 iff A(s)=Q(s)(sI − X )

AL(X )= 0 iff A(s)= (sI − X )S(s)
(4.16)

7.4 The concept of Block roots

The l block roots RL ∈Rm×m are the block solvents (solutions) of the z polynomial matrix A (z), there exist two

types of block roots, right block roots and left block roots, in this observer gain matrix design just focusing for

assigning a set of left block roots [18–22].

7.4.1 The left Block roots

The polynomial matrix of order m and degree l is defined by:

DL (z)= Imzl + A1zl−1 + . . .+ Al (4.17)

A left block root defined by RL ∈Rp×p matrices satisfying:

DL (RL)= RL
l A0 +R l−1

L A1 + . . .+RL Al−1 + Al = 0p (4.18)

7.4.2 The choice form of the desired Block roots

The set of desired left block roots RL ∈Rp×p are to be selected from class of stable eigenvalues chosen in the

dominant zone and without consuming the dynamics of the system in the same time, there are many forms will

be selected (controller/observer and diagonal/general forms), the diagonally form is restricted in this observer

design to their performance [18–22].

RL =



λ1,...,n︷ ︸︸ ︷
λ1 0 0

0
. . . 0

0 0 λm


︸ ︷︷ ︸

RL1

, . . . ,


λn−p+1 0 0

0
. . . 0

0 0 λn


︸ ︷︷ ︸

RLl


(4.19)

Theorem 4.2. [17]. The condition of complete set of left block roots Consider the set of block roots {RL1,RL2, . . . ,RLl}

extracted from the eigenvalues (λ1,λ2, . . . ,λn) of a matrix Ao, where {RL1,RL2, . . . ,RLl} is a complete set of left

block roots if and only if [18–22]: 
σ (RLi)∪σ

(
RL j

)=σ (Ac)

σ (RLi)∩
(
RL j

)=;

det(VL (RL1,RL2, ... , RLl )) 6= 0

(4.20)
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where, σ denotes the spectrum of the matrix and VL is the left block vandermonde matrix corresponding to

{RL1,RL2, . . . ,RLl} given as:

VL (RL1,RL2, . . . ,RLl)=


Ip RL1 · · · R l−2

L1 R l−1
L1

Ip RL2 · · · R l−2
L2 R l−1

L2
...

...
. . .

...
...

Ip RLl · · · RLl
l−2 RLl

l−1

 (4.21)

The conditions for the existence of the complete set of left block roots have been proved by [18–22].

Remark 2. A left block vandermonde matrix extracted from a complete set of block roots of a polynomial matrix

is assumed and must to be nonsingular.

7.5 Problem statement

Consider the following Linear uncertain system{
x(k+1)= A(θ)x(k)+B(θ)u(k)+d(k)

y(k)= C(θ)x(k)+v(k)
(4.22)

where, θ is the vector of the uncertain parameters with the bounded values by an compact set Θ as Θ ={
θ ∈Rnθ

∣∣∣ θi 6 θi 6 θi, i = 1, . . . ,n
}

A (θ)6 A (θ)6 A (θ)

B (θ)6B (θ)6B (θ)

C (θ)6C (θ)6C (θ)

(4.23)

where • and • denote the lower and the upper bound of each matrix, respectively. Note that the inequalities in

(4.23) should be understood as element-wise inequalities. Therefore, the uncertainties in matrices A (θ), B (θ)
and C (θ) can be decomposed as A (θ) = An +∆A (θ), B (θ) = Bn +∆B (θ) and C (θ) = Cn +∆C (θ) , where An,

Bn and Cn are the matrices of the system (4.22), and the nominal part of the system matrices A (θ), B (θ) and

C (θ), respectively.

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp are the state, the input and the output vectors. d(k) ∈ Rn is

the disturbance, d ∈ Ln∞ v(k) ∈ Rp is the measurement noise, v ∈ Lp
∞. This model has also three sources of

uncertainty: initial conditions for x(0), instant values of d(k) and v(k), all of them belonging to known intervals.

Assumption 4.1. Let x(0) ∈
[
X0 , X0

]
for some known X0, X0 ∈Rn, let also two functions d, d ∈Ln∞ and a

constant V > 0 are given such that

d(k)≤ d(k)≤ d(k), |v(k)| ≤V ∀k ∈Z+. (4.24)

It is required to calculate two estimates x, x ∈Ln∞ using the available information on these intervals and y(k),

such that

x(k)≤ x(k)≤ x(k), ∀k ∈Z+. (4.25)

The following simplest interval observer is a solution to this problem:{
x(k+1)= A(θ)x(k)+L

∣∣y(k)−C(θ)x(k)
∣∣−|L|EpV +B(θ)u(k)+d(k)

x(k+1)= A(θ)x(k)+L |y(k)−C(θ)x(k)|+ |L|EpV +B(θ)u(k)+d(k)
(4.26)
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x0 = X0, x0 = X0

where L ∈Rn×p is the observer gain to be designed as it is required below.

Theorem 4.3. [17]. Let Assumption 4.1 hold and x ∈Ln∞, then in the system (4.22) with the interval observer

(4.26) the relations (4.25) are satisfied provided that the matrix A−LC is nonnegative. In addition, X , x ∈Ln∞ if

A−LC is Schur stable.

Proof. The system (4.22) can be equivalently rewritten as follows:

x(k+1)= (A(θ)−LC(θ)) x(k)+Ly(k)−Lv(k)+B(θ)u(k)+d(k). (4.27)

Let us again consider behavior of two estimation errors e(k)= x(k)− x(k) and e(k)= x(k)− x(k):{
e(k+1)= (A(θ)−LC(θ)) e(k)+d(k)−d(k)+|L|EpV −Lv(k).

e(k+1)= (A(θ)−LC(θ)) e(k)+d(k)−d(k)+|L|EpV +Lv(k).

By The Assumption 4.1, d(k)− d(k)+ |L|EpV − Lv(k) ≥ 0 and d(k)− d(k)+ |L|EpV + Lv(k) ≥ 0 for all

k ∈ Z+, then since A(θ)−LC(θ) ≥ 0 and e0 ≥ 0, e0 ≥ 0 we conclude that e(k) ≥ 0, e(k) ≥ 0 for all k ∈ Z+.

Therefore, the interval inclusion (4.15) is satisfied. For a Schur stable matrix A(θ)−LC(θ) and bounded inputs

Ly(k)− |L|EpV + d(k) , Ly(k)+ |L|EpV + d(k) the boundedness of x(k) and x(k) immediately follows by

standard arguments. �

Design of observer matrix gain L The matrix observer gain L can be found as a solution of the following

Linear Matrix Inequalities LMIs problem [17]:(
P P A−WC

AT P −CTWT P

)
Â 0, P Â 0 (4.28)

P A−WC ≥ 0

where P ∈ Rn×n is diagonal and W ∈ Rn×p are two matrix variables to determine, then L = P−1W . A gain

optimization problem can also be formulated to find L providing a minimal interval width x(k)− x(k) in some

sense for given in The Assumption 4.1 uncertainty.

The solution of LMIs problem presented in (4.28) is not all time is possible, the interval observer gain L can

be constructed by a new design based on block roots of matrix polynomial and grey wolf optimizer.

8 Main results

The system presented in (4.22) is transformed into block observer form (3.7), after using the block observer

form transformation To presented in (3.8) and (3.9), the new observer matrix take the following form:

Aobs (θ)= (Ao (θ)−LCo (θ))= Ao (θ)−



L1

L2
...

L l−1

L l


(
Op Op · · · Op Ip

)
(4.29)
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and,

(Ao (θ)−LCo (θ))=



Op · · · Op −Al (θ)−L1

Ip · · · Op −Al−1 (θ)−L2
...

...
...

...

Op · · · Op −A2 (θ)−L l−1

Op · · · Ip −A1 (θ)−L l


(4.30)

Based on (4.30), the characteristic matrix polynomial of the designed system is:

Pd(z,θ)= Ipzl + (A1 (θ)+L l)zl−1 +·· ·+ (Al−1 (θ)+L2)z+ (Al (θ)+L1) (4.31)

Suppose that a set of l left block roots constructed from on a set of n constraints desired eigenvalues, are the

solvents of the following desired matrix polynomial Dd (z):

Dd (z)= Ipzl + (Ad1) zl−1 + . . .+ (Adl−1) z+ (Adl) (4.32)

The design of the block roots is chosen diagonally as follows:

RL(x)=



x1,...,n︷ ︸︸ ︷
x1 0 0

0
. . . 0

0 0 xp


︸ ︷︷ ︸

RL1(x)

, . . . ,


xn−p+1 0 0

0
. . . 0

0 0 xn


︸ ︷︷ ︸

RLl (x)


(4.33)

The left block vandermonde matrix corresponding to {RL1(x),RL2(x), . . . ,RLl(x)} is given as:

VL (x) (RL1 (x),RL2 (x), . . . ,RLl (x))=


Ip RL1 (x) · · · RL1 (x)l−2 RL1 (x)l−1

Ip RL2 (x) · · · RL2 (x)l−2 RL2 (x)l−1

...
...

. . .
...

...

Ip RLl (x) · · · RLl (x)l−2 RLl (x)l−1

 (4.34)

The matrix coefficients of the desired characteristic matrix polynomial Dd (z) is expressed as:

Dd(x)=VL(x)−1


RL1(x)

RL2(x)
...

RLl(x)

 (4.35)

by put this equating, (4.31) = (4.35) ⇒ Pd(z,θ)= Dd(x), we get the observer matrix gain L:

Lo(x,θ)=
[
Ao (θ) (: , (n− p+1) : n)−Dd(x)

]
(4.36)

9 Constrained nonlinear optimization

The grey wolf optimizer is a metaheuristics algorithm that solve a convex multidimensional optimization

problems with constraints [25]. To finds the minimum of a problem specified by

min
x

f (x)such that



c (x)≤ 0

ceq (x)= 0

A ·x≤ b
Aeq ·x= beq
lb ≤ x≤ ub

(4.37)
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b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return vectors, and f (x) is a

function that returns a scalar. f (x), c(x), and ceq(x) can be nonlinear functions.

The obtained observer matrix gain Lo(x,θ) is a nonlinear function, in order to find the observer matrix

gain L which can solve the problem of the proposed interval observer presented in (4.26), therefore satisfying

the conditions of the Theorem 4.1. In this regard, the observer gain function (4.36) is formulated as a convex

minimization problem with constraints which can solved by the well-known metaheuristics optimization

algorithm Grey Wolf Optimizer [23], where the objective function f (x) is chosen as follows:

f (x,θ)= ‖Lo(x,θ)‖∞ =
∥∥∥[

Ao (θ) (: , (n− p+1) : n)−Dd(x)
]∥∥∥∞ (4.38)

Find x which minimize the objective function min
x

∥∥∥[
Ao (θ) (: , (n− p+1) : n)−Dd(x)

]∥∥∥∞ subject to certain set

of constraints:
|λ(Ao(θ)−Lo(x,θ)Co(θ))|−ε< 0, ε ∈]0 1[

( Ao(θ)−Lo(x,θ)Co(θ) )≥ 0

VLV−1
L − In =On

e > 0 & e > 0

lb ≤ x≤ ub, {lb,ub} ∈]−1 1[− {0}

(4.39)

The inequality constraint condition has been chosen to adjust the bounded stability of the observer matrix

Aobs (θ) (Schur stable), to ensure the conditions of the interval observer, the the positivity of the lower and the

upper estimate errors signals, the positivity of the observer matrix Aobs (θ). The equality constraints have been

chosen in order to ensure the validly of the block vandermonde matrix VL, because the inverse of this block

matrix cause problems occasionally (ill-conditioned matrix). The lower and the upper bound of the elements of

vector x ∈Rn are chosen in which their values are kept within the unit circle.

10 The proposed algorithm steps

Summarizing all the important steps of the proposed interval observer

Algorithm 3 Robust interval observer algorithm

Step 1 Check the ratio n/p = l, which must be an integer.

Step 2 Check the rank of the block observability matrix of the nominal model Ωo of (3.6), which must equal n
(be full rank).

Step 3 Transforming the system (4.22) into block observable form, see (3.9).

Step 4 Define the uncertainties parameters level ∆θ of the studied model (4.22).

Step 5 Define the bounded disturbance and measurement noise signals.

Step 6 Computing the observer matrix gain L as follows:

(a) Find the elements of the optimization vector which minimize the norm of the observer matrix gain L
as in (4.38).

(b) Check the verification of the inequality condition of the nonnegativity in each iteration, see (3.39).
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(c) Check the equality constraints of the left block vandermonde matrix in each iteration, as in (3.39).

(d) Set the values of the lower and the upper bound lb and ub respectively of the vector zk, and choose
initial value to the vector z0, see (3.39).

Step 7 When the stopping criterion is satisfied and the algorithm converge, the best optimization vector was
selected.

Step 8 Finally, The observer matrix gain L is obtained based on (3.28).

11 Experimental application and results

The reduced dynamical model of the centrifugal gas compressor BCL 505 is chosen as good case of study,

due to their hard pairing and interactions between their inputs-outputs. The studied model has two inputs T1:

is aspiration temperature, P1: is aspiration pressure and two outputs T2: is discharge temperature and P2: is

discharge pressure. The studied system (4.22) is represented by its reduced state space model. Where, the order

of the model, n = 4, with two inputs m = 2 and two outputs p = 2, and its characteristic matrices A, B, and C,

the model is transformed to block observer form based on (4.15) and (4.16), given as follows:

Ao =


0 0 −0.0110 0.0274

0 0 0.0397 0.0555

1 0 0.0882 0.0946

0 1 0.1210 0.1447

 , Bo =


0.0488 0.0357

0.1353 0.0678

0.1213 0.1659

0.1665 0.2486

 , Co =
(

0 0 1 0

0 0 0 1

)

The time-invariant uncertain parameters are bounded [-100,+100]% from the nominal values, by the following

intervals:
−100%A (θ)6∆A (θ)6+100%A (θ)

−100%B (θ)6∆B (θ)6+100%B (θ)

−100%C (θ)6∆C (θ)6+100%C (θ)

(4.40)

The measurement noise signal given as follow v(k)=V sin(k), is bounded where ‖v(k)‖ ≤V = 0.1.

The disturbance signal is a bounded nonlinear function coupled with system state is given as:

d(k)= [sin(0.1k) cos(0.2k) sin(0.1k) cos(0.2k)]T +δ[sin(0.5k · x(2)) sin(0.3k) sin(0.5kx(2)) sin(0.3k)]T

The lower disturbance signal

d(k)= [sin(0.1k) cos(0.2k) sin(0.1k) cos(0.2k)]T −δ

The upper disturbance signal

d(k)= [sin(0.1k) cos(0.2k) sin(0.1k) cos(0.2k)]T +δ

where, δ= 0.8

After solving the optimization problem using the GWO optimizer, the following parameters of the optimizer are

setting as :

The optimization vector x ∈ R12, where the lower bound and the upper bound vectors are given as: lb =
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[−0.99ones(1,4) −300ones(1,8)] and ub = [0.99ones(1,4) 300ones(1,8)] respectively, the number of search

agents is SAn = 20, and after maximum number of iterations Max = 500 as shown in Figure. 4.21 and Figure. 4.22,

respectively. all the constraints are not violated and the conditions mentioned in the Theorem 4.1 are satisfied.

The set of the desired left block roots RL = {RL1,RL2} are the solvents of the left matrix polynomial

presented in (4.32), and they were constructed in the observer form from the optimal eigenvalues λ, given as:

RL1 =
(

0.0939 0.0472

0.2312 0.3409

)
, RL2 =

(
−0.0332 −0.0019

−0.0610 −0.1583

)

The left block vandermonde VL given as:

VL =


1 0 0.0939 0.0472

0 1 0.2312 0.3409

1 0 −0.0332 −0.0019

0 1 −0.0610 −0.1583


Finally, the matrix observer gain L is given as:

L =


−0.0157 0.0233

0.0030 0.0013

−0.0109 −0.0082

0.0018 0.0017

 (4.41)

The nominal observer matrix Aobs (θ) is given as:

Aobs (θ)=


0 0 0.0047 0.0041

0 0 0.0367 0.0542

1 0 0.0991 0.1028

0 1 0.1192 0.1430

 (4.42)
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Figure 4.23: Interval estimation of state x1
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Figure 4.24: Interval estimation of state x2
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Figure 4.25: Interval estimation of state x3
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Figure 4.26: Interval estimation of state x4
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Figure 4.27: Interval error estimation of state x1
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Figure 4.28: Interval error estimation of state x2

78



11. EXPERIMENTAL APPLICATION AND RESULTS

0 50 100 150

Time (h)

0

0.5

1

1.5

2

2.5

E
rr

o
r 

x
3

Upper error of x
3

Lower error of x
3

Figure 4.29: Interval error estimation of state x3
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Figure 4.30: Interval error estimation of state x4
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Figure 4.31: Forecasting time level danger of P2
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Figure 4.32: Interval estimation of output P2
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Figure 4.33: Interval error estimation of output P2
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Figure 4.34: Interval error estimation of output T2
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Based on the obtained results, the effect of the proposed designed observer gain L is shown in the interval

estimated states of the systems, where the estimated interval states upper and lower, respectively, making the

systems states remaining and maintaining inside the estimated interval as shown in Figure. 4.23, Figure. 4.24,

Figure. 4.25 and Figure. 4.26, in the presence of uncertainty, noise and disturbance signals, the positivity of the

estimated states errors prove the effect of this observer gain, as shown in Figure. 4.27, Figure. 4.28, Figure. 4.29

and Figure. 4.30.

On the other hand, the estimated upper and lower outputs signals make the outputs signals maintain inside

the estimated interval, as shown in Figure. 4.31 and Figure. 4.32, the estimated outputs errors prove the effect of

this observer gain, as shown in Figure. 4.33 and Figure. 4.34.

Remark 3. In general to providing minimal interval width
(

x (k) x (k)
)

and
(

y (k) y (k)
)

a gain optimiza-

tion problem can also be formulated to find a new L. In our example you can minimize the interval width by

reducing the value of the constant δ until you reach an interval width is nearly to zero.

12 Interval observer-based fault detection

One of the most important applications of the interval observer is fault detection. The advantage of interval

observer based fault detection is that it can generate an adaptive threshold used in residual evaluation [24]. Based

on the design results of the proposed interval observer summarized in section 10, in this section a fault detection

method based on interval observer is presented.

Consider the following Linear uncertain system{
x(k+1)= A(θ)x(k)+B(θ)u(k)+d(k)

y(k)= C(θ)x(k)+v(k)+ Ip f (k)
(4.43)

where f (k) ∈Rp denotes the fault vector and Ip ∈Rp is identity matrix.

we can only use the measurable output y(k) for fault detection. Based on the proposed interval observer, we

construct the following fault detection system:

ŷ(k)≤ y(k)≤ ŷ(k) (4.44)

Obviously, ŷ(k) and ŷ(k) are the estimates of upper and lower boundaries of output signal y(k) for system (4.40)

in the fault-free case. Thus, we can set ŷ(k) and ŷ(k) as the dynamic thresholds for fault detection and present

the following fault detection scheme:{
ŷ(k)≤ y(k)≤ ŷ(k) Fault-free

y(k)< ŷ(k) or y(k)> ŷ(k) Faulty
(4.45)

After adding a real faults to the outputs signals, considered as a virtual faults sensors, where the following sensor

fault is simulated:

f (k)=
(

f1 (k)
f2 (k)

)
(4.46)

where

f (k)=
{

0 0h≤ k ≤ 150*rand(1)h

Random 0h≤ k ≤ 150h
(4.47)
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13. CONCLUSION

The obtained results shown in Figure. 4.35 and Figure. 4.36, the detection of the faults represented by red stems

is activated in case of occurrence fault, i.e if the outputs signals exceed to its estimated threshold generated by

interval observer.
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Figure 4.35: The adaptive interval threshold generated
by interval observer of output P2 in presence of faults
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Figure 4.36: The adaptive interval threshold generated
by interval observer of output T2 in presence of faults

interval observer gives reliable interval estimation in the fault-free case. After the fault occurrence, the interval

observer-based fault detection method can timely detect the fault. The below Table 4.3 shows A comparative

study performance between the two proposed Fault Detection (FD) approaches, Fuzzy approach and Interval

observer approach. Concerning the time of the fault detection the interval observer is more faster due to its

simple design compared with the fuzzy approach which its design contains many tasks (Filtering, Comparing

with healthy model, and detecting based on expert system of Fuzzy-logic 2), the interval observer generate an

flexible and adaptive threshold which make the detection more precise comparing with the fuzzy approach, the

design of the interval observer take in consideration three sources of uncertainties: disturbance and noise signals

and parameters model uncertainties which becomes more robust compared with the fuzzy approach.

Table 4.3: Comparative study and performance analysis

FD Approaches Time of fault detection Complexity design Threshold Robustness

Fuzzy-logic 2 Suitable Complex Constant Sensitive
Interval observer Excellent (Faster) Simple Adaptive Robust

13 Conclusion

A robust faults diagnosis and detection approaches are proposed in this chapter and applied on the centrifugal

gas compressor BCL 505 based on experimental data obtained on site from the measurement of the real time

acquisition control system (ACS). The main purpose of the proposed approach is to improve the energy efficiency

by improving the operating mode and the monitoring performance of the BCL 505 centrifugal gas compressor

used in gas transportation station and studied in this chapter.

First part, the proposed faults diagnosis and detection approach is a combination of the two faults detection

and isolation (FDI) approaches that are mainly based on the optimal identified healthy parametric equivalent
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model, the Kalman observation system, and the intelligent expert fuzzy type-2 system. Whereas the Kalman filer

is used to obtain the estimation of the output signals and to ensure the robustness against the eventual disturbances

and noise contained in the measured output signals from the ACS. The output of the optimal identified parametric

model and the estimated output based on real time inputs are used to generate the current residues on real time. In

this chapter this residues are used through the expert system which was designed based on the type-2 fuzzy logic

to ensure the faults diagnosis and detection in real time, this expert system achieves this main task with the help

of the calculated and defined limits of the threshold defining the degree of the faults and its level of damage and

risk on the studied centrifugal gas compressor BCL 505 system. Furthermore, the prediction of the remaining

time before the failure of the studied machine is investigate based on the autoregressive integrated moving

average (ARIMA) model, where the main aim is to avoid the an expected failure and to provide an accurate

maintenance schedule. It can be concluded that the proposed approach of faults diagnosis and detection which

has been applied on the centrifugal gas compressor BCL 505 posses several advantage such as the decrease of

the reparation time, avoiding the system form an expected operating risks and reducing the maintenance costs.

These advantages affects positively the energy efficiency of the whole studied system and therefore increase the

stability of the production, on the operation mode of the studied system and improves the overall studied system

reliability and its robustness against the eventual faults.

Second part, the proposed interval observer is designed based on block roots of matrix polynomial and

grey wolf optimizer, this observer is well used in fault detection and diagnosis approaches to their efficiency

and simplicity design, the obtained results shown that the proposed observer play the same role of the design

approach of the first part without need to more tasks, the interval observer makes us dispense with the use more

tasks that is used in the approach presented in the first part, with a high efficiency in the presence of three sources

of obstacles such as, noise, disturbance and parameters uncertainties.

Finally, it can be said that the proposed faults diagnosis and detection approaches investigated in this chapter

is a promising approach which can be applied for different heavy industrial systems to improve their efficiency,

especially in the area of petrol and oil industrial applications such as the gas turbine, the turbo-alternator, the

turbo gas compressor...etc, where the main aim is to improve their dynamic behaviors, their operation mode,

their reliability, their economics and their efficiency.
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A robust fractional-order PIλDµ controller design

based on pseudo block-roots assignment

1 Introduction

Due to its simple structure and design, its simplicity of implementation and satisfactory control perfor-

mance, the classical PID controller remains until now the most widely used regulator in the industrial

systems and processes. However, with the complexity of the new industrial installations, the classical

PID regulators become powerless and often give less effective results in some times. Therefore, it was incumbent

on researchers find improvements more sophisticated and effective designs for the existed PID controllers, the

use for example the optimization algorithms and the artificial intelligent techniques...etc, to select the optimal

parameters which can improve the quality of the existed classical controllers, but this improvement remained

insufficient because the classical design does not match its capabilities with the complexities of existing industrial

systems, therefore. In this chapter, a robust multivariable fractional-order PIλDµ controller is proposed, where

its algebraic design is based on assignment of a set of optimal pseudo-block-roots of quasi matrix polynomial,

where the proposed design is formulated as a convex optimization problem and has been solved using a grey wolf

optimizer (GWO). A centrifugal gas compressor system is also considered in this chapter as case of application

where the reduced model of this system is controlled under hight level of parameters uncertainty conditions, the

robustness of the proposed controller is also proved in passive fault-tolerant control (PFTC) configuration in

presence of faults, under additive and multiplicative disturbances, respectively.

2 Preliminaries

2.1 Canonical Block Controller Form Transformation

In this subsection, we attempt to introduce the necessary fundamental of a matrix polynomials theory, that are

used in the design of the proposed multivariable fractional-order PIλDµ controller .

85



CHAPTER 5. A ROBUST FRACTIONAL-ORDER PIλDµ CONTROLLER DESIGN BASED ON PSEUDO
BLOCK-ROOTS ASSIGNMENT

Let we consider the following multivariable LTI system described by a state space representation:{
ẋ(t)= Ax(t)+Bu(t)

y(t)= Cx(t)+Du(t)
(5.1)

where, x ∈ Rn is the state vector, y ∈ Rp and u ∈ Rm denote the output and the input vectors, respectively.

A ∈Rn×n, B ∈Rn×m, C ∈Rp×n and D ∈Rp×m are the matrices of the system.

Corollary 5.1. System (5.1) can be transformed to block controllable canonical form of index l if two conditions

are satisfied [1–9]:

1. The ratio l = n/m is integer.

2. The rank of block controllability matrix Ωbc,
(

B AB · · · Al−2B Al−1B
)

is full, rank(Ωbc) = n.

If the both conditions are satisfied, then the change of coordinates xc(t)= Tcx(t) transforms the system into

the following Block controller form: {
ẋ(t)= Acxc(t)+Bcu(t)

y(t)= Ccxc(t)+Dcu(t)
(5.2)

and,

Ac,Tc ATc
−1 =



Om Im · · · Om Om

Om Om · · · Om Om
...

... . . .
...

...

Om Om . . . Om Im

−Al −Al−1 · · · −A2 −A1


, Bc, TcB =

(
Om Om · · · Om Im

)T
(5.3)

Cc,CTc
−1 =

(
Cl Cl−1 · · · C2 C1

)
, Dc,D (5.4)

where,

Tc,



Tc1

Tc1 A
...

Tc1 Al−2

Tc1 Al−1


, Tc1 =

(
Om Om · · · Om Im

)(
B AB · · · Al−2B Al−1B

)−1

Om stands for m×m zero matrix and Im stands for m×m identity matrix.

2.2 Matrix Fraction Descriptions (MFDs)

The MFDs representations of linear multivariable systems are not unique. The system (5.1) can be presented into

the left or the right MFD if the conditions presented in Corollary 5.1 are satisfied.

The right and the Left MFD of the system (5.1) is given as follows:

H (s)= NR (s)DR(s)−1 = DL(s)−1NL (s) (5.5)
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The right numerator matrix polynomial Np (s) of system H (s) is given as follow:

Np (s)= Nrlsl +Nr(l−1)sl−1 +·· ·Nr(1)s+Nr0 =
0∑

i=l
Nrisi, Nri ∈ Rp×m, Nrl = Dc (5.6)

The right denominator matrix polynomial Dp (s) of system H (s) is given as follow:

DR (s)= Drlsl +Dr(l−1)sl−1 +·· ·Dr(1)s+Dr0 =
0∑

i=l
Drisi, Dri ∈ Rm×m, Drl = Im×m (5.7)

The matrices coefficients of matrices polynomials NR (s) and DR (s) are calculated based on block controllability

matrices (5.3) and (5.4) as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dr0 =−Al

Dr1 =−Al−1

...
...

Dr(l−1) =−A1

Drl = I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nr0 = Cl +DcDr0

Nr1 = Cl−1 +DcDr1

...
...

Nr(l−1) = Cl−1 +DcDr(l−1)

Nrl = Dc

(5.8)

2.3 Characteristics of matrix polynomials with integer order

Definition 5.1. Let we consider the following polynomial of complex variable s and matrix coefficients

{A0, A1, ..., Al}:

A(s)= A0sl + A1sl−1 + ...+ Al−2s2 + Al−1s+ Al (5.9)

(5.9) is called matrix polynomial of degree l and order m if their coefficients coi f = {A0, A1, ..., Al} are matrices

of dimension ∈Rm×m.

Definition 5.2. A real matrix R ∈Rm×m is called a right block root or right block solvent of matrix polynomial

(5.9) such that:

R l
r + A1R l−1

r + ...+ Al−1Rr + Al =Om

⇔ A(Rr)=
l∑

i=0
A iR l−i

r =Om
(5.10)

While a real matrix R is a left block root or left solvent such that:

Ll +Ll−1 A1 + ...+LAl−1 + Al =Om

⇔ AL(L)=
l∑

i=0
Ll−i A i =Om

(5.11)

2.4 Fundamentals of fractional-order calculus

Fractional order calculus of differentiation and integration is a more general to non-integer order calculus

operator aDα
t , where α denotes the fractional order and belongs to R (any rational number), t and a denote the

limits of the operation such that the differ-integral operator is represented as follow:

aD
α
t ,


dα

dt
R (α)> 0,

1 R (α)= 0,∫ t
a (dτ)−α R (α)< 0,

(5.12)
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Among the different definitions of fractional order derivative that exist in literatures, there are three most

popular and usefulle definitions are: Riemann-Liouville, Grunwald-Letnikov, and Caputo’s definitions. In

practical applications in engineering, the Caputo’s defnition is widely used [12, 13]. The Caputo’s formulation

of the fractional order derivative of order ν is given by:

C
a Dν

t f (t)= 1
Γ (n−ν)

∫ t

a

f (n) (τ)
(t−τ)1−(n−ν) dτ (5.13)

where ν (n−1< ν< n ∈ N) is a positive non-integer number. Γ(ν) is the Euler’s Gamma function. Also, a and t

are respectively the lower and the upper terminals of the integral [12, 13].

The Laplace transform of the Caputo’s fractional order derivative is given by

L
{

C
a Dν

t f (t)
}
= sνL { f (t)}−

n−1∑
j=0

sν−1− j f ( j) (0), (5.14)

which for zero initial conditions is simplified to

L
{

C
a Dν

t f (t)
}
= sνL { f (t)} . (5.15)

3 Problem statement

The general fractional order PIλDµ (FO−PIλDµ) controller is given by its left Cl (s) and right Cr (s) matrix

fraction description formula as follows:

Cl (s)= (sλIm×p)−1(K i +KpsλIm×p +Kdsλ+µIm×p) (5.16)

and,

Cr (s)= (K i +KpsλIm×p +Kdsλ+µIm×p)(sλIm×p)−1 (5.17)

The controller numerator Nc (s) given as follow

Nc (s)= K i +KpsλIm×p +Kdsλ+µIm×p (5.18)

The controller denominator Dc (s) given as follow

Dc (s)= sλIm×p (5.19)

where, Kp is the proportional matrix gain Kp ∈ Rm×p, K i is the integral matrix gain K i ∈ Rm×p, Kd is the

derivative matrix gain Kd ∈ Rm×p, λ is the integration fractional order λ > 0, and µ is the differentiation

fractional order µ> 0.

C (s)=



Kd(1,1)sλ+µ+Kp(1,1)sλ+Ki(1,1)

sλ
Kd(1,2)sλ+µ+Kp(1,2)sλ+Ki(1,2)

sλ
· · ·

Kd(1,p)sλ+µ+Kp(1,p)sλ+Ki(1,p)

sλ

Kd(2,1)sλ+µ+Kp(2,1)sλ+Ki(2,1)

sλ
. . . . .

. Kd(2,p)sλ+µ+Kp(2,p)sλ+Ki(2,p)

sλ
... . .

. . . .
...

Kd(m,1)sλ+µ+Kp(m,1)sλ+Ki(m,1)

sλ
Kd(m,2)sλ+µ+Kp(m,2)sλ+Ki(m,2)

sλ
· · ·

Kd(m,p)sλ+µ+Kp(m,p)sλ+Ki(m,p)

sλ

 (5.20)

Remark 1. The system model have been transformed to the right matrix fraction description form RMFD instead

the left form, because the right form is more appropriate in the controllers designs. The opposite of, the left

matrix fraction description LMFD is more appropriate in the observers and estimators designs [8–10].
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The control signal u(s) is given as follow:

u(s)= C (s) e(s) (5.21)

The error signal e(t) is given as follow:

e(t)= r(t)− y(t) (5.22)

where, r(t) is the set-point signal, e(t) and r(t) ∈Rp.

The closed loop control system shown in the Figure. 5.1 is described by a multivariable fractional-order

transfer function and is given as follow:

H(s)= (C (s)G (s)) (I +C (s)G (s))−1 (5.23)

u(t)

H(s)

y(t)∑

G(s)C(s)
-

+ e(t)r(t) Multivariable Linear

Uncertain System

Proposed
PIλDµ

Controller

Figure 5.1: Closed loop system of the system G(s) and the controller C(s).

The objective is to determine the matrices gains of the fractional-order controller Kp, K i and Kd respectively

and its fractional parameters λ and µ. Such that, the proposed design algorithm should guaranteed the following

specifications in the CLS:

• Ensured the closed-loop stability

• Best disturbance rejection (without need a excessive control action)

• Fast and good set-point tracking (without need a excessive control action)

• A satisfactory degree of robustness to system parameters variations, uncertainty and unmodeled dynamics

• Low sensitivity to the noise

• Minimum gain of control signal energy

To achieve all of the above requirements, the required is to exploit the specifications and the advantage of the

block roots of matrix polynomial and extend their application to the matrix polynomial of the fractional order

powers.

By convention and from the existed knowledge in literatures, new terminologies are extended from the

monovariable fractional-order to the multivariable fractional-order and suggested to use in this chapter

Multivariable Integer Order Monovariable Fractional Order Multivariable Fractional Order

Block Roots Pseudo Roots Pseudo Block Roots
Matrix Polynomial Quasi Polynomial Quasi Matrix Polynomial
Block Vandermonde Matrix – Pseudo Block Vandermonde Matrix
Diophantine Matrix Equation Quasi Diophantine Equation Quasi Diophantine Matrix Equation
Generalized Sylvester Matrix Equation – Quasi Generalized Sylvester Matrix Equation
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4 Main results

The system G (s) is given in the right matrix fraction description representation as follows:

G (s)= NR (s)DR(s)−1 (5.24)

The controller C (s) is given in the left matrix fraction description representation as follows:

Cl (s)= Dc(s)−1Nc (s) (5.25)

Remark 2. When we choose the right fraction description for the plant it is advisable to choose the left fraction

description for the controller design, Thomas Kailath [10].

The closed loop system Hcls (s) is obtained based on equation (5.24) and (5.25) as follows:

Hcls (s)= (
NR (s)DR(s)−1Dc(s)−1Nc (s)

)(
NR (s)DR(s)−1Dc(s)−1Nc (s)+ I

)−1
(5.26)

Multiplying the left and the right sides of (5.26) by NR (s)−1 and Nc (s)−1 respectively, we obtain

Hcls (s)= (
DR(s)−1Dc(s)−1)(

DR(s)−1Dc(s)−1 +NR(s)−1Nc(s)−1)−1
(5.27)

Multiplying the left and the right sides of (5.27) by DR (s)Dc(s) and NR (s) Nc(s) respectively, we obtain

Hcls (s)= NR (s) Nc (s) (DR (s)Dc (s)+NR (s) Nc (s))−1 (5.28)

Multiplying the left and the right sides of (5.28) by NR (s)−1 and Nc (s)−1 respectively, we obtain

Hcls (s)= (
NR(s)−1 (DR (s)Dc (s)+NR (s) Nc (s)) Nc(s)−1)−1

(5.29)

Hence, the close loop controller-system take this form

Hcls (s)= NR (s)

DR (s)Dc (s)+NR (s) Nc (s)︸ ︷︷ ︸
Dcls(s)


−1

Nc (s) (5.30)

The closed loop controller-system Hcls (s) is a multivariable fractional-order transfer function, where it contains

the specific information about the controller-system. The objective now is to determine the matrices gain of the

proposed FO−PIλDµ controller Kp, K i, Kd and the fractional-order parameters λ and µ respectively, such

away that the CLS stability is guaranteed and the tracking signal error is approaches to zero with minimum gain

control signal energy.

The denominator Dcls (s) of the closed-loop control-system Hcls (s) is a quasi Diophantine matrix equation

form, let us transform it from the matrix transfer function to the block matrix form, by the expansion of the

matrices elements of Dcls (s) and aggregate all the matrices which have the same fractional-orders, after the

mathematical manipulations a quasi generalized Sylvester matrix equation S is obtained where it contains the

matrices coefficients of the numerator Np(s) and the free matrix D contains the matrices coefficients of the

denominator Dp(s), in order to determine the block Sylvester S and D matrices respectively, a problem of

fractional orders values of integration λ and derivation µ respectively is posed, for which one is greater then the

other?.

The outputs of the FO−PIλDµ controller severely fluctuates when the sampling time Ts is very small, and

this can reduce the life-time of some actuators like the valves, due to hight sensitivity of the derivative action
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to the noise. Therefore, it is not recommended to use the derivative action in the slow processes, if the process

is sufficiently damped (i.e., large time-constant), because it can amplify the large frequency noise. For these

objective reasons we have assumed in this design that the order value λ of the integral action Iλ is always greater

than to the order value µ of the derivative action Dµ, meaning that the proposed FO−PIλDµ is closer to the

FO-PIλ controller from than to the FO-PDµ controller.

The quasi Diophantine matrix equation Dcls (s) can transformed to the block matrix form as follows:

Dcls (s)≡SK+D (5.31)

The denominator Dcls (s) presented in equation (5.31) of the closed loop controller-system is enforced to

match the desired proposed quasi matrix polynomial X (s), where this quasi matrix polynomial is achieves

some important specifications such as the stability in the sense of the fractional order dynamics i.e theirs

pseudo-eigenvalues are stable and it has the same fractional order than the Dcls (s), (i,e: order = l+λ+µ).

(5.31) can takes three distinguished forms and their desired X (s) quasi matrix polynomial, and this according

to the intervals of which the fractional-orders λ and µ belongs to:

4.1 Case 1

If λ ∈]0 1[ and µ ∈]0 1[ with (λ+µ)< 1, the equation (5.31) take the following form:

Dcls︷ ︸︸ ︷

D l+λ+µ

D l+λ

D l

D l+λ+µ−1

D l+λ−1

D l−1

...
...

Dλ+µ+1

Dλ+1

D1

Dλ+µ

Dλ

D0



=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sl+λ+µ

sl+λ

sl

sl+λ+µ−1

sl+λ−1

sl−1

...
...

sλ+µ+1

sλ+1

s1

sλ+µ

sλ

s0

S︷ ︸︸ ︷

Nrl Om Om

Om Nrl Om

Om Om Nrl

Nr(l-1) Om Om

Om Nr(l-1) Om

Om Om Nr(l-1)

...
...

...
...

...
...

Nr1 Om Om

Om Nr1 Om

Om Om Nr1

Nr0 Om Om

Om Nr0 Om

Om Om Nr0



K︷ ︸︸ ︷
Kd

Kp

K i

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sl+λ+µ

sl+λ

sl

sl+λ+µ−1

sl+λ−1

sl−1

...
...

sλ+µ+1

sλ+1

s1

sλ+µ

sλ

s0

D︷ ︸︸ ︷

Om

Drl

Om

Om

Dr(l−1)

Om
...
...

Om

Dr1

Om

Om

Dr0

Om



(5.32)
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BLOCK-ROOTS ASSIGNMENT

The corresponding desired Quasi matrix polynomial of fractional order X (s) take this form:

X (s)= Imsl+λ+µ+X3l+2sl+λ+X3l+1sl +·· ·+X2sλ+µ+X1sλ+X0 (5.33)

where, X3l+3 = Im

If we consider that the set of the desired pseudo-block-roots {R1, R2, ... ,R3l+2, R3l+3} are the solvents of

the quasi matrix polynomial X (s) presented in (5.33), and which can be satisfy this equalities as follows:



R l+λ+µ
3l+3 +X3l+3R l+λ

3l+3 +X3l+2R l
3l+3 +·· ·+X2Rλ+µ

3l+3 +X1Rλ
3l+3 +X0 =Om

R l+λ+µ
3l+2 +X3l+3R l+λ

3l+2 +X3l+2R l
3l+2 +·· ·+X2Rλ+µ

3l+2 +X1Rλ
3l+2 +X0 =Om

...
...

...
...

...
...

R l+λ+µ
2 +X3l+3R l+λ

2 +X3l+2R l
2 +·· ·+X2Rλ+µ

2 +X1Rλ
2 +X0 =Om

R l+λ+µ
1 +X3l+3R l+λ

1 +X3l+2R l
1 +·· ·+X2Rλ+µ

1 +X1Rλ
1 +X0 =Om

(5.34)

After some mathematical manipulations we get:

X

Vr︷ ︸︸ ︷

I I · · · I I
Rλ

1 Rλ
2 · · · Rλ

3l+2 Rλ
3l+3

Rλ+µ
1 Rλ+µ

2 · · · Rλ+µ
3l+2 Rλ+µ

3l+3
...

... . . . ...
...

R l
1 R l

2 · · · R l
3l+2 R l

3l+3

R l+λ
1 R l+λ

2 · · · R l+λ
3l+2 R l+λ

3l+3


=−

(
R l+λ+µ

1 R l+λ+µ
2 · · · R l+λ+µ

3l+2 R l+λ+µ
3l+3

)
(5.35)

where, Vr is the right Pseudo Block Vandermonde matrix

Hence, the matrices coefficients of the desired Quasi matrix polynomial X (s) are obtained as follows:

X =−
[(

R l+λ+µ
1 R l+λ+µ

2 · · · R l+λ+µ
3l+2 R l+λ+µ

3l+3

)
Vr

−1
]T

(5.36)
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4.2 Case 2

If λ ∈]0 1[ and µ ∈]0 1[ with (λ+µ) ∈]1 2[, the equation (1.31) take the following form:

Dcls (s)=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sl+λ+µ

sl+λ

sl+λ+µ−1

sl

sl+λ−1

sl+λ+µ−2

sl−1

sl+λ−2

...
...

sλ+µ

s1

sλ

sλ+µ−1

s0

S︷ ︸︸ ︷

Om Om Nrl

Nrl Om Om

Om Om Nr(l-1)

Om Nr(l) Om

Nr(l-1) Om Om

Om Om Nr(l-2)

Om Nr(l-1) Om

Nr(l-2) Om Om

...
...

...
...

...
...

Om Om Nr0

Om Nr1 Om

Nr0 Om Om

Om Om Om

Om Nr0 Om



K︷ ︸︸ ︷
Kp

K i

Kd

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sl+λ+µ

sl+λ

sl+λ+µ−1

sl

sl+λ−1

sl+λ+µ−2

sl−1

sl+λ−2

...
...

sλ+µ

s1

sλ

sλ+µ−1

s0

D︷ ︸︸ ︷

Om

Drl

Om

Om

Dr(l−1)

Om

Om

Dr(l−2)
...
...

Om

Om

Dr0

Om

Om



(5.37)

The corresponding desired Quasi matrix polynomial of fractional order X (s) take this form:

X (s)= Imsl+λ+µ+X3l+1sl+λ+X3l sl+λ+µ−1 +X3l−1sl +X3l−2sl+λ−1 +·· ·+X1sλ+µ−1 +X0 (5.38)

where, X3l+2 = Im

If we consider that the set of the desired pseudo-block-roots {R1, R2, ... , R3l+2, R3l+2} are the solvents of

the quasi matrix polynomial X (s) presented in (5.38), and which can be satisfy this equalities as follows:



R l+λ+µ
3l+2 +X3l+1R l+λ

3l+2 +X3lR
l+λ+µ−1
3l+2 +X3l−1R l

3l+2 +X3l−2R l+λ−1
3l+2 +·· ·+X1Rλ+µ−1

3l+2 +X0 =Om

R l+λ+µ
3l+1 +X3l+1R l+λ

3l+1 +X3lR
l+λ+µ−1
3l+1 +X3l−1R l

3l+1 +X3l−2R l+λ−1
3l+1 +·· ·+X1Rλ+µ−1

3l+1 +X0 =Om

...
...

...
...

...
...

R l+λ+µ
2 +X3l+1R l+λ

2 +X3lR
l+λ+µ−1
2 +X3l−1R l

2 +X3l−2R l+λ−1
2 +·· ·+X1Rλ+µ−1

2 +X0 =Om

R l+λ+µ
1 +X3l+1R l+λ

1 +X3lR
l+λ+µ−1
1 +X3l−1R l

1 +X3l−2R l+λ−1
1 +·· ·+X1Rλ+µ−1

1 +X0 =Om
(5.39)
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After some mathematical manipulations we get:

X

Vr︷ ︸︸ ︷

I I · · · I I

Rλ+µ−1
1 Rλ+µ−1

2 · · · Rλ+µ−1
3l+1 Rλ+µ−1

3l+2

Rλ
1 Rλ

2 · · · Rλ
3l+1 Rλ

3l+2

...
...

. . .
...

...

R l+λ+µ−1
1 R l+λ+µ−1

2 · · · R l+λ+µ−1
3l+1 R l+λ+µ−1

3l+2

R l+λ
1 R l+λ

2 · · · R l+λ
3l+1 R l+λ

3l+2


=−

(
R l+λ+µ

1 R l+λ+µ
2 · · · R l+λ+µ

3l+1 R l+λ+µ
3l+2

)

(5.40)

where, Vr is the right Pseudo Block Vandermonde matrix

Hence, the matrices coefficients of the desired Quasi matrix polynomial X (s) are obtained as follows:

X =−
[(

R l+λ+µ
1 R l+λ+µ

2 · · · R l+λ+µ
3l+1 R l+λ+µ

3l+2

)
Vr

−1
]T

(5.41)

4.3 Case 3

If 1<λ< 2 and 0<µ< 1 with (λ+µ)< 2 If λ ∈]1 2[ and µ ∈]0 1[ with (λ+µ) ∈]1 2[, the equation (1.31) take

the following form:

Dcls (s)=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sl+λ+µ

sl+λ

sl+λ+µ−1

sl+λ−1

sl

sl+λ+µ−2

sl+λ−2

sl−1

...
...

sλ+µ

sλ

s1

sλ+µ−1

sλ−1

s0

S︷ ︸︸ ︷

Nrl Om Om

Om Nrl Om

Nr(l-1) Om Om

Om Nr(l-1) Om

Om Om Nrl

Nr(l-2) Om Om

Om Nr(l-2) Om

Om Om Nr(l-1)

...
...

...
...

...
...

Nr0 Om Om

Om Nr0 Om

Om Om Nrl

Om Om Om

Om Om Om

Om Om Nr0



K︷ ︸︸ ︷
Kd

Kp

K i

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

sl+λ+µ

sl+λ

sl+λ+µ−1

sl+λ−1

sl

sl+λ+µ−2

sl+λ−2

sl−1

...
...

sλ+µ

sλ

s1

sλ+µ−1

sλ−1

s0

D︷ ︸︸ ︷

Om

Drl

Om

Dr(l−1)

Om

Om

Dr(l−2)

Om
...
...

Om

Dr0

Om

Om

Om

Om



(5.42)

The corresponding desired Quasi matrix polynomial of fractional order X (s) take this form:

X (s)= Imsl+λ+µ+X3l+3sl+λ+X3l+2sl+λ+µ−1+X3l+1sl+λ−1+X3l sl+·· ·+X2sλ+µ−1+X1sλ−1+X0 (5.43)
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where, X3l+4 = Im

If we consider that the set of the desired pseudo-block-roots {R1, R2, ... , R3l+3, R3l+4} are the solvents of

the quasi matrix polynomial X (s) presented in (5.43), and which can be satisfy this equalities as follows:



R l+λ+µ
3l+4 +X3l+3R l+λ

3l+4 +X3l+2R l+λ+µ−1
3l+4 +X3l+1R l+λ−1

3l+4 +X3lR l
3l+4 +·· ·+X2Rλ+µ−1

3l+4 +X1Rλ−1
3l+4 +X0 =Om

R l+λ+µ
3l+3 +X3l+3R l+λ

3l+3 +X3l+2R l+λ+µ−1
3l+3 +X3l+1R l+λ−1

3l+3 +X3lR l
3l+3 +·· ·+X2Rλ+µ−1

3l+3 +X1Rλ−1
3l+3 +X0 =Om

...
...

...
...

...
...

R l+λ+µ
2 +X3l+3R l+λ

2 +X3l+2R l+λ+µ−1
2 +X3l+1R l+λ−1

2 +X3lR l
2 +·· ·+X2Rλ+µ−1

2 +X1Rλ−1
2 +X0 =Om

R l+λ+µ
1 +X3l+3R l+λ

1 +X3l+2R l+λ+µ−1
1 +X3l+1R l+λ−1

1 +X3lR l
1 +·· ·+X2Rλ+µ−1

1 +X1Rλ−1
1 +X0 =Om

(5.44)

After some mathematical manipulations we get:

X

Vr︷ ︸︸ ︷

I I · · · I I

Rλ−1
1 Rλ−1

2 · · · Rλ−1
3l+3 Rλ−1

3l+4

Rλ+µ−1
1 Rλ+µ−1

2 · · · Rλ+µ−1
3l+3 Rλ+µ−1

3l+4

...
...

. . .
...

...

R l+λ+µ−1
1 R l+λ+µ−1

2 · · · R l+λ+µ−1
3l+3 R l+λ+µ−1

3l+4

R l+λ
1 R l+λ

2 · · · R l+λ
3l+3 R l+λ

3l+4


=−

(
R l+λ+µ

1 R l+λ+µ
2 · · · R l+λ+µ

3l+3 R l+λ+µ
3l+4

)

(5.45)

where, Vr is the right Pseudo Block Vandermonde matrix

Hence, the matrices coefficients of the desired Quasi matrix polynomial X (s) are obtained as follows:

X =−
[(

R l+λ+µ
1 R l+λ+µ

2 · · · R l+λ+µ
3l+3 R l+λ+µ

3l+4

)
Vr

−1
]T

(5.46)

Remark 3. A right pseudo block Vandermonde matrix extracted from a complete set of pseudo-block-roots of

Quasi matrix polynomial is assumed and must be nonsingular.

Remark 4. From theoretical point of view it is possible to make λ> 2 or µ> 2 or to make µ>λ, but this cases

practically is not realizable or without any physical interpretation.

Make (5.31)={(5.33),(5.38), or (5.43)} i.e. Matching the block matrix form Dcls(s) with the matrices

coefficients of the desired Quasi matrix polynomial X (s) of equations (5.36),(5.41), or (5.46) according the

cases 1, 2 or 3 respectively, we get this system of linear equation:

SK=X −D (5.47)

The matrix K which contains the matrices gains of the (FO−PIλDµ) controller is obtained after solving linear

system of equation (5.47):

K= linsolve(S, (X −D)) (5.48)

Finally, the below Table 5.1 gives the matrices gains Kd , Kp and K i of the FO−PIλDµ controller.
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Table 5.1: The matrices gains of the proposed controller according to each cases

Case 1 Case 2 Case 3

Kd K(1 : m, :) K((2m+1) : 3m, :) K(1 : m, :)
Kp K((m+1) : 2m, :) K(1 : m, :) K((m+1) : 2m, :)
K i K((2m+1) : 3m, :) K((m+1) : 2m, :) K((2m+1) : 3m, :)

4.4 The choice of the desired Pseudo-Block-Roots

The selection of the desired pseudo-block-roots R ∈Rm×m is subjected to several criteria, for example according

the design, the left fraction description is more suitable with the observer form and the right fraction description

is more suitable with controller and the diagonal forms...etc, also the vandermonde matrix Vr inverse, some

times the diagonal form it causes a ill-conditioned matrix problem. In the no-integer order design we remark

that the pseudo-block-roots R of the pseudo vandermonde matrix Vr have a fractional power, which mean if the

eigenvalues of the pseudo-block-root matrix have negative real part, in this case the fractional power of R gives

a matrix that have elements of complex values, this is a constraint, the second constraint about the diagonal form

is no suitable in this design because it can not accept conjugate eigenvalues. So, we are limited to differentiating

between the observer form and the controller form, due to the design of the controller C(s), has been chosen in

the left fraction description LMFD Cl(s) see (5.16), the observer form is more suitable in this case [5, 6, 8], the

allowable eigenvalues locus are determined by the conditions of the stability of the FO-LTI systems, which is

introduced in the following Matignon’s stability theorem [15, 16].

Theorem 5.1. The CLS multivariable fractional transfer function Hcls (s) is stable if and only if the following

condition is satisfied in σ-plane:

|arg(λ)| > qπ
2 , with λ being the set pseudo-roots of the pseudo-polynomial Dcls (σ) = 0, σ = sq, ∀σ ∈ C and

0< q < 1

Remark 5. Theorem 1.1 is valid just for a commensurate order fractional-order transfer functions. For the

incommensurate case, there exist many theorems in literatures addressed to study the stability of this kind of

systems, among them the concept of bounded input-bounded output (BIBO) stability or external stability using

the Müntz-Szász theory, see [17, 18].

A set of desired pseudo-block-roots R are to be selected from class of stable pseudo-eigenvalues chosen in

the right half plane to ensure the positivity of the real part of the pseudo-eigenvalues and thus avoiding generating

a pseudo-vandermonde Vr matrix with complex values, the absolute values of the imaginary part should to be

greater then zero, to guarantee the eigenvalues locating are in stability region, Figure. 5.2 shows the allowable

region that can be choose from them the suitable eigenvalues, and also shows the stable and the unstable regions

of the LTI commensurate fractional-order system.
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qπ2
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Figure 5.2: Stability region for the fractional-order LTI systems with allowable region

The desired pseudo-block-roots R are take the observer form as shown in the equation (5.50), where

the observer form is extracted based on the characteristic polynomial of each pseudo-eigenvalues, and the

pseudo-eigenvalues are chosen from the allowable region shown in Figure. 5.2.

R =



R f ={R(3l+3), R(3l+2), R(3l+4)}︷ ︸︸ ︷
0 · · · 0 −r1m

1 · · · 0 −r1(m−1)
...

. . .
...

...
0 · · · 1 −r11


︸ ︷︷ ︸

R1

. . .


0 · · · 0 −r fm

1 · · · 0 −r f(m−1)
...

. . .
...

...
0 · · · 1 −r f1


︸ ︷︷ ︸

R f


(5.49)

Remark 6. The fractional power of the pseudo-block-roots R in the pseudo-vandermonde-matrix Vr is calculated

based on A Schur-Padé Algorithm [14], because is more suitable and gives a precise values, than the tool existed

in Matlab, where it is unreliable.

The selection of the pseudo block roots and the fractional orders which can achieve the set-point tracking

and the CLS stability conditions is not difficult, just enough choose the set of the pseudo block roots in the

allowable region and try to tuning manually the fractional orders λ in the neighborhood of "1" and µ tuning to

less then 1. Thus it is effortlessly to be obtained a configuration that ensure the stability and the tracking of the

closed loop in the same time , and this flexibility in choices, may proof that existed a several local optimum

configurations. To select the best or among the best local optimum configuration that archives another subjected

constraints, similar to the stability and the tracking that are guaranteed intuitively in all the possible solutions. A

grey wolf optimizer (GWO) is proposed in this design to solve this optimization problem.
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4.5 Controller parameters tuning under model uncertainty using grey wolf optimizer

In this subsection the uncertainty in the model parameters are considered in the design of the proposed controller,

where the system (5.1) is represented in the uncertain state space form as follows:{
x(t)= A(θ)x(t)+B(θ)u(t)

y(t)= C(θ)x(t)+D(θ)u(t)
(5.50)

where, θ is the vector of the uncertain parameters with the bounded values by an compact set Θ as Θ ={
θ ∈Rnθ

∣∣∣ θi 6 θi 6 θi, i = 1, . . . ,n
}

A (θ)6 A (θ)6 A (θ)

B (θ)6B (θ)6B (θ)

C (θ)6C (θ)6C (θ)

D (θ)6D (θ)6D (θ)

(5.51)

where • and • denote the lower and the upper bound of each matrix, respectively. Note that the inequalities

in (5.51) should be understood as element-wise inequalities. Therefore, the uncertainties in matrices A (θ),

B (θ), C (θ) and D (θ) can be decomposed as A (θ) = An +∆A (θ), B (θ) = Bn +∆B (θ), C (θ) = Cn +∆C (θ) and

D (θ)= Dn +∆D (θ), where An, Bn, Cn and Dn are the matrices of the system (5.1), and the nominal part of the

system matrices A (θ), B (θ), C (θ) and D (θ), respectively [23].

To obtained the parameters of the proposed controller FO−PIλDµ which can achieved the best control

specifications of the uncertain parameters model (5.50), the proposed controller is formulated as a convex

multidimensional optimization problems with constraints specified by

min
x

J (x)such that



c (x)≤ 0

ceq (x)= 0

A ·x≤ b
Aeq ·x= beq
lb ≤ x≤ ub

(5.52)

where, b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return vectors, and J(x)

is a objective function that returns a scalar. J(x), c(x), and ceq(x) can be nonlinear functions [21].

The objective function J(x) has been chosen as

J =
∫ (

e(t)TQue (t)+u(t)T Ruu (t)
)
dt (5.53)

where the minimization of the quadratic forms of the error and the control signals respectively is to guaranteed

optimal tracking with minimum energy possible,

To select the optimal pseudo block roots that guaranteed the best performances of the controller under model

parameters uncertainty (5.50), the following set of constraints have been introduced:

Constraint 1: |Arg (λ (Hcls (σ)))| > q
π

2
(5.54)

This constraint guaranteed the stability in the closed loop controller-system.

Constraint 2: VrV−1
r − I = 0 (5.55)
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This constraint check the existing of set of pseudo block-roots R.

Constraint 3: J{θ,θ} ≤ υJn (5.56)

This constraint ensure the selection of a set pseudo block-roots which may achieve a best performance of the

controller in the presence of model parameters uncertainty.

Optimization procedure The grey wolf optimizer (GWO) is a meta-heuristic algorithm proposed by Mirjalili
et al, [11]. It has been selected as tool in this design to solve the convex multidimensional optimization problems

with constraints presented in (5.52), from among several meta-heuristic and evolutionary algorithms such as

GA and PSO respectively, due to their fast convergence behavior without any complexity (just adjusting two

parameters, Max-iter and number of agents) comparing with the existed algorithms [11]. The GWO imitates the

social manners of grey wolves. These wolves live in a group contains 20-30 members. In this group, the strict

dominance hierarchy is practiced where the group has a leader named alpha α, supported by secondary ones

named beta β, which aid α in decision-making. The rest members of the group are named δ and ω as shown in

Pyramid Figure. 5.3 The procedure of hunting the prey by the grey wolves is: looking for the prey, surrounding

the prey, hunting, and attacking the prey. The arithmetic model of surrounding the prey [22], is written as follows

~D =
∣∣∣~C · ~X pi − ~X i

∣∣∣ (5.57)

and
~X i+1 = ~X pi − ~A ·~D (5.58)

where X i is the place of the grey wolf, X p i is the place of the prey, D is the distance, A and C are vectors

calculated as following
~A = 2~a ·~r1 −~a (5.59)

and
~C = 2 ·~r2 (5.60)

where,

~a = 2
(
1− t

Max-iter

)
(5.61)

where r1 and r2 are random numbers between [0, 1]. The parameter a is a variable which is linearly reduced

from 2 to 0 while the iterations increased. The process of looking for the prey position (exploration) could be

attained by diverging the search entities, when |A| > 1. The process of getting the prey (exploitation) could be

attained by the convergence of the search entities, when |A| < 1. The hunting is led by α entities with β and

δ entities support as in (5.62)-(5.64). Figure. 5.3 shows the flowchart of the GWO algorithm steps. Like other

meta-heuristic algorithms, The GWO can be disposed to stagnate in a local minimum but the parameters A and

C can help the GWO algorithm to avoid stagnation [22, 22].

~Dα =
∣∣∣~C1 · ~Xαi − ~X i

∣∣∣
~Dβ =

∣∣∣~C2 · ~Xβi − ~X i

∣∣∣
~Dδ =

∣∣∣~C3 · ~Xδi − ~X i

∣∣∣
(5.62)
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~X1 = ~Xαi − ~A1 ·~Dα

~X2 = ~Xβi − ~A2 ·~Dβ

~X3 = ~Xδi − ~A3 ·~Dδ

(5.63)

~X i+1 =
~X1 + ~X2 + ~X3

3
(5.64)

Start

lbr ≤ Re (λ) ≤ ubr
& lbi ≤ Im (λ) ≤ ubi

lbλ ≤ λ ≤ ubλ& lbµ ≤ µ ≤ ubµ
Xα, Xβ , and Xδ = 0

& α, β, δ bests = inf
Initialize Xi

Run Algorithm 1
Find J (Fitness) as in (5.53)

for each λ, λ and µ

Fitness < α

No

Fitness < β

No

Fitness < δ

No∑

Update a, A, C and Xi+1

as in (5.59)-(5.64)

Yes

Yes

α =Fitness
Xα = Xi

β =Fitness
Xβ = Xi

∑

Yes δ =Fitness
Xδ = Xi

∑

t < Max-iter
Yes

No

Xα, & α bests

End

α

β

δ

ω

Figure 5.3: Flowchart of the Grey Wolf Optimizer.
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5 The proposed algorithm steps

Summarizing all the important steps of the proposed controller

Algorithm 4 Robust fractional-order PIλDµ controller algorithm
Case 1: Without model uncertainty

a Step 1 Checking the conditions mentioned in Corollary 5.1 and transform the system (5.1) to the canonical
block controllable form, based on (5.2), (5.3) and (5.4).

Step 2 Transform the system (5.2) to the right matrix fraction descriptions (RMFD), based on equations (5.5),
(5.6), (5.7) and (5.8).

Step 3 Constructing the multivariable fractional-order transfer function Hcls (s) of the closed-loop
control-system based on equation (5.30).

Step 4 Transform the quasi diophantine matrix equation Dcls(s) to the block matrix form, see equation (5.31).

Step 5 Choosing one from the three cases that is appropriate to your problem design.

Step 6 The chosen desired pseudo block-roots take the observer form as, see (5.49) are calculated based on
selected pseudo-roots in the allowable region see Figure. 5.2.

Step 7 Calculating the corresponding desired right quasi matrix polynomial X (s) based on a set of desired
stable pseudo block-roots and the right pseudo-vandermonde matrix Vr.

Step 8 Solving the obtained linear system of equation, see (5.48).

Step 9 The matrices gains Kd , Kp and K i of the FO−PIλDµ controller is obtained from Table 5.1.

Step 10 The selection of the pseudo block roots must be designed based on pseudo-roots allocated in the
allowable region Figure. 5.2, and try to tuning manually the fractional orders λ in the neighborhood of "1"
and µ tuning to less then 1.

b Case 2: With model uncertainty

Step 11 Selecting the nominal objective function J(x) as, see equation (5.53).

Step 12 Defining the set of the constraints based on equations, (5.54), (5.55) and (5.56).

Step 13 Go to the label a.

Step 14 Solving the previous optimization problem using GWO algorithm shown in the flowchart Figure. 5.3.

Step 15 Finally, when the stopping criterion is satisfied and the constraints conditions are not violated, then
best local optimal solution was obtained.

6 Experimental application and results

The reduced dynamical model of the centrifugal gas compressor BCL 505 is chosen as good case of study, due

to their hard pairing and interactions between their inputs-outputs and the existing of the coupling matrix D

which is make the model not proper and this increases the difficulty of controlling the system which makes

the controller in a good examination. The studied model has two inputs T1: is aspiration temperature, P1: is

aspiration pressure and two outputs T2: is discharge temperature and P2: is discharge pressure. Their schematic

diagram is shown in Figure. 5.4.
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Figure 5.4: Schematic block diagram of the studied centrifugal gas compressor system driven by two shaft gas
turbines.

The studied system (5.1) is represented by its reduced state space model. Where, the order of the model,

n = 4, with two inputs m = 2 and two outputs p = 2, and its characteristic matrices A,B,C and D are given as

follows:

A =


−2.0549 0.0748 0.0549 −0.0748

0.1615 −1.8259 −0.1615 −0.1741

4.3302 0.2028 −2.3302 −0.2028

0.2061 4.2572 −0.2061 −2.2572

 , B =


0.0563 0.0691

0.1548 −0.0067

0.0157 −0.0125

−0.0714 0.1161



C =
(

1.9482 −0.0192 −1.9482 0.0192

0.1134 2.0114 −0.1134 −2.0114

)
, D =

(
0.0038 −0.3707

0.1987 0.1512

)

To achieve the main purpose of this chapter, the proposed algorithm is applied to the studied system, following

the aforementioned steps mentioned in Algorithm 1 as follows:

X The ratio l = n/m equals 4/2 = 2. It is an integer, and the block controllability matrix is satisfied, as rank

Ωbc = 4 (is full rank).

X The transformation of the system into the right matrix fraction descriptions (RMFD) G (s) based on equations

(5.5), (5.6), (5.7) and (5.8) as:

Np (s)= Nr2s2 +Nr1s+Nr0 =
(

0.0071 −0.7043
0.3776 0.2873

)
s2 +

(
−0.0602 −5.1054

4.8408 1.6284

)
s+

(
−2.6946 −11.6558

5.1108 2.4104

)
Dp(s)= Dr2s2 +Dr1s+Dr0 =

(
1 0
0 1

)
s2 +

(
8.0089 0.4383
0.5494 8.0806

)
s+

(
19.3887 2.3662
1.0925 14.7320

)

X The case 3 is chosen as in the equation (5.42), the sylvester block matrix S of the fractional-order diophantine

matrix equation Dcls(s) and D are expressed as:
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S =



Nr2 Om Om

Om Nr2 Om

Nr1 Om Om

Om Nr1 Om

Om Om Nr2

Nr0 Om Om

Om Nr0 Om

Om Om Nr1

Om Om Om

Om Om Om

Om Om Nr0



, D =



Om

Dr2

Om

Dr1

Om

Om

Dr0

Om

Om

Om

Om


X Based on grey wolf optimizer (GWO) and as shown in Figure. 5.5 and Figure. 5.6, the number of max iteration

is Max-iter = 600, the variable ranges 0.01≤Re (λ)≤ 4 and −4≤ Im (λ)≤ 4 of the real and the imaginary

part of the pseudo-roots λ, respectively. And the variable ranges 1.1≤λ≤ 1.5 and 0.01≤µ≤ 0.5 of the

integration and derivation FO-Power, respectively. The optimal values of FO-Power of the integration and

the derivation of the proposed PIλDµ controller are given as, λ= 1.02 and µ= 0.45 respectively, with the

following optimal pseudo-roots:

λ=



λ λ∗

1.5896+0.0178i 1.5896−0.0178i

0.0779+0.1351i 0.0779−0.1351i

0.0207+0.0104i 0.0207−0.0104i

0.1075+0.2600i 0.1075−0.2600i

0.0602+0.0142i 0.0602−0.0142i

0.0322+0.3331i 0.0322−0.3331i

0.1978+0.0346i 0.1978−0.0346i

0.0129+0.0364i 0.0129−0.0364i

0.0116+0.0142i 0.0116−0.0142i

0.3599+0.7913i 0.3599−0.7913i


Based on (5.43), the corresponding desired right quasi matrix polynomial of fractional-order X (s) takes this

form:

X (s)= Is3.47 +X9s3.02 +X8s2.47 +X7s2.02 +X6s2 +X5s1.47 +X4s1.02 +X3s1 +X2s0.47 +X1s0.02 +X0s0

(5.65)

The set of the desired right pseudo-block-roots R = {R1,R2, ...,R9,R10} are the solvents of the right quasi

matrix polynomial X (s) presented in (5.57), and they were constructed in the observer form from the optimal

pseudo-roots λ, are given as:

R1 =
(

0 −2.5271
1 3.1792

)
, R2 =

(
0 −0.0243
1 0.1558

)
, R3 =

(
0 −0.0005
1 0.0414

)
, R4 =

(
0 −0.0792
1 0.2150

)

R5 =
(

0 −0.0038
1 0.1204

)
, R6 =

(
0 −0.1120
1 0.0644

)
, R7 =

(
0 −0.0403
1 0.3957

)
, R8 =

(
0 −0.0015
1 0.0258

)
R9 =

(
0 −0.0003
1 0.0233

)
, R10 =

(
0 −0.7556
1 0.7197

)
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Based on the optimal set of the desired right pseudo-block-roots R, the right pseudo block vandermonde matrix

Vr is calculated and extracted according (1.45).

Remark 7. The numerical application of Vr ∈R20×20, S ∈R22×6, and D ∈R22×2 are mentioned in the Appendix

D.

The matrices coefficients of the desired quasi matrix polynomial X (s) are computed based on (5.46) as:

X =−
[(

R1
λ+µ+l R2

λ+µ+l R3
λ+µ+l · · · R8

λ+µ+l R9
λ+µ+l R10

λ+µ+l
)
Vr

−1
]T

(5.66)

where,

X =−
[(

R1
3.47 R2

3.47 R3
3.47 · · · R8

3.47 R9
3.47 R10

3.47
)
Vr

−1
]T

(5.67)

Hence,

X10 = I =
(

1 0
0 1

)
, X9 =

(
1.3980 −0.2616

−4.2133 −0.4814

)
, X8 =

(
−2.8209 0.3157

4.9518 −0.6258

)
, X7 =

(
−1.6375 −0.7800
−4.6559 −3.1583

)

X6 =
(

−199.0756 117.1666
287.8061 −236.1483

)
, X5 =

(
206.3722 −127.3976

−294.2801 256.9186

)
, X4 =

(
−14.5882 28.8612
−4.4142 −64.6461

)

X3 =
(

−3.0419 −7.818
1.2194 1.6635

)
, X2 =

(
3.1633 7.8522

−1.2502 −1.6738

)
, X1 =

(
−13.4167 −25.8564

53.0694 58.5975

)

X0 =
(

0.0639 3.8106
−8.0366 −10.6621

)

X The matrices gains Kd , Kp and K i of the fractional order PID controller are calculated based on solving the

linear system of equation, K= linsolve(S, (X −D)).

where,

K=



−28.8126 64.5293

−64.3704 89.4609

7.4282 −23.1703

4.5681 5.2452

−513.8190 1.1958

183.3391 −558.8740


Based on Table 5.1 the matrices gains Kd , Kp and K i of the (FO−PIλDµ) controller are given as follows:

Kd =K(1 : 2, :)=
(
−28.8126 64.5293

−64.3704 89.4609

)

Kp =K(3 : 4, :)=
(

7.4282 −23.1703

4.5681 5.2452

)

K i =K(5 : 6, :)=
(
−513.8190 1.1958

183.3391 −558.8740

)
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The obtained results of Figure. 5.7 and Figure. 5.8 show that the outputs signals of the discharge pressure

and temperature respectively, meet the desired dynamical behavior specified by the references, with very small

static error see Figure. 5.9, and no overshooting peak. The pseudo-roots of the CLS FO-TF presented in (5.30)

and the stability boundary ±q
π

2
are depicted in Figure. 5.10 of the nominal system and in Figure. 5.16 of the

nominal system under uncertainties, it can be concluded from [19, 20] that the CLS FO-TF (5.30) is Lyapunov
globally asymptotically stable since all the pseudo-roots of the nominal and the uncertain systems satisfy the

condition of the Matignon’s stability mentioned in Theorem 5.1, (i.e. |arg(λ)| > q
π

2
, in which q = 0.01). Under

interval ±90% of uncertainty, the closed loop rest maintain their key specifications of stability and good set-point

tracking as shown in Figure. 5.13 and Figure. 5.14, the output static error under the presence of the parameters

uncertainty as shown in Figure. 5.15 is very small and this give us opportunity to talk about the robustness of the

proposed controller. Also the CLS stability is checked using the frequency analysis, where the CLS Nyquist and

Bode diagrams shown in Figure. 5.11 and Figure. 5.12, where no encirclement on the critical point (-1,0) and

when the phase Ph=-180◦ the magnitude mag<0 (dB).

7 Passive FTC Investigation

In this section the passive FTC approach is investigated on the proposed FO−PIλDµ controller, where this

approach is used so that the CLS remains insensitive to a certain set of faults, where the fault tolerance is ensured

without the use of online information relating to faults affecting the system and without changing the structure of

the nominal controllers. The faults considered in this passive FTC approach are a source of external additive and

multiplicative disturbances as shown in Figure. 5.22 and Figure. 5.23 , and internal disturbances represented in

the parameter uncertainties of studied system of −90%≤∆θ ≤+90%, also a real system faults where the faults

presented in the previous chapter 4 of the centrfigual gas compressor system are taken into account on this FTC

approach see Figure. 5.17.

da(t)

dm(t)

u(t) y(t) ∑

×

∑

-

+ e(t)r(t) Uncertain Model
of Centrifugal Gas

Compressor System

Robust
Tolerant
PIλDµ

Controller

Actuator SensorsE E E

Faults Faults Faults

Figure 5.17: Schematic design of Robust FO-PIλDµ Passive FTC system.

Figure. 5.18 and Figure. 5.20 illustrate the comparison between the PFTC control based on FO−PIλDµ

design in presence of system faults and the embeded PID controller of constructor (maker) in faulty and

healthy systems of the outputs (discharge pressure and temperature), we can notice in the presence of the

system faults, the PFTC manages to ensure acceptable performances comparing with the performances of the

embeded PID controller, and the response time of the proposed controller is shown in the curves of the errors

(residues) Figure. 5.19 and Figure. 5.21, where the the obtained error signals is in the allowaible thershold of the

temperature and the pressure, respectively.
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8 Conclusion

In this chapter a robust FO-PIλDµ controller is designed and introduced based on pseudo block roots placements

oriented to the multivariable uncertain linear system. Where, in our steps to design this controller, a many

contributions have been presented in this chapter, first one is the extension of the concept of the matrix

polynomial to the fractional order (quasi) matrix polynomial, second one is the solvents of this quasi matrix

polynomial is the pseudo block roots which are the keystone of this design, the third one is the pseudo block

vandermonde matrix is introduced in this design with fractional power matrix elements, and the fourth one is the

quasi diophantine matrix equation. Based on the previous contributions the selection of the optimal pseudo block

roots that achieve the robustness of the proposed controller using GWO algorithm, the capability of the proposed

controller is studied and illustrated on PFTC approach on uncertain centrifugal gas compressor dynamical model

under real experimental conditions, with comparison study with industrial embedded PID controller,

9 References

[1] Malika Yaici, Kamel Hariche, On eigenstructure assignment using Block poles placement, European

Journal of Control, May 2014.

[2] L. S. Shieh and Y. T. Tsay, Block modal matrices and their applications to multivariable control systems,IEE

Proc. D Control Theory Appl. 2:41-48(1982).

[3] L. S. Shieh and Y. T. Tsay, Transformation of a class of multivariable control systems to Block companion

forms,IEEE Truns. Autonwt. Control 27: 199-203 (1982).

[4] J. E. Dennis, J. F. Traub, and R. P. Weber, The algebraic theory of matrix polynomials,SZAlZl J. Numer.

Anal. 13:831-845 (1976).

[5] B. Nail, A. Kouzou, and A. Hafaifa, Robust block roots assignment in linear discrete-time sliding mode

control for a class of multivariable system: gas turbine power plant application, Transactions of the Institute

of Measurement and Control, pp. 1-17, Jul. 2018.

109



CHAPTER 5. A ROBUST FRACTIONAL-ORDER PIλDµ CONTROLLER DESIGN BASED ON PSEUDO
BLOCK-ROOTS ASSIGNMENT

[6] B. Nail, A. Kouzou, A. Hafaifa, A. Chaibet, Parametric identification and stabilization of turbo-compressor

plant based on matrix fraction description using experimental data, Journal of Engineering Science and

Technology, vol. 13, no. 6, pp. 1850-1868, Jun. 2018.

[7] B. Nail, A. Kouzou, A. Hafaifa, and B. Bekhiti, Parametric output feedback stabilization in MIMO systems:

Application to gas turbine power plant, in 2016 8th International Conference on Modelling, Identification

and Control (ICMIC), Algiers, Algeria, 2016, pp. 971-976.

[8] B. Bekhiti, A. Dahimene, B. Nail, and K. Hariche, On λ-matrices and their applications in MIMO control

systems design, International Journal of Modelling, Identification and Control, vol. 29, no. 4, pp. 281-294,

2018.

[9] B. Nail, A. Kouzou, and A. Hafaifa, Digital Stabilizing and Control for Two-Wheeled Robot. In: Derbel

N., Ghommam J., Zhu Q. (eds) New Developments and Advances in Robot Control. Studies in Systems,

Decision and Control, vol 175. Springer, Singapore, 2019, pp. 237-253.

[10] T. Kailath, W. Li, Linear Systems, Prentice Hall, 1980.

[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software, vol.

69, pp. 46-61, Mar. 2014.

[12] R. Azarmi, M. Tavakoli-Kakhki, A. Fatehi, and A. K. Sedigh, Robustness analysis and design of fractional

order IλDµ controllers using the small gain theorem, International Journal of Control, pp. 1-13, Jul. 2018.

[13] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional

Differential Equations to Methods of Their Solution and Some of Their Applications (Vol. 198). Academic

Press, San Diego, 1998.

[14] N. J. Higham and L. Lin, An Improved Schur-Padé Algorithm for Fractional Powers of a Matrix and Their

Fréchet Derivatives, SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 3, pp. 1341-1360,

Jan. 2013.

[15] D. Matignon, Stability result on fractional differential equations with applications to control processing,

in Proceedings of the International Meeting on Automated Compliance Systems and the International

Conference on Systems, Man, and Cybernetics (IMACS-SMC ’96), pp. 963-968, Lille, France, 1996.

[16] D. Matignon, Stability properties for generalized fractional differential systems, in Proceedings of the

Fractional Differential Systems: Models, Methods and Applications, pp. 145-158, 1998.

[17] H. Akçay and R. Malti, On the Completeness Problem for Fractional Rationals with Incommensurable

Differentiation Orders, IFAC Proceedings Volumes, vol. 41, no. 2, pp. 15367-15371, 2008.

[18] M. Rivero, S. V. Rogosin, J. A. Tenreiro Machado, and J. J. Trujillo, Stability of Fractional Order Systems,

Mathematical Problems in Engineering, vol. 2013, pp. 1-14, 2013.

[19] W. Deng, C. Li, and J. Lü, Stability analysis of linear fractional differential system with multiple time

delays, Nonlinear Dynamics, vol. 48, no. 4, pp. 409-416, Mar. 2007.

110



9. REFERENCES

[20] P. Badri and M. Sojoodi, Stability and Stabilization of Fractional-Order Systems with Different Derivative

Orders: An LMI Approach: LMI Stability and Stabilization of FO Systems with Different Orders, Asian

Journal of Control, Jul. 2018.

[21] B. Nail, A. Kouzou, A. Hafaifa, and V. Puig, Optimal Static State-Feedback Controller Design for MIMO

LTI Systems Based on Constraints Block Roots and Interior-Point Algorithm: Application to Gas Com-

pressor System , International Conference on Applied Smart Systems (ICASS), 24-25 Nov. 2018 Medea,

Algeria, pp. 1-6.

[22] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, A Grey Wolf Optimizer for Optimum Parameters of

Multiple PI Controllers of a Grid-Connected PMSG Driven by Variable Speed Wind Turbine, IEEE Access,

vol. 6, pp. 44120-44128, 2018.

[23] M. Pourasghar, V. Puig, C. Ocampo-Martinez, and Q. Zhang, Reduced-order Interval-observer Design for

Dynamic Systems with Time-invariant Uncertainty, IFAC-PapersOnLine, vol. 50, no. 1, pp. 6271-6276,

Jul. 2017.

111



General Conclusion

The block roots of matrix polynomials theory are the fundamental tool used in the design of the con-

tributions presented in this thesis, the exploiting of the characteristics of this theory and functioning

them correctly to design robust controllers approaches which can be subjected to the FTC systems. The

metaheuristics optimization algorithms used in these designs are used as tools, it has been made the process of

selecting the set of block-roots more easier than the classical methods that exist in literatures.

X Introduction

The works done in this thesis concerns the development of three controller’s algorithms laws, maybe can be used

in Fault-tolerant Control systems, also a fault detection approach is introduced in this thesis.

First , a discrete robust static state feedback controller is designed based on sliding mode control theory and

robust block-roots assignments, this design is addressed for the class of multivariable systems described by SSD,

the investigation of the validity of this proposed algorithm, has been verified on GE MS500P gas turbine system.

This proposed algorithm is applied to the best-chosen real model of the gas turbine studied system, which is

obtained from experimental data obtained on-site, using parametric identification based on the Left MFD and

MIMO Least Square method.

The terms of the applicability of this algorithm:

• Linear multivariable systems.

• The ratio between the dimension of the system and the number of the inputs n/m is integer.

• The system is block controllable.

The robustness stability of this algorithm is demonstrate based on the extended stability measures. Furthermore,

a comparison study with classical and recent algorithms is proved the effectiveness and the high performances of

this proposed.

Second Discrete optimal static output-feedback controller is designed based on block transformations matrices

and Grey Wolf Optimizer, this design is addressed for the class of multivariable systems described by SSD,

the validity of this proposed approach, has been investigated on centrifugal gas compressor system BCL 505.

Where, the dynamic model of the studied system is obtained based on system parametric identification using

experimental data acquired on-site.

The terms of the applicability of this algorithm:

• Linear multivariable systems.
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• The ratio between the dimension of the system and the number of the inputs n/m and the number of the

outputs n/p, respectively, are integers.

• The system is block minimal, i.e. block controllable and block observable.

The proposed controller exhibits a good behavior in the terms of, norms, time responses, sensitivity, robustness

and stability measures. In fact, from practical point of view the proposed optimal SOF controller can be employed

as backup controller, which is not active during the control operation but is used in the case of FTC, a comparison

study with a recent H∞ algorithms they proved the superiority of this proposed.

Third

Part one Intelligent Fault detection approach is designed using Kalman filter, where its role is denoising

the outputs of the process and gives the real measures, and an expert system is designed based on the interval

fuzzy logic type 2. Where, an experimental examination is carried out on the centrifugal gas compressor system in

presence of real faults, also a forecasting remaining time is calculated using ARIMA predictor model. Economic

study has been done based on the faulty state of the studied system before and after reparation, taking in

consideration the loss of the production of this system during the reparation times.

Part two Fault detection approach based on interval observer, the design of this observer is based on the

left block roots of matrix polynomial and grey wolf optimizer, a set of left block roots and left block vandermonde

matrix are constructing the matrix observer gain L, after investigating this observer on the studied system with

subjected to real faults, the detection of the faults is made by a high performance.

The terms of the applicability of this algorithm:

• Linear or nonlinear multivariable systems.

• LPV or Uncertain parameters systems.

• The ratio between the dimension of the system and the number of the outputs n/p, should be integer.

• The system is block observable.

Fifth , Robust fractional order proportional integrator and derivation controller FO-PIµDλ is designed, based

on the new introduced pseudo block-roots of the quasi matrix polynomials, and Grey Wolf Optimizer which

play a role of selecting the optimal pseudo block-roots that check the solution of the quasi polynomial Dio-

phantine matrix equation, a passive FTC applied on uncertain system is investigated in presence of real faults

and additive/multiplicative disturbances, where the results show that FTC system preserve the nominal keys

specification of the studied system without need to the new reconfiguration of the proposed controller. The terms

of the applicability of this algorithm:

• Linear multivariable systems.

• The ratio between the dimension of the system and the number of the inputs n/m is integer.

• The system is block controllable.
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XI Contributions

To the best of the author’s knowledge, the list below describes the novel contributions presented in the thesis:

1. Exploiting the block-roots of the matrix polynomial theory in the design of FTC and FDI approaches is

considered as challenge and in our knowledge, is a new proposal.

2. The implementation of the Meta-heuristics Algorithms (GWO,GA,...etc) tools to select the optimal set

block-roots to solve the formulated constraints problem is also a new proposal.

3. Design an interval observer based on the block-roots assignments.

4. The combination between the fractional-order dynamics and the matrix polynomial theory also considered

as challenge and it’s can open new horizons and further studies.

5. Quasi matrix polynomial is introduced and defined in this thesis, is an extended to the matrix polynomial .

6. Pseudo block roots of quasi matrix polynomial is introduced, is an extended to the block-roots.

7. Pseudo Block Vandermonde Matrix is introduced and used in the design of FO-PIµDλ controller, is an

extended to Block Vandermonde Matrix.

8. Quasi polynomial diophantine matrix equation is introduced and solved in this thesis, is an extended to

polynomial diophantine matrix equation.

9. Pseudo Sylvester block matrix is introduced and generated from the quasi polynomial Diophantine matrix

equation in this thesis.

10. Intelligent expert system designed using Fuzzy Logic Type 2.

XII Further studies

1. Using linear matrix inequalities (LMI) to select and assign the block-roots of matrix polynomial.

2. If the pseudo block-root Ri with multiplicity mi exists (repeated pseudo block-roots) then the correspond-

ing pseudo general block Vandermonde matrix will be checked and extended.

3. Design an interval observer for fractional-order system based on the pseudo block-roots assignments.

4. Design fractional state-feedback controller based on the pseudo block-roots assignments.

5. Design fractional output-feedback controller based on the pseudo block-roots assignments.

6. Block observability and Block controllability Study of linear multivariable fractional-order system.

7. Stability study of linear multivariable fractional-order system.

8. Model order reduction of linear multivariable fractional-order system.
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GE MS5001P Gas Turbine System and

Robustness-Sensitivity Theories

I GE MS5001P Gas Turbine dynamical model

The studied gas turbine which is used in electric power generation plants, located at M‚ÄôSILA in Algeria

is presented in this chapter. Indeed, the choice of this application model is due to the availability of

the data measurement which is presumably generated by collecting it in real time around the power

generators operating point. It is important to clarify that the gas turbine system used in power generation plant,

works for a long period without stop and start-up that can be occurred very rarely due to the nature of the power

generation plants and its operating constraints. This turbine stop and start-up are generally imposed by the

maintenance schedule given by the constructor and they are performed for a relatively long periods. Therefore,

these transition stages are not taken into account while the application of the proposed control.

This electrical power plant contains 22 gas turbine units of type GE MS5001P that are used for driving the

main electric power generators tied to the main power system network. This kind of gas turbine is an external

combustion engine with a single shaft, it is composed of three principal parts, the first part is the axial compressor,

the second part is the combustion chamber in which a liquid or gaseous fuel burns partially with the air supplied

by the compressor, resulting in an increase of the combustion gas-air mixture temperature, and accordingly an

increase in its volume, the third is a turbine, where the combustion gases are expanded in several stages and

then are utilized to drive the main shaft which is connected to an electric alternator, a part of the turbine energy

is used to drive the compressor too, the general characteristics of the studied gas turbine (GE MS5001P) are

illustrated in Table A.1.

Many parameters can influence the turbine dynamics at varying degrees depending on their importance in

the gas turbine sections (compressor, combustion and turbine), The study presented in this paper focuses only

on the modelling of the two main outputs parameters in the GEMS5001P gas turbine within the normal mode

operation rang: the rotor speed and the exhaust temperature that are affected and interacted directly by three main

inputs parameters: the gas control valve (GCV), the axial temperature compressor discharge (TCD), and the

axial pressure compressor discharge (PCD). Figure. A.1 shows the axial compressor of GE Gas turbine 5001P
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studied in the chapter 2, Figure. A.1 shows the turbine of GE Gas turbine 5001P studied in the chapter 2.

Figure A.1: Axial compressor of GE Gas turbine
5001P

Figure A.2: Turbine of GE Gas turbine 5001P

The real time data for the parametric identification of the studied gas turbine contains M=10,000 samples for

a duration of time =10000 second, it is important to clarify that this experimental data is obtained via several

tests during the normal mode operation to get the optimal data that is covering all possible frequencies of this

gas turbine.

A =



0 0 0 0 0 0 0 0 0 0 0.0741 0.4262
0 0 0 0 0 0 0 0 0 0 −0.1206 −0.7895
1 0 0 0 0 0 0 0 0 0 −1.2322 −2.0671
0 1 0 0 0 0 0 0 0 0 2.2830 4.0358
0 0 1 0 0 0 0 0 0 0 1.7584 2.7118
0 0 0 1 0 0 0 0 0 0 −3.8440 −6.1277
0 0 0 0 1 0 0 0 0 0 −2.3713 −2.0011
0 0 0 0 0 1 0 0 0 0 5.4853 5.4656
0 0 0 0 0 0 1 0 0 0 4.7297 2.4885
0 0 0 0 0 0 0 1 0 0 −10.3708 −6.2941
0 0 0 0 0 0 0 0 1 0 −2.0817 −1.5865
0 0 0 0 0 0 0 0 0 1 6.7356 4.7397



,B =



1.1962 −0.3205 3.6002
−2.1029 0.6207 −6.8734
−6.9574 0.0203 −4.5627
13.0303 −0.2144 10.4620
−1.2037 −0.1013 4.8988
−1.3873 0.2559 −11.9031
−6.4595 0.1898 −5.5900
11.9648 −0.4166 13.6894
15.7037 0.2908 0.7169

−32.2800 −0.3830 −6.0437
2.1116 0.0877 0.4259
5.6209 −0.0849 1.4357



,CT =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1


(A.1)

II The robustness stability and sensitivity performance analysis

II.1 The sensitivity of eigenvalues (robust performance)

Theorem A.1. [1, 3] Let λ1 and λ2 the eigenvalues of the matrices A and (A+∆A) respectively, and let V be

the right eigenvectors matrix of A, the derived the variation in eigenvalues as follows:

mini (λ1 i −λ2i),mini (∆ (λ1 i))≤ k (V ) .‖∆A‖ (A.2)

‖.‖ matrix norm and k (.) Is the condition number.

Theorem A.2. [1, 3] Let λ j, υ j and ti be the ith eigenvalue, right and left eigenvectors of a matrix A respectively

k(i = 1, · · · ,n) and let (λ j +∆λ j · · · ,n) be the ith eigenvalue of the matrix (A+∆). Then, for small enough ‖∆A‖:

∆λ j 6
∥∥υ j

∥∥∥∥t j
∥∥‖∆A‖, s

(
λ j

)‖∆A‖ (A.3)
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such that, s
(
λ j

)= ‖υi‖‖ti‖
The sensitivity of an eigenvalue is calculated by determined the corresponding right and left eigenvectors and

after adding a small perturbations ∆A in the system matrix A.

II.1.1 The relative change

Let λ1 and λ2 the eigenvalues of the matrices A and (A+∆A) respectively.

The relative change r i of the eigenvalue λi is defined [1, 3] as follows:

r i =
|λ1i −λ2i|

|λi|
= |∆λi|

|λi|
i = 1, .. , n (A.4)

II.1.2 The robust stability

Let {λ1,λ2, . . . ,λn} be the set of eigenvalues of an n×n matrix denoted by A and assuming that all the eigenvalues

are stable
(
i. e :

∣∣λ j
∣∣< 1 ∀ j

)
and all the eigenvalues are already arbitrary assigned for guaranteed performance,

the three robust stability measures are defined by [1–3]:

1. M1 = min0<ω<∞
{
σ−

(
A− eTs jωIn

)}
, σ denotes the smallest singular value and Ts the sampling time.

2. M2 = (k (V )) −1 ∣∣(λ j
)∣∣ such that: |(λn)|6 · · ·6 |(λ1)| and V is the right eigenvector of matrix A.

3. M3 =min0< j<n

{(
s
(
λ j

))−1 ∣∣(λ j
)∣∣}

• M1 is the smallest possible matrix variation norm for the matrix A to have an eigenvalue outside circle

unit .

• M2 is the
∣∣(λ j

)∣∣ term that represent the shortest distance between the unstable region (outside circle unit)

and eigenvalues λ j .

• M3 is more precise than M1 and M2 and reflects the instability likelihood of all eigenvalues.

• The three measures M3, M1 and M2 cited depending on the degree of their importance and quality,

respectively [1–3].

Table A.1: General performance of gas turbine GE MS5001P

Quantity Value

Compressor stages 16
Firing temperature 1,730 (◦F)
Exhaust temperature 898 (◦F)
Air flow 928.5 (103 Lb/hr)
Output 24,700 (kW)
Heat rate 12,950 (kJ/kW-h)
Rotor Speed 5355 (rpm) (105%)
Efficiency 27.8%
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BCL 505 Centrifugal Gas Compressor System with

Supplementary Data

I BCL 505 Centrifugal Gas Compressor dynamical model and Hassi R’Mel
gas field

Figure. B.1 shows the combustion chambers of GE Gas turbine 5002C which is drive the studied BCL 505

centrifugal gas compressor, and Figure. B.2 shows the hight and the low pressure centrifugal gas compressors.

Figure B.1: Combustion chambers of GE Gas turbine
5002C

Figure B.2: HP and LP of centrifugal gas compressor

Hassi R’Mel gas field is located approximately 550 km south of Algiers (Algeria), at an altitude of 760

m. This gas field covers an area of 3500 km2, 70 km in the north-south direction and 50 km in the east-west

direction. The landscape is composed of a vast rocky plateau, the climate is characterized by an average humidity

of 19% in summer and 34% in winter. The temperature has a large range variation between 0◦C in winter to 45◦C

in summer. The production of the Hassi R’Mel gas field can reach the capacity of 100 billion cubic meters of

natural dry gas, 12 million tons of condensate gas and 3.5 million tons of liquefied natural gas (LNG). The main

119



APPENDIX B. BCL 505 CENTRIFUGAL GAS COMPRESSOR SYSTEM WITH SUPPLEMENTARY DATA

exploitation zone of oil stations and gas compression stations contains the centrifugal gas compressor. The main

role of the gas compression stations is to constantly pressurize the dry gas to maintain its required pressure level.

to regulate the gas pressure at the national level and the international market level. Each station contains 18 turbo

gas compressor (Centrifugal gas compressor driven by a gas turbine (GE-MS5002C)) as shown in Figure. B.5

and Figure. B.6, the Stator and the rotor of GE Gas turbine 5002C respectively , each pair of turbo-compressor

forms a compression line. The compression process is carried out through two stages, the low pressure stage and

the high pressure stage as shown in Figure. B.3 and Figure. B.2, a speed rotor multiplier is connected between

the LP and HP centrifugal gas compressor systems as shown in Figure. B.4, where a cooling system based on air

coolers is used to regulate the temperature at the intermediary of the two stages [1].

Figure B.3: HP and LP rotor Figure B.4: Multiplier of rotor speed

Figure B.5: Stator of GE Gas turbine 5002C Figure B.6: Rotor of of GE Gas turbine 5002C

The BCL 505 centrifugal gas studied in the chapter 3, chapter 4, and chapter 5 is a mimo system with two

inputs, the aspiration temperature T1 and the aspiration pressure P1 and two outputs, the discharge pressure P2,

and the discharge temperature T2. The data used in this modeling is obtained experimentally on site, it contains

N=1208 samples along a duration of 1208 hours, it is important to clarify that this experimental data is obtained

via several tests to get the optimal data that are covering all possible dynamic behavior of this centrifugal gas

compressor, the centrifugal gas compressor dynamical model obtained using the ESRIV algorithm, its main

steps are summarized in [1, 2].

The general characteristics performance of centrifugal gas compressor BCL 505 is presented in Table B.1.
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Table B.1: General performance of centrifugal gas compressor BCL 505

Quantity Value

Stages 1-5
Maximum discharge pressure 123 kg/cm2

Maximum discharge temperature 121 ◦C
Efficiently -% 73%
Speed 3000 to 20000 rpm
Compressed gas LNG

The state space model of the studied centrifugal gas compressor BCL 505 is give, as follows [1, 2]:

A =



0 0 0 0 0 0 0 0 −0.0152 0.0185
0 0 0 0 0 0 0 0 0.0389 0.0436
1 0 0 0 0 0 0 0 0.0666 0.0696
0 1 0 0 0 0 0 0 0.0881 0.1080
0 0 1 0 0 0 0 0 0.0959 0.0784
0 0 0 1 0 0 0 0 0.0508 0.0701
0 0 0 0 1 0 0 0 −0.0171 0.0319
0 0 0 0 0 1 0 0 0.1294 0.0158
0 0 0 0 0 0 1 0 −0.0052 0.0145
0 0 0 0 0 0 0 1 0.0699 0.0038


B =



0.0245 0.0262
0.0686 0.0045
0.0219 0.0425
0.0199 0.0710
0.0820 0.2317
0.1615 0.1233
0.1762 0.0941
0.3274 0.1871
0.0857 0.2576

−0.0801 −0.0413


CT =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1


(B.1)

Tc =



−91.6745 −27.4695 54.7681 −23.3698 −12.3091 16.4484 −15.8289 10.4330 7.6684 −5.8166
200.8850 7.0315 −65.8920 46.1545 −7.7039 −10.3132 28.9183 −20.9065 −5.0933 4.9881
90.3674 −38.5601 −20.3100 27.1399 −26.1178 17.2145 12.6528 −9.5975 4.5194 −2.7466

−108.7218 76.1549 −12.7114 −17.0168 47.7152 −34.4957 −8.4040 8.2304 −11.8508 5.9773
−33.5114 44.7809 −43.0943 28.4039 20.8771 −15.8358 7.4569 −4.5318 −8.4768 1.5990
−20.9738 −28.0777 78.7302 −56.9179 −13.8666 13.5802 −19.5538 9.8626 11.1854 −0.6127
−71.1056 46.8664 34.4472 −26.1291 12.3040 −7.4776 −13.9866 2.6384 4.1607 3.2666
129.9047 −93.9146 −22.8799 22.4073 −32.2637 16.2733 18.4559 −1.0110 0.5376 −4.4921
56.8379 −43.1130 20.3015 −12.3380 −23.0780 4.3534 6.8652 5.3898 7.3954 0.6895

−37.7518 36.9720 −53.2351 26.8509 30.4522 −1.6681 0.8871 −7.4119 −13.5382 −2.8038


(B.2)

To =



0.1349 0 0 0 0 0 0 0 0 0
0 0.1349 0 0 0 0 0 0 0 0
0 0 0.2226 0 0 0 0 0 0 0
0 0 0 0.2226 0 0 0 0 0 0
0 0 0 0 0.3673 0 0 0 0 0
0 0 0 0 0 0.3673 0 0 0 0
0 0 0 0 0 0 0.6061 0 0 0
0 0 0 0 0 0 0 0.6061 0 0
0 0 0 0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0 0 0 1.0000


(B.3)
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Aco =



12.1920 −5.2024 −4.5212 6.0417 −9.5933 6.3230 7.6684 −5.8166 4.5194 −2.7466
−14.6683 10.2745 −2.8297 −3.7881 17.5263 −12.6706 −5.0933 4.9881 −11.8508 5.9773
−4.5212 6.0417 −9.5933 6.3230 7.6684 −5.8166 4.5194 −2.7466 −8.4768 1.5990
−2.8297 −3.7881 17.5263 −12.6706 −5.0933 4.9881 −11.8508 5.9773 11.1854 −0.6127
−9.5933 6.3230 7.6684 −5.8166 4.5194 −2.7466 −8.4768 1.5990 4.1607 3.2666
17.5263 −12.6706 −5.0933 4.9881 −11.8508 5.9773 11.1854 −0.6127 0.5376 −4.4921
7.6684 −5.8166 4.5194 −2.7466 −8.4768 1.5990 4.1607 3.2666 7.3954 0.6895

−5.0933 4.9881 −11.8508 5.9773 11.1854 −0.6127 0.5376 −4.4921 −13.5382 −2.8038
4.5194 −2.7466 −8.4768 1.5990 4.1607 3.2666 7.3954 0.6895 −6.0654 −3.0397

−11.8508 5.9773 11.1854 −0.6127 0.5376 −4.4921 −13.5382 −2.8038 4.2343 3.4407


(B.4)

The algorithm steps of the Kalman filter are presented as follows [1]:

Algorithm 5 Kalman observer algorithm

Step 1 The predicted estimated state X̂k|k−1 is expressed as follows:

X̂k|k−1 = AX̂k−1|k−1 +Buk (B.5)

Step 2 The predicted estimated covariance Pk|k−1 is expressed as follows:

Pk|k−1 = APk−1|k−1 AT
k +Qk (B.6)

Step 3 The measurement residues Ỹk is given as follows

Ỹk = Zk −CX̂k|k−1 (B.7)

Step 4 The innovation covariance Sk is given as follows

Sk = CPk|k−1 CT +Rk (B.8)

Step 5 The optimal Kalman gain Kk is then
Kk = Pk|k−1 CT S−1

k (B.9)

Step 6 A posteriori state estimate X̂k|k can be evaluated as follows
X̂k|k = X̂k|k−1 +KkỸk (B.10)

Step 7 Finally the updated estimated covariance Pk|k is obtained

Pk|k = (1−KkC)Pk|k−1 (B.11)
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APPENDIX C. SUPPLEMENTARY DATA OF FRACTIONAL-ORDER PIλDµ CONTROLLER APPLICATION
RESULTS
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APPENDIX C. SUPPLEMENTARY DATA OF FRACTIONAL-ORDER PIλDµ CONTROLLER APPLICATION
RESULTS

Ac =


0.0000 0.0000 1.0000 0.0000

0.0000 −0.0000 −0.0000 1.0000

−5.3708 −0.6555 −4.2152 −0.2307

−0.3026 −4.0809 −0.2892 −4.2529

 , Bc =


0 0

0 0

1 0

−0 1

 (C.5)

Cc =
(
−0.3008 −0.1891 0.0747 0.1614

−0.3681 −0.3958 0.4595 −0.2378

)
, Dc =

(
0.0038 −0.3707

0.1987 0.1512

)
(C.6)

S =



0.0038 −0.3707 0 0 0 0

0.1987 0.1512 0 0 0 0

0 0 0.0038 −0.3707 0 0

0 0 0.1987 0.1512 0 0

−0.0167 −1.4142 0 0 0 0

1.3409 0.4511 0 0 0 0

0 0 −0.0167 −1.4142 0 0

0 0 1.3409 0.4511 0 0

0 0 0 0 0.0038 −0.3707

0 0 0 0 0.1987 0.1512

−0.3929 −1.6993 0 0 0 0

0.7451 0.3514 0 0 0 0

0 0 −0.3929 −1.6993 0 0

0 0 0.7451 0.3514 0 0

0 0 0 0 −0.0167 −1.4142

0 0 0 0 1.3409 0.4511

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −0.3929 −1.6993

0 0 0 0 0.7451 0.3514



(C.7)
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Processor Intel(R) Xeon(R) E5-2630 v2 @ 2.60 GHz

Vertical Segment Server
Number of Cores 12
Number of CPUs 24
Memory 16 GB
Memory CPU Cache 15 MB
Lithography 22 nm
Max Memory Size 768 GB
Memory Types DDR3
Bus Speed 7.2 GT/s QPI

Infos essentielles et performances

Fundamental parallel computing functions

parpool : Create the parallel pool
parfor : Parallel for loop
spmd : Execute code in parallel on workers
distributed : Create distributed array from data

Figure C.1: High performance Xenon PC used for optimization computing
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 الملخص

 الملخص

 :قتراحتطوير واب تعُنىهذه الأطروحة 

في التحكم في الأنظمة لغرض استعمالها   مع الأخطاء  متسامحة متعددة المتغيراتمتينة خطية  متحكمات -1

 .ضوضاءضطرابات  والدايناميكية الغير يقينية  في ظل وجود ا

قق يتم التح، صيشختال و لأخطاءا نع فشكالاستعمالها في  رضغل متعددة المتغيراتمتينة خطية   مقاربات -2

 .فس الظرووفي نف الغير يقينية سابقةال الدايناميكية فس الأنظمةعلى ن بتطبيقهامن فاعليتها 

نميز  الوصف المصفوفي الكسريعلى  ،النظرية الأولى  الى نظريتين: والمقاربات هذه المتحكمات ميماتص ستندت

على ، النظرية الثانية .الوصف المصفوفي الكسري اليميني الوصف المصفوفي الكسري اليساري و ،هنا صيغتان

 جذورالأشباه على و ،الأس الصحيح واتذ  كثيرات الحدود المصفوفية حيث تعتبر حلول لـ  المصفوفية جذورال

  .ات الأس الكسريوذ  ةالحدود المصفوفي اتكثير أشباه حيث تعتبر حلول لـ مصفوفيةال

 Feedback static)بكسب رجوعي ثابت  (Full states) متحكم الحالة الكاملة تم اقتراح في هذه الأطروحة

gains)  من   تم التحقق تعيين جذور الكتلة المتينة،بالاضافة الى   نزلاقلاوضع ايستند في تصميمه على نظرية

 ل عليه من خلالوالحص والذي تم فاعلية التصميم المقترح   بتطبيقه على نموذج دايناميكي لنظام توربينات الغاز

 .أيضا .حقيقية بيانات تجريبية استغلال

أمثل يعتمد فقط على مخارج النظم الدايناميكية حيث يستند في تصميمه على بكسب رجوعي ثابت متحكم  تم اقتراح 

 .الذئاب الرمادية محسنللرصد والمراقبة،  والى خوارزمية التحسين المسماة بـ وفتين الممددتين المصفتحويلات 

نظام  نموذج  على جريبهاتم ت ،والتكهن تصميم مقاربة ذكية للتشخيص و الكشف عن الأخطاء تم اقتراح ،أيضا 

ضمان مخارج خالية من لغرض  المقاربةفي هذه  مرشح كالمانإستعمال  يتمحيث  ،الطرد المركزيبضاغط الغاز 

ضمان كشف لغرض  2المنطق الضبابي نوع  نظرية نظام خبير مصمم من خلالاستعمال و  الضجيج والضوضاء،

 النظام  لوقوع الوقت المتبقيبلتوقع لغرض ا  (ARIMA)أريما نموذج استعمال وتشخيص للأخطاء متين، و

 المعيب في التلف.  الدايناميكي

و  تعيين جذور الكتلة المتينةالى  مد في تصميمهعتأ متين  (Interval observer) راصد فاصل تم اقتراح ،أيضا

 .ضبابية الذكيةبة الالمقارفعاليته في الكشف عن الأخطاء بالمقارنة مع  ائجالنت بتثث أحي ذئاب الرماديةمحسن ال

جذور اليستند في تصميمه على تعيين أشباه  حيث ذو أسس كسرية، µDλPIتصميم جديد لمراقب  تم اقتراح، أخيرا

 مصفوفة ،نية الشبيهةديفونتيال المصفوفية معادلةال، أشباه كثيرات الحدود المصفوفية : للاغباستوذلك  مصفوفيةال

النتائج المتحصل عليها تبين ، الذئاب الرماديةومحس سيلفستر الشبيهة،  مصفوفةو ،الممددة الشبيهة فانديرموند

وبيئة  ،بعد التحقق والتجربة على نموذج خطي متعدد المخارج والمداخل غير يقيني و في ظل وجود أخطاء

  .ح متينمتحكم متسامكيمكن اعتباره  ، وكفائته والذي مضطربة، نجاعة المتحكم المقترح

جذور الخطية، ال، كشف وتشخيص الاخطاء، تحكم في النظم مع الأخطاء متحكمات متسامحة : الكلمات المفتاحية

 ، كثيرات الحدود المصفوفية، متحكم انزلاقي،ذو أس كسري µDλPI، متحكم مصفوفيةجذور الال، أشباه المصفوفية

نظام ضاغط محسن الذئاب الرمادية، نظام توربينات الغاز، ، 2المنطق الضبابي نوع  ،راصد فاصل كم رجوعي،متح

 .الغاز بالطرد المركزي
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Abstract 

Abstract 

This thesis is concerned with development  and proposal  of robust fault-tolerant controllers (FTCs) 

and robust fault-detection and diagnosis (FDD) approaches, its designs are based on the advanced 

control theories, the proposed FTCs and FDD  approaches are examined on uncertain multivariable  

linear systems in the presence of disturbances and noises, for the purpose of validate its effectiveness 

and performances. 

The design of the proposed controllers and approaches in this thesis are mainly based on using two 

theories: The first theory, on the Matrix Fraction Description (MFD), left and right forms are 

investigated. The second theory, on the Block-Roots, which are the solvents of the Matrix 

Polynomials with integer-order exponent, and the Pseudo Block-Roots which are the solvents of the 

Quasi Matrix Polynomials with fractional-order exponent. 

In this thesis, the full static state-feedback Sliding Mode controller was proposed and designed based 

on robust block-roots assignments, the proposed design efficiency is investigated on the dynamic model 

of the gas turbine system which is obtained using experimental data.  

Also, a static output-feedback controller design has been proposed, its design is based on block 

transformations matrices of the block observability and the block controllability respectively, and the 

Gray Wolf Optimizer (GWO) algorithm, the proposed controller is applied on uncertain multivariable 

model of Centrifugal Gas Compressor System and compared with recent controllers, the proposal 

proved its superiority and robustness. 

Also, a design of faults detection, diagnosis and forecasting approach, which is applied on the model 

of the centrifugal gas compressor system. Where, Kalman Filter is used in this approach for denoising 

and filtering the outputs, the use of an expert system designed by Type-2 Fuzzy Logic theory, for the 

purpose of ensuring the robust faults detection and diagnosis. and the use of the ARIMA model for the 

purpose of predicting the remaining time for the defective dynamic system to be in damaged.  

Also, an Interval Observer has been proposed for uncertain multivariable systems, its design is based 

on block-roots assignments and grey wolf optimizer, the obtained results proved the domination of this 

proposed observer comparing with the first approach of the fuzzy expert system.  

Finally, a new fractional-order PIλDµ controller design was proposed. Its design is based on the 

assignments of pseudo block-roots by exploiting: quasi matrix polynomials, Quasi Diophantine 

Matrix Equation, Pseudo Block Vandermonde Matrix, Pseudo Sylvester Matrix, and the gray wolf 

optimizer.  After implementing the proposed controller on multivariable uncertain model, and under 

the disturbances injection with the presence of faults, the obtained results show the robustness and the 

efficiency of this proposed, which can be considered as robust FTC controller. 

               

Key words: Fault tolerant control, Fault detection and diagnosis, linear control systems, block-roots, 

pseudo block-roots, sliding mode controller, state-feedback, output-feedback, interval observer, 

fractional-order PIλDµ controller, matrix polynomials, Type-2 fuzzy logic, gray wolf optimizer (GWO), 

gas turbine system, centrifugal gas compressor system. 
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Résumé 

Résumé 

Cette thèse concerne le développement et la proposition de contrôleurs robustes tolérants aux défauts 

(FTC) et de méthodes robustes de détection et de diagnostic des défauts (FDD), ses conceptions sont 

basées sur les théories de contrôle avancées, les approches FTC et FDD proposées dans cette thèse sont 

examinées sur des systèmes linéaires multivariable incertains en présence de perturbations et de bruits, 

dans le but de valider ses efficacités et performances. 

La conception des contrôleurs et approches proposés dans cette thèse sont principalement basées sur 

l'utilisation de deux théories : la première théorie, la Description Matricielle Fractionnelle, deux types 

de description matricielle fractionnelle (gauche et droite) sont étudiés. La seconde théorie concerne les 

Blocs-Racines, qui sont les solvants des Polynômes Matriciels à exposant d’ordre entier, et les Pseudo 

Blocs-Racines, qui sont les solvants des Quasi Polynômes Matriciels à exposant d’ordre fractionnaire.  

Dans cette thèse, le contrôleur de Mode Glissant à retour d’état statique complet a été proposé et conçu 

sur la base d’affectations robustes de blocs-racines, l’efficacité de conception proposée est étudiée sur 

le modèle dynamique du système de turbine à gaz obtenu à l’aide de données expérimentales.  

Également, une conception de contrôleur de retour de sortie statique basée sur les matrices de bloc 

transformations de bloc d'observabilité et de la contrôlabilité, respectivement, et l'algorithme 

d'optimisation de l'Optimiseur de Loups Gris, le contrôleur proposé est appliqué sur un modèle 

multivariable incertain du Système de Compresseur de Gaz Centrifuge et comparé aux contrôleurs 

récents, la proposition a prouvé sa supériorité et sa robustesse. 

En outre, conception d'une approche de détection, diagnostic et prévision des défauts, qui est appliquée 

sur le modèle du système de compresseur de gaz centrifuge. Lorsque le Filtre de Kalman est utilisé 

dans cette approche pour réduire le bruit et filtrer les sorties, il utilise un système expert conçu par la 

théorie de la Logique Floue de Type-2, afin de garantir la détection et le diagnostic des défauts 

robustes. Et l'utilisation du modèle ARIMA afin de prédire le temps restant avant que le système 

dynamique défectueux soit endommagé.  

En outre, un Observateur d'Intervalle a été proposé pour les systèmes multivariables incertains, sa 

conception est basée sur des affectations de blocs-racines et l'optimiseur loup gris, les résultats obtenus 

ont prouvé la domination de cet observateur proposé par rapport à la première approche du système 

expert flou. 

Finalement, une nouvelle conception de contrôleur PIλDµ d'ordre fractionnel a été proposée. Sa 

conception est basée sur les assignations de pseudo blocs-racines en exploitant : quasi polynômes 

matriciels, quasi diophantienne matricielle équation, pseudo bloc matrice de Vandermonde, 

pseudo matrice de Sylvestre et l'optimiseur loup gris. Après avoir mis en œuvre le contrôleur proposé 

sur un modèle multivariable incertain et sous l’injection de perturbations avec la présence de défauts, 

les résultats obtenus montrent la robustesse et l’efficacité de ce proposé, que l’on peut considérer 

comme un contrôleur FTC robuste. 

Mots clés : Commande à tolérance de défauts, Détection et diagnostic de défauts, systèmes de contrôle 

linéaires, blocs-racines, pseudo blocs-racines, contrôleur de mode glissant, retour d'état, retour de 

sortie, observateur d'intervalle, contrôleur PIλDµ d'ordre fractionnel, polynômes matriciels, logique 

floue de type-2, optimiseur de loup gris, système de turbine à gaz, système de compresseur de gaz 

centrifuge. 
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