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Chapter I 
Electromagnetics and Optics 

 
1.1 Introduction  

 
the study of the propagation of light in any medium requires a knowledge of 
maxwell's equations. In this chapter, we will briefly discuss the basics of laws of 
electromagnetics leading to Maxwell’s equations. Maxwell’s equations will be used 
to derive the wave equation, which forms the basis for the study of optical fibers in 
Chapter 2. The results derived in this chapter will be used throughout the courses. 
 
1.2 Maxwell’s Equations  
 
𝑑𝑖𝑣 𝐷 = 𝜌                                                                                                                                                    
 
𝑑𝑖𝑣 𝐵 = 0                                                                                                                                                     
 

∇ × 𝐸 = −
డ஻

డ௧
                                                                                                                                              

 

∇ × 𝐻 = 𝐽 +
డ஽

డ௧
                                                                                                                                          

 
From above equations, we see that a time-changing magnetic field produces an 
electric field and a time-changing electric field or current density produces a 
magnetic field. The charge distribution 𝜌 and current density 𝐽 are the sources for 
generation of electric and magnetic fields. For the given charge and current 
distribution, the equations may be solved to obtain the electric and magnetic field 
distributions. The terms on the right-hand sides of third and fourth equations may be 
viewed as the sources for generation of field intensities appearing on the left-hand 
sides of the same equations. As an example, consider the alternating current 
𝐼଴sin (2𝜋𝑓𝑡) flowing in the transmitter antenna. From Ampere’s law, we find that 
the current leads to a magnetic field intensity around the antenna (first term of the 
fourth equation. From Faraday’s law, it follows that the time-varying magnetic field 
induces an electric field intensity (third equation) in the vicinity of the antenna. 
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Consider a point in the neighborhood of the antenna (but not on the antenna). At this 
point 𝐽 = 0, but the time-varying electric field intensity or displacement current 
density (second term on the right-hand side of (fourth Equation) leads to a magnetic 
field intensity, which in turn leads to an electric field intensity (third equation). This 
process continues and the generated electromagnetic wave propagates outward just 
like the water wave generated by throwing a stone into a lake. If the displacement 
current density were to be absent, there would be no continuous coupling between 
electric and magnetic fields and we would not have had electromagnetic waves. 
 
    1.2.1 Maxwell’s Equation in a Source-Free Region  
 
In free space or dielectric, if there is no charge or current in the neighborhood, we 
can set 𝜌 = 0 and 𝐽 = 0 in Eqs. (1.1) and (1.4). Note that the above equations 
describe the relations between electric field, magnetic field, and the sources at a 
space-time point and therefore, in a region sufficiently far away from the sources, 
we can set 𝜌 = 0 and 𝐽 = 0 in that region. However, on the antenna, we cannot 
ignore the source terms 𝜌 or 𝐽 in Eqs. (1.1-1.4). Setting 𝜌 = 0 and 𝐽 = 0 in the 
source-free region, Maxwell’s equations take the form 
 
𝑑𝑖𝑣 𝐷 = 0                                                                                                                                                (1.1) 
 
𝑑𝑖𝑣 𝐵 = 0                                                                                                                                     (1.2) 
 

∇ × 𝐸 = −
డ஻

డ௧
                                                                                                                                     (1.3) 

 

∇ × 𝐻 =
డ஽

డ௧
                                                                                                                                      (1.4) 

 
In the source-free region, the time-changing electric/magnetic field (which was 
generated from a distant source 𝜌 or 𝐽) acts as a source for a magnetic/electric field. 
 
 
 
    1.2.2 Electromagnetic Wave  
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Suppose the electric field is only along the x-direction, 
 
𝐸 = 𝐸௫𝑥                                                                                                                                            (1.5) 
 
and the magnetic field is only along the y-direction, 
 
𝐻 = 𝐻௬𝑦                                                                                                                                           (1.6) 

 
Substituting Eqs. (1.5) and (1.6) into Eq. (1.3), we obtain 
 

∇ × 𝐸 = ቎

𝑥 𝑦 𝑧
డ

డ௫

డ

డ௬

డ

డ௭

𝐸௫ 0 0

቏ =
డாೣ

డ௭
𝑦 −

డாೣ

డ௬
𝑧 = −𝜇

డு೤

డ௧
𝑦                                                 (1.7) 

 
Equating y- and z-components separately, we find 
 
డாೣ

డ௭
= −𝜇

డு೤

డ௧
                                                                                                                                   (1.8) 

డாೣ

డ௬
= 0                                                                                                                                              (1.9) 

 
Substituting Eqs. (1.5) and (1.6) into Eq. (1.4), we obtain 
 

∇ × 𝐸 = ቎

𝑥 𝑦 𝑧
డ

డ௫

డ

డ௬

డ

డ௭

0 𝐻௬ 0

቏ =
డு೤

డ௭
𝑥 +

డு೤

డ௫
𝑧 = 𝜀

డாೣ

డ௧
𝑥                                                  (1.10) 

 
Therefore, 
 
డு೤

డ௭
= −𝜀

డாೣ

డ௧
                                                                                                                              (1.11) 

డு೤

డ௫
= 0                                                                                                                                           (1.12) 
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Eqs. (1.8) and (1.11) are coupled. To obtain an equation that does not contain Hy, 
we differentiate Eq. (1.8) with respect to z and differentiate Eq. (1.11) with respect 
to t, 
 
డమாೣ

డ௭మ
= −𝜇

డு೤

డ௧డ௭
                                                                                                                             (1.13) 

 

𝜇
డమு೤

డ௧డ௭
= −𝜇𝜀

డாೣ

డ௧మ
                                                                                                                        (1.14) 

 
Adding Eqs. (1.13) and (1.14), we obtain 
 
డమாೣ

డ௭మ
= 𝜇𝜀

డாೣ

డ௧మ
                                                                                                                                (1.15) 

 
The above equation is called the wave equation and it forms the basis for the study 
of electromagnetic wave propagation. 
 
    1.2.3 Free-Space Propagation  
 
For free space,𝜀 = 𝜀଴ = 8.854 × 10ିଵଶ𝐶ଶ/𝑁𝑚ଶ, 𝜇 = 𝜇଴ = 4𝜋 × 10ି଻𝑁/𝐴ଶ, and 
 

𝑐 =
ଵ

ඥఓబఌబ
≃ 3 × 10଼𝑚/𝑠                                                                                                    (1.16) 

 
where c is the velocity of light in free space. Before Maxwell’s time, electrostatics, 
magnetostatics, and optics were unrelated. Maxwell unified these three fields and 
showed that the light wave is actually an electromagnetic wave with velocity given 
by Eq. (1.16). 
 
    1.2.4 Propagation in a Dielectric Medium  
 
Similar to Eq. (1.16), the velocity of light in a medium can be written as 
 

𝜐 =
ଵ

√ఓఌ
                                                                                                                                            (1.17) 
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Where 𝜇 = 𝜇଴𝜇௥ and 𝜀 = 𝜀଴𝜀௥. Therefore, 
 

𝜐 =
ଵ

ඥఓబఓೝ ఌబఌೝ
                                                                                                                   (1.18) 

 
Using Eq. (1.17) in Eq. (1.18), we have 
 

𝜐 =
௖

√ఓೝ ఌೝ
                                                                                                                                        (1.19) 

 
For dielectrics, 𝜇௥ = 1 and the velocity of light in a dielectric medium can be written 
as 
 

𝜐 =
௖

√ ఌೝ
=

௖

௡
                                                                                                                                 (1.20) 

 
where 𝑛 = √ 𝜀௥ is called the refractive index of the medium. The refractive index of 
a medium is greater than 1 and the velocity of light in a medium is less than that in 
free space. 
 
 1.3.1-Dimensional Wave Equation  
 
Using Eq. (1.17) in Eq. (1.15), we obtain 
 
డమாೣ

డ௭మ
=

ଵ

జమ

డమாೣ

డ௧మ
                                                                                                                               (1.21) 

 
Elimination of 𝐸௫ from Eqs. (1.8) and (1.11) leads to the same equation for 𝐻௬, 

 
డమு೤

డ௭మ
=

ଵ

జమ

డమு೤

డ௧మ
                                                                                                                              (1.22) 

 
To solve Eq. (1.21), let us try a trial solution of the form 
 
𝐸௫(𝑡, 𝑧) = 𝑓(𝑡 + 𝛼𝑧)                                                                                                               (1.23) 
 
where 𝑓 is an arbitrary function of 𝑡 + 𝛼𝑧. Let 
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𝑢 = 𝑡 + 𝛼𝑧                                                                                                                                            (1.24) 
 
డ௨

డ௭
= 𝛼, 

డ௨

డ௧
= 1                                                                                                                           (1.25) 

 
డாೣ

డ௭
=

డாೣ

డ௨

డ௨

డ௭
=

డாೣ

డ௨
𝛼                                                                                                                (1.26) 

 
డమாೣ

డ௭మ
=

డమாೣ

డ௨మ
𝛼ଶ                                                                                                                             (1.27) 

 
డమாೣ

డ௧మ
=

డమாೣ

డ௨మ
                                                                                                                                  (1.28) 

 
Using Eqs. (1.27) and (1.28) in Eq. (1.21), we obtain 
 

𝛼ଶ డమாೣ

డ௨మ
=

ଵ

జమ

డమாೣ

డ௨మ
                                                                                                                        (1.29) 

 
Therefore, 

𝛼 = ±
ଵ

జ
                                                                                                                                        (1.30) 

 

𝐸௫ = 𝑓 ቀ𝑡 +
௭

జ
ቁ or 𝐸௫ = 𝑓 ቀ𝑡 −

௭

జ
ቁ                                                                                    (1.31) 

 
The negative sign implies a forward-propagating wave and the positive sign 
indicates a backward-propagating wave. Note that f is an arbitrary function and it is 
determined by the initial conditions as illustrated by the following examples. 
 
   1.3.1 1-Dimensional Plane Wave 
 
A plane wave can be written in any of the following forms: 
 

𝐸௫(𝑡, 𝑧) = 𝐸௫଴𝑐𝑜𝑠 ቂ2𝜋𝑓 ቀ𝑡 −
௭

జ
ቁቃ  

𝐸௫(𝑡, 𝑧) = 𝐸௫଴𝑐𝑜𝑠 ቂ2𝜋𝑓𝑡 −
ଶగ

ఒ
𝑧ቃ  
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𝐸௫(𝑡, 𝑧) = 𝐸௫଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                                              (1.32) 
 
where 𝜐 is the velocity of light in the medium, 𝑓 is the frequency, 𝜆 = 𝜐/𝑓 is the 
wavelength, 𝜔 = 2𝜋𝑓 is the angular frequency, 𝑘 = 2𝜋/ 𝜆 is the wavenumber, and 
k is also called the propagation constant. Frequency and wavelength 𝑘 are related by 
 
𝜐 = 𝑓𝜆                                                                                                                                         (1.33) 
 
or equivalently 
 

𝜐 =
ఠ

௞
                                                                                                                                                (1.34) 

 
Since 𝐻௬  also satisfies the wave equation Eq. (1.22), it can be written as 

 
𝐻௬(𝑡, 𝑧) = 𝐻௬଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                                          (1.35) 

 
From Eq. (1.11), we have 
 
డு೤

డ௭
= −𝜀

డாೣ

డ௧
                                                                                                                              (1.36) 

 
Using Eq. (1.32) in Eq. (1.36), we obtain 
 
డு೤

డ௭
= 𝜀𝜔𝐻௬଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                                                       (1.37) 

 
Integrating Eq. (1.37) with respect to z 
 

𝐻௬ =
ఌఠாೣబ

௞
𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧) + 𝐷                                                                                           (1.38) 

 
where 𝐷 is a constant of integration and could depend on t. Comparing Eqs. (1.35) 
and (1.38), we see that 𝐷 is zero and using Eq. (1.36) we find 
 
ாೣబ

ு೤బ
=

ଵ

ఌజ
= 𝜂                                                                                                                                       (1.39) 
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where 𝜂 is the intrinsic impedance of the dielectric medium. For free space, 𝜂 =

376.47 Ohms. Note that 𝐸௫ and 𝐻௬ are independent of x and y. In other words, at 

time t, the phase 𝜔𝑡 − 𝑘𝑧 is constant in a transverse plane described by z = constant 
and therefore, they are called plane waves. 
 
   1.3.2 Complex Notation  
 
It is often convenient to use complex notation for electric and magnetic fields in the 
following forms: 
 

𝐸෨௫ = 𝐸௫଴𝑒௜(ఠ௧ି௞௭) or 𝐸෨௫ = 𝐸௫଴𝑒ି௜(ఠ௧ି௞ )                                                                   (1.40) 
 
And 
 

𝐻෩௬ = 𝐻௬଴𝑒௜(ఠ௧ି௞ ) or 𝐻෩௬ = 𝐻௬଴𝑒ି௜(ఠ௧ି௞௭)                                                                 (1.41) 

 
This is known as an analytic representation. The actual electric and magnetic fields 
can be obtained by 
 

𝐸௫ = 𝑅𝑒[𝐸෨௫] = 𝐸௫଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                                  (1.42) 
 
And 
 

𝐻௬ = 𝑅𝑒ൣ𝐻෩௬൧ = 𝐻௬଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                               (1.43) 

 
In reality, the electric and magnetic fields are not complex, but we represent them in 
the complex forms of Eqs. (1.40) and (1.41) with the understanding that the real parts 
of the complex fields correspond to the actual electric and magnetic fields. This 
representation leads to mathematical simplifications. For example, differentiation of 
a complex exponential function is the complex exponential function multiplied by 
some constant. In the analytic representation, superposition of two electromagnetic 
fields corresponds to addition of two complex fields. However, care should be 
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exercised when we take the product of two electromagnetic fields as encountered in 
nonlinear optics. For example, consider the product of two electrical fields given by 
 
𝐸௫௡ = 𝐴௡𝑐𝑜𝑠(𝜔௡𝑡 − 𝑘௡𝑧), 𝑛 = 1,2                                                                               (1.44) 
 

𝐸௫ଵ𝐸௫ଶ =
஺భ஺మ

ଶ
𝑐𝑜𝑠[(𝜔ଵ+𝜔ଶ)𝑡 − (𝑘ଵ+𝑘ଶ)𝑧] + 𝑐𝑜𝑠[(𝜔ଵ−𝜔ଶ)𝑡 − (𝑘ଵ−𝑘ଶ)𝑧] (1.45) 

 
The product of the electromagnetic fields in the complex forms is 
 

𝐸෨௫ଵ𝐸෨௫ଶ = 𝐴ଵ𝐴ଶ𝑒𝑥𝑝[𝑖(𝜔ଵ+𝜔ଶ)𝑡 − 𝑖(𝑘ଵ+𝑘ଶ)𝑧]                                                     (1.46) 
 
If we take the real part of Eq. (1.46), we find 
 

𝑅𝑒[𝐸෨௫ଵ𝐸෨௫ଶ] = 𝐴ଵ𝐴ଶ𝑐𝑜𝑠[(𝜔ଵ+𝜔ଶ)𝑡 − (𝑘ଵ+𝑘ଶ)𝑧] ≠ 𝐸௫ଵ𝐸௫ଶ                               (1.47) 
 
In this case, we should use the real form of electromagnetic fields. In the rest of this 
chapter we sometimes omit “  ̃” and use 𝐸௫(𝐻௬) to represent a complex electric 

(magnetic) field with the understanding that the real part is the actual field. 
 
1.4 Power Flow and Poynting Vector  
 
Consider an electromagnetic wave propagating in a region V with the cross-sectional 
area A as shown in Fig. 1.1.  

 
Figure 1.1 Electromagnetic wave propagation in a volume V with cross-sectional area A. 
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The propagation of a plane electromagnetic wave in the source-free region is 
governed by Eqs. (1.11) and (1.8) 
 

𝜀
డாೣ

డ௧
= −

డு೤

డ௭
                                                                                                                               (1.48) 

 

𝜇
డு೤

డ௧
= −

డாೣ

డ௭
                                                                                                                                    (1.49) 

 
Multiplying Eq. (1.48) by 𝐸௫ and noting that 
 
డாೣ

మ

డ௧
= 2𝐸௫

డாೣ

డ௧
                                                                                                                        (1.50) 

 
we obtain 
 
ఌ

ଶ

డாೣ
మ

డ௧
= −𝐸௫

డு೤

డ௭
                                                                                                                        (1.51) 

 
Similarly, multiplying Eq. (1.49) by Hy, we have 
 
ఓ

ଶ

డு೤
మ

డ௧
= −𝐻௬

డாೣ

డ௭
                                                                                                                      (1.52) 

 
Adding Eqs. (1.52) and (1.51) and integrating over the volume V, we obtain 
 
డ

డ௧
∫ ൤

ఌாೣ
మ

ଶ
+

ఓு೤
మ

ଶ
൨ 𝑑𝑉 = −𝐴 ∫ ቂ𝐸௫

డு೤

డ௭
+ 𝐻௬

డாೣ

డ௭
ቃ

௅

଴௏
𝑑𝑧                                         (1.53) 

 
On the right-hand side of Eq. (1.53), integration over the transverse plane yields the 
area A since 𝐸௫ and 𝐻௬ are functions of z only. Eq. (1.53) can be rewritten as 

 
డ

డ௧
∫ ൤

ఌாೣ
మ

ଶ
+

ఓு೤
మ

ଶ
൨ 𝑑𝑉 = −𝐴 ∫

డ

డ௭
ൣ𝐸௫𝐻௬൧

௅

଴௏
𝑑𝑧 = −𝐴𝐸௫𝐻௬ห

𝐿
0

                               (1.54) 

 

The terms 𝜀𝐸௫
ଶ/2 and 𝜇𝐻௬

ଶ/2 represent the energy densities of the electric field 

and the magnetic field, respectively. The left-hand side of Eq. (1.54) can be 
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interpreted as the power crossing the area A and therefore, 𝐸௫𝐻௬ is the power per 

unit area or the power density measured in watts per square meter (𝑊/𝑚ଶ). We 
define a Poynting vector 𝑃 as 
 
𝑃 = 𝐸 × 𝐻                                                                                                                                  (1.55) 
 
The z-component of the Poynting vector is 
 
𝑃௓ = 𝐸௫𝐻௬                                                                                                                                            (1.56) 

 
The direction of the Poynting vector is normal to both E and H, and is in fact the 
direction of power flow. 
In Eq. (1.54), integrating the energy density over volume leads to energy ℰ and, 
therefore, it can be rewritten as 
 
ଵ

஺

ௗℰ

ௗ௧
= 𝑃௓(0) − 𝑃௓(𝐿)                                                                                                               (1.57) 

 
The left-hand side of (1.57) represents the rate of change of energy per unit area and 
therefore, 𝑃௓ has the dimension of power per unit area or power density. For light 
waves, the power density is also known as the optical intensity. Eq. (1.57) states that 
the difference in the power entering the cross-section A and the power leaving the 
cross-section A is equal to the rate of change of energy in the volume V. The plane-
wave solutions for 𝐸௫ and 𝐻௬ are given by Eqs. (1.32) and (1.35) 

𝐸௫ = 𝐸௫଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                                                      (1.58) 
 
𝐻௬ = 𝐻௬଴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)                                                                                                     (1.59) 

 

𝑃௓ =
ாೣబ

మ

ఎ
𝑐𝑜𝑠ଶ(𝜔𝑡 − 𝑘𝑧)                                                                                                          (1.60) 

 
The average power density may be found by integrating it over one cycle and 
dividing by the period 𝑇 = 1 𝑓⁄   
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𝑃௭
௔௩ =

ଵ

்

ாೣబ
మ

ఎ
∫ 𝑐𝑜𝑠ଶ(𝜔𝑡 − 𝑘𝑧)𝑑𝑡

்

଴
                                                                                       (1.61) 

 

𝑃௭
௔௩ =

ଵ

்

ாೣబ
మ

ఎ
∫

ଵା௖௢ [ଶ(ఠ௧ି௞ )]

ଶ
𝑑𝑡

்

଴
                                                                                        (1.62) 

 

𝑃௭
௔௩ =

ாೣబ
మ

ఎ
                                                                                                                                               (1.63) 

 
The integral of the cosine function over one period is zero and, therefore, the second 
term of Eq. (1.63) does not contribute after the integration. The average power 
density 𝑃௭

௔௩ is proportional to the square of the electric field amplitude. Using 
complex notation, Eq. (1.56) can be written as 
 

𝑃௓ = 𝑅𝑒[𝐸෨௫]𝑅𝑒ൣ𝐻෩௬൧                                                                                                                 (1.64) 

 

𝑃௓ =
ଵ

ఎ
𝑅𝑒[𝐸෨௫]𝑅𝑒[𝐸෨௫] =

ଵ

ఎ
ቂ

ா෨ೣାா෨ೣ
∗

ଶ
ቃ ቂ

ா෨ೣାா෨ೣ
∗

ଶ
ቃ                                                                       (1.65) 

 

The right-hand side of Eq. (1.65) contains product terms such as 𝐸෨௫
ଶ and ̃𝐸෨௫

∗ଶ . The 
average of 𝐸௫

ଶand 𝐸௫
∗ଶ over the period T is zero, since they are sinusoids with no d.c. 

component. Therefore, the average power density is given by 
 

𝑃௭
௔௩ =

ଵ

ଶఎ்
∫ ห𝐸෨௫ห

ଶ
𝑑𝑡 =

|ா෨ೣ|మ

ଶఎ

்

଴
                                                                                                  (1.66) 

 

Since ห𝐸෨௫ห
ଶ
 is a constant for the plane wave. Thus, we see that, in complex notation, 

the average power density is proportional to the absolute square of the field 
amplitude. 
 
Example 1.1 
Two monochromatic waves are superposed to obtain 
 

𝐸෨௫ = 𝐴ଵ𝑒𝑥𝑝[𝑖(𝜔ଵ𝑡 − 𝑘ଵ𝑧)] + 𝐴ଶ𝑒𝑥𝑝[𝑖(𝜔ଶ𝑡 − 𝑘ଶ𝑧)]                                             (1.67) 
 
Find the average power density of the combined wave. 
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Solution: 
 
From Eq. (1.66), we have 

𝑃௭
௔௩ =

1

2𝜂𝑇
න ห𝐸෨௫ห

ଶ
𝑑𝑡

்

଴

 

 

𝑃௭
௔௩ =

ଵ

ଶఎ்
ቄ𝑇|𝐴ଵ|ଶ + 𝑇|𝐴ଶ|ଶ + 𝐴ଵ𝐴ଶ

∗ ∫ 𝑒𝑥𝑝[𝑖(𝜔ଵ − 𝜔ଶ)𝑡 − 𝑖(𝑘ଵ − 𝑘ଶ)𝑧] +
்

଴

𝐴ଶ𝐴ଵ
∗ ∫ 𝑒𝑥𝑝[−𝑖(𝜔ଵ − 𝜔ଶ)𝑡 + 𝑖(𝑘ଵ − 𝑘ଶ)𝑧]

்

଴
ቅ 𝑑𝑡                                                      (1.68) 

 
Since integrals of sinusoids over the period T are zero, the last two terms in Eq. 
(1.68) do not contribute, which leads to 
 

𝑃௭
௔௩ =

|஺భ|మା|஺మ|మ

ଶఎ
                                                                                                                      (1.69) 

 
Thus, the average power density is the sum of absolute squares of the amplitudes of 
monochromatic waves. 
 
1.5 3-Dimensional Wave Equation  
From Maxwell’s equations, the following wave equation could be derived: 
 
డమట

డ௫మ
+

డమట

డ௬మ
+

డమట

డ௭మ
−

ଵ

జమ

డమట

డ௧మ
= 0                                                                                                (1.70) 

 
where 𝜓 is any one of the components Ex, Ey, Ez, Hx, Hy, Hz. As before, let us try 
a trial solution of the form 
 

𝜓 = 𝑓൫𝑡 − 𝛼௫𝑥 − 𝛼௬𝑦 − 𝛼௭𝑧൯                                                                                            (1.71) 

 
We find that 
 

𝛼௫
ଶ + 𝛼௬

ଶ + 𝛼௭
ଶ =

ଵ

జమ
                                                                                                                  (1.72) 

 



 

 
17 

If we choose the function to be a cosine function, we obtain a 3-dimensional plane 
wave described by 
 

𝜓 = 𝜓଴𝑐𝑜𝑠ൣ𝜔൫𝑡 − 𝛼௫𝑥 − 𝛼௬𝑦 − 𝛼௭𝑧൯൧                                                                         (1.73) 

 
𝜓 = 𝜓଴cos (𝜔𝑡 − 𝑘௫𝑥 − 𝑘௬𝑦 − 𝑘௭𝑧)                                                                              (1.74) 

 
Where 𝑘௥ = 𝜔𝛼௥, 𝑟 = 𝑥, 𝑦, 𝑧. Define a vector 𝒌 = 𝑘௫𝒙 + 𝑘௬𝒚 + 𝑘௭𝒛. 𝒌 is known as 

a wave vector. Eq. (1.72) becomes 
ఠమ

௞మ
= 𝜐ଶ or 

ఠ

௞
= ±𝜐                                                                                                                            (1.75) 

where k is the magnitude of the vector 𝒌 
 

𝑘 = ඥ𝑘௫
ଶ + 𝑘௬

ଶ + 𝑘௭
ଶ                                                                                                                 (1.76) 

 
𝑘 is also known as the wavenumber. The angular frequency 𝜔 is determined by the 
light source, such as a laser or light-emitting diode (LED). In a linear medium, the 
frequency of the launched electromagnetic wave cannot be changed. The frequency 
of the plane wave propagating in a medium of refractive index n is the same as that 
of the source, although the wavelength in the medium decreases by a factor n. For 
given angular frequency 𝜔, the wavenumber in a medium of refractive index n can 
be determined by 
 

𝑘 =
ఠ

జ
=

ఠ௡

௖
=

ଶగ௡

ఒబ
                                                                                                                       (1.77) 

 
Where 𝜆଴ = 𝑐 𝑓⁄  is the free-space wavelength. For free space, n = 1 and the 
wavenumber is 
 

𝑘଴ =
ଶగ

ఒబ
                                                                                                                                                    (1.78) 

 
The wavelength 𝜆௠ in a medium of refractive index n can be defined by 
 

𝑘 =
ଶగ

ఒ೘
                                                                                                                                                 (1.79) 
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Comparing (77) and (79), it follows that 
 

𝜆௠ =
ఒబ

௡
                                                                                                                                                   (1.80) 

 
Example 1.2 
Consider a plane wave propagating in the x–z plane making an angle of 30∘ with the 
z-axis. This plane wave may be described by 
 
𝜓 = 𝜓଴cos (𝜔𝑡 − 𝑘௫𝑥 − 𝑘௭𝑧)                                                                                            (1.81) 
 

 
Figure 1.2 A plane wave propagates at angle 30° with the z-axis. 

 

The wave vector 𝒌 = 𝑘௫𝒙 + 𝑘௬𝒚. From Fig. 1.15, 𝑘௫ = 𝑘𝑐𝑜𝑠60° = 𝑘/2and 

𝑘௭ = 𝑘𝑐𝑜𝑠30° = 𝑘ඥ3/2. Eq. (1.81) may be written as 

 

𝜓 = 𝜓଴cos ቂ𝜔𝑡 − 𝑘 ቀ
ଵ

ଶ
𝑥 +

√ଷ

ଶ
𝑧ቁቃ                                                                                    (1.82) 
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Chapter II 
Reflection and Refraction 

 
Introduction 
Reflection and refraction occur when light enters into a new medium with a different 
refractive index. Consider a ray incident on the mirror 𝑀𝑀ᇱ, as shown in Fig. 2.1. 
According to the law of reflection, the angle of reflection 𝜙௥ is equal to the angle of 
incidence 𝜙௜ 

𝜙௜ = 𝜙௥ 

The above result can be proved from Maxwell’s equations with appropriate 
boundary conditions. Instead, let us use Fermat’s principle to prove it. There are an 
infinite number of paths to go from point A to point B after striking the mirror. 
Fermat’s principle can be stated loosely as follows: out of the infinite number of 
paths to go from point A to point B, light chooses the path that takes the shortest 
transit time. In Fig. 2.2, light could choose 𝐴𝐶ᇱ𝐵, 𝐴𝐶ᇱᇱ𝐵, 𝐴𝐶ᇱᇱᇱ𝐵, or any other path. 
But it chooses the path AC′B, for which 𝜙௜ = 𝜙௥. Draw the line 𝑀ᇱ𝐵ᇱ = 𝐵𝑀ᇱ so that 
𝐵𝐶ᇱ = 𝐶ᇱ𝐵ᇱ, 𝐵𝐶ᇱᇱ = 𝐶ᇱᇱ𝐵ᇱ, and so on. If AC′B′ is a straight line, it would be the 
shortest of all the paths connecting 𝐴 and 𝐵ᇱ. Since 𝐴𝐶ᇱ𝐵 (= 𝐴𝐶ᇱ𝐵ᇱ), it would be 
the shortest path to go from 𝐴 to 𝐵  after striking the mirror and therefore, according 
to Fermat’s principle, light chooses the path 𝐴𝐶ᇱ𝐵 which takes the shortest time. To 
prove that 𝜙௜ = 𝜙௥, consider the point 𝐶ᇱ. Adding up all the angles at 𝐶ᇱ, we find 
 
𝜙௜ + 𝜙௥ + 2(𝜋 2⁄ − 𝜙௥) = 2𝜋                                                                                                 (2.1) 

Or 

𝜙௜ = 𝜙௥                                                                                                                                     (2.2) 
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Figure 2.1 Reflection of a light wave incident on a mirror. 

 

Figure 2.2 Illustration of Fermat’s principle. 

2.1 Refraction 
In a medium with constant refractive index, light travels in a straight line. But as the 
light travels from a rarer medium to a denser medium, it bends toward the normal to 
the interface, as shown in Fig. 2.3. This phenomenon is called refraction, and it can 
be explained using Fermat’s principle. Since the speeds of light in two media are 
different, the path which takes the shortest time to reach B from A may not be a 
straight-line AB. Feynmann et al. give the following analogy: suppose there is a little 
girl drowning in the sea at point B and screaming for help as illustrated in Fig. 2.4. 
You are at point A on the land. Obviously, the paths AC2B and AC3B take a longer 
time. You could choose the straight-line path AC1B. But since running takes less 
time than swimming, it is advantageous to travel a slightly longer distance on land 
than sea. Therefore, the path AC0B would take a shorter time than AC1B. Similarly, 
in the case of light propagating from a rare medium to a dense medium (Fig. 2.5), 
light travels faster in the rare medium and therefore, the path AC0B may take a 
shorter time than AC1B. This explains why light bends toward the normal. To obtain 
a relation between the angle of incidence 𝜙ଵ and the angle of refraction 𝜙ଶ, let us 
consider the time taken by light to go from A to B via several paths: 
 

𝑡௫ =
௡భ஺஼ೣ

௖
+

௡మ஼ೣ஻

௖
,   𝑥 = 0,1,2 … …                                                                                         (2.3) 
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Figure 2.3 Refraction of a plane wave incident  

at the interface of two dielectrics. 

 

 
Figure 2.4 Different paths to connect A and B. 
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Figure 2.5 Illustration of Fermat’s principle  

for the case of refraction. 

 
From Fig. 2.6, we have 
 

𝐴𝐷 = 𝑥, 𝐶௫𝐷 = 𝑦,   𝐴𝐶௫ = ඥ𝑥ଶ + 𝑦ଶ                                                                                    (2.4) 

𝐵𝐸 = 𝐴𝐹 − 𝑥, 𝐵𝐶௫ = ඥ(𝐴𝐹 − 𝑥)ଶ + 𝐵𝐺ଶ                                                                          (2.5) 
Substituting this in Eq. (2.3), we find 
 

𝑡௫ =
௡భඥ௫మା௬మ

௖
+

௡మඥ(஺ிି௫)మା஻ீమ

௖
                                                                                              (2.6) 

Note that AF, BG, and y are constants as x changes. Therefore, to find the path that 
takes the least time, we differentiate 𝑡௫ with respect to x and set it to zero 
 
ௗ௧ೣ

ௗ௫
=

௡భ௫

ඥ௫మା௬మ
−

௡మ(஺ிି )

ඥ(஺ிି௫)మା஻ீమ
= 0                                                                                            (2.7) 

From Fig. 2.6, we have 
௫

ඥ௫మା௬మ
= 𝑠𝑖𝑛𝜙ଵ,

஺ிି௫

ඥ(஺ிି௫)మା஻ீమ
= 𝑠𝑖𝑛𝜙ଶ                                                                                  (2.8) 
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Figure 2.6 Refraction of a light wave. 

 
 
Therefore, Eq. (2.7) becomes 

𝑛ଵ𝑠𝑖𝑛𝜙ଵ = 𝑛ଶ𝑠𝑖𝑛𝜙ଶ                                                                                                                 (2.9) 

This is called Snell’s law. If 𝑛ଶ > 𝑛ଵ, 𝑠𝑖𝑛𝜙ଵ > 𝑠𝑖𝑛𝜙ଶand 𝜙ଵ > 𝜙ଶ. This explains 
why light bends toward the 
normal in a denser medium, as shown in Fig. 2.6. 
When 𝑛ଵ > 𝑛ଶ, from Eq. (2.9), we have 𝜙ଶ > 𝜙ଵ. As the angle of incidence 𝜙ଵ 
increases, the angle of refraction 𝜙ଶ increases too. For a particular angle, 𝜙ଵ = 𝜙௖, 
𝜙ଶ becomes 𝜋 2⁄  
𝑛ଵ𝑠𝑖𝑛𝜙௖ = 𝑛ଶ𝑠𝑖𝑛 𝜋 2⁄                                                                                                             (2.10) 

Or 

𝑠𝑖𝑛𝜙௖ = 𝑛ଶ 𝑛ଵ⁄                                                                                                                        (2.11) 

The angle 𝜙௖ is called the critical angle. If the angle of incidence is increased beyond 
the critical angle, the incident optical ray is reflected completely as shown in Fig. 
2.7. This is called total internal reflection (TIR), and it plays an important role in the 
propagation of light in optical fibers.  
Note that the statement that light chooses the path that takes the least time is not 
strictly correct. In Fig. 2.1, the time to go from A to B directly (without passing 
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through the mirror) is the shortest and we may wonder why light should go through 
the mirror. However, if we put the constraint that light has to pass through the mirror, 
the shortest path would be ACB and light indeed takes that path. In reality, light 
takes the direct path 

 

Figure 2.7 Total internal reflection when 𝜙 > 𝜙௖. 

AB as well as ACB. A more precise statement of Fermat’s principle is that light 
chooses a path for which the transit time is an extremum. In fact, there could be 
several paths satisfying the condition of extremum and light chooses all those paths. 
By extremum, we mean there could be many neighboring paths and the change of 
time of flight with a small change in the path length is zero to first order. 
Example 2.1 
The critical angle for the glass–air interface is 0.7297 rad. Find the refractive index 
of glass. 
Solution: 
The refractive index of air is close to unity. From Eq. (2.11), we have 
𝑠𝑖𝑛𝜙௖ = 𝑛ଶ 𝑛ଵ⁄                                                                                                                        (2.12) 

With 𝑛ଶ= 1, the refractive index of glass, 𝑛ଵ is 
𝑛ଵ = 1 𝑠𝑖𝑛𝜙௖ = 1.5⁄                                                                                                               (2.13) 

Example 2.2 
The output of a laser operating at 190 THz is incident on a dielectric medium of 
refractive index 1.45. Calculate 
(a) the speed of light. 
(b) the wavelength in the medium. 
(c) the wavenumber in the medium. 
Solution: 
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(a) The speed of light in the medium is given by 

𝜐 =
௖

௡
                                                                                                                                       (2.14) 

where c = 3 × 108 m/s, n = 1.45, so 

𝜐 =
ଷ × ଵ଴ఴ ୫/ୱ

ଵ.ସହ
= 2.069 ×  10଼ m/s                                                                                      (2.15) 

(b) We have 
speed = frequency × wavelength 

𝜐 = 𝑓 × 𝜆௠                                                                                                                             (2.16) 

where 𝑓 = 190 THz, 𝜐 = 2.069 × 10଼ m/s, so 

𝜆௠ =
ଶ.଴଺ଽ× ଵ଴ఴ 

ଵଽ଴× ଵ଴భమ
𝑚 = 1.0889 𝑚                                                                                             (2.17) 

(c) The wavenumber in the medium is 

𝑘 =
ଶగ

ఒ೘
=

ଶగ

ଵ.଴଼଼ଽ× ଵ଴షల
= 5.77 × 10଺ 𝑚ିଵ                                                                            (2.18) 

Example 2.3 
The output of the laser of Example 2.2 is incident on a dielectric slab with an angle 
of incidence = 𝜋 3⁄ , as shown in Fig. 2.8.  
(a) Calculate the magnitude of the wave vector of the refracted wave.  
(b) calculate the x-component and z-component of the wave vector. The other 
parameters are the same as in Example 2.2. 
Solution: 
Using Snell’s law, we have 

𝑛ଵ𝑠𝑖𝑛𝜙ଵ = 𝑛ଶ𝑠𝑖𝑛𝜙ଶ                                                                                                               (2.19) 

For air 𝑛ଵ ≈ 1, for the slab 𝑛ଶ = 1.45, 𝜙ଵ = 𝜋 3⁄ . So 

𝜙ଶ = 𝑠𝑖𝑛ିଵ ቄ
௦௜௡(గ ଷ⁄ )

ଵ.ସହ
ቅ = 0.6401 𝑟𝑎𝑑                                                                                     (2.20) 

The electric field intensity in the dielectric medium can be written as 

𝐸௫ = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘௫𝑥 − 𝑘௭𝑧)                                                                                                (2.21) 
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(a) The magnitude of the wave vector is the same as the wavenumber 𝑘. It is given 
by 

|𝑘| = 𝑘 =
ଶగ

ఒ೘
= 5.77 × 10଺ 𝑚ିଵ                                                                                           (2.22) 

(b) The z-component of the wave vector is 
𝑘௭ = 𝑘𝑐𝑜𝑠(𝜙ଶ) = 5.77 × 10଺ × 𝑐𝑜𝑠(0.6401) 𝑚ିଵ = 4.62 × 10଺ 𝑚ିଵ                   
(2.23) 
The x-component of the wave vector is 
𝑘௫ = 𝑘𝑠𝑖𝑛(𝜙ଶ) = 5.77 × 10଺ × 𝑠𝑖𝑛(0.6401) 𝑚ିଵ = 3.44 × 10଺ 𝑚ିଵ                    
(2.24) 
 

 
Figure 2.8 Reflection of light at air–dielectric interface. 

2.2 Phase Velocity and Group Velocity 
Consider the superposition of two monochromatic electromagnetic waves of 
frequencies 𝜔଴ + Δ𝜔 2⁄  and 𝜔଴ − Δ𝜔 2⁄  as shown in Fig. 2.9. Let Δ𝜔 ≪ 𝜔଴. The 
total electric field intensity can be written as 

𝐸 = 𝐸ଵ+𝐸ଶ                                                                                                                             (2.25) 

 

Figure 2.9 The spectrum when two monochromatic waves are superposed. 

Let the electric field intensity of these waves be 

𝐸ଵ = 𝑐𝑜𝑠[(𝜔଴ − Δ𝜔 2⁄ )𝑡 − (𝑘 − Δ𝑘 2⁄ )𝑧]                                                                          (2.26) 
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𝐸ଶ = 𝑐𝑜𝑠[(𝜔଴ + Δ𝜔 2⁄ )𝑡 − (𝑘 + Δ𝑘 2⁄ )𝑧]                                                                      (2.27) 

Using the formula 

cos 𝐶 + cos 𝐷 = 2𝑐𝑜𝑠 ൬
𝐶 + 𝐷

2
൰ 𝑐𝑜𝑠 ൬

𝐶 − 𝐷

2
൰ 

Eq. (2.25) can be written as 

𝐸 = 2𝑐𝑜𝑠(Δ𝜔𝑡 − Δ𝑘𝑧)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௙௜௘௟ௗ ௘௡௩௘௟௢௣௘

𝑐𝑜𝑠(𝜔଴𝑡 − 𝑘଴𝑧)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௖௔௥௥௜௘௥

                                                                               (2.28) 

Eq. (2.28) represents the modulation of an optical carrier of frequency 𝜔଴ by a 
sinusoid of frequency Δ𝜔. Fig. 2.10 shows the total electric field intensity at z = 0. 
The broken line shows the field envelope and the solid line shows rapid oscillations 
due to the optical carrier. We have seen before that 

𝜐௣௛ =
ఠబ

௞బ
  

is the velocity of the carrier. It is called the phase velocity. Similarly, from Eq. (2.28), 
the speed with which the envelope moves are given by 

𝜐௚ =
୼ఠ

୼௞
                                                                                                                                   (2.29) 

 

 
Figure 2.10 Superposition of two monochromatic electromagnetic waves. The broken lines and 

solid lines show the field envelope and optical carrier, respectively. 

 
where 𝜐௚ is called the group velocity. Even if the number of monochromatic waves 

traveling together is more than two, an equation similar to Eq. (2.28) can be derived. 
In general, the speed of the envelope (group velocity) could be different from that of 
the carrier. However, in free space 
𝜐௚ = 𝜐௣௛ = 𝑐  

The above result can be proved as follows. In free space, the velocity of light is 
independent of frequency 
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ఠభ

௞భ
=

ఠమ

௞మ
= 𝑐 = 𝜐௣௛                                                                                                                 (2.30) 

Let  

𝜔ଵ = 𝜔଴ −
୼ఠ

ଶ
  ,          𝑘ଵ = 𝑘଴ −

୼௞

ଶ
                                                                                       (2.31) 

𝜔ଶ = 𝜔଴ +
୼ఠ

ଶ
  ,          𝑘ଶ = 𝑘଴ +

୼௞

ଶ
                                                                                       (2.32) 

From Eqs. (2.31) and (2.32), we obtain 

ఠమିఠభ

௞మି௞భ
=

୼ఠ

୼௞
= 𝜐௚                                                                                                                    (2.33) 

From Eq. (2.30), we have 

𝜔ଵ = 𝑐𝑘ଵ  

𝜔ଶ = 𝑐𝑘ଶ  

𝜔ଵ − 𝜔ଶ = 𝑐(𝑘ଵ − 𝑘ଶ)                                                                                                           (2.34) 

Using Eqs. (2.33) and (2.34), we obtain 

ఠభିఠమ

௞భି௞మ
= 𝑐 = 𝜐௚                                                                                                                      (2.35) 

In a dielectric medium, the velocity of light 𝜐௣௛ could be different at different 

frequencies. In general 

ఠభ

௞భ
≠

ఠభ

௞మ
                                                                                                                                   (2.36) 

In other words, the phase velocity 𝜐௣௛  is a function of frequency 

𝜐௣௛ = 𝜐௣௛(𝜔)                                                                                                                         (2.37) 

𝑘 =
ఠ

జ೛೓(ఠ)
= 𝑘(𝜔)                                                                                                                 (2.38) 

In the case of two sinusoidal waves, the group speed is given by Eq. (2.29) 

𝜐௚ =
୼ఠ

୼௞
                                                                                                                                   (2.39) 

In general, for an arbitrary cluster of waves, the group speed is defined as 
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𝜐௚ = lim
୼௞→଴

୼ఠ

୼௞
=

ୢఠ

ୢ௞
                                                                                                                 (2.40) 

Sometimes it is useful to define the inverse group speed 𝛽ଵ as 

𝛽ଵ =
ଵ

జ೒
=

ௗ௞

ௗఠ
                                                                                                                          (2.41) 

𝛽ଵ could depend on frequency. If 𝛽ଵ changes with frequency in a medium, it is called 
a dispersive medium. Optical fiber is an example of a dispersive medium, which will 
be discussed in detail in Chapter 2. If the refractive index changes with frequency, 
𝛽ଵ becomes frequency dependent. Since 

𝑘(𝜔) =
ఠ௡(ఠ)

௖
                                                                                                                         (2.42) 

from Eq. (2.41) it follows that 

𝛽ଵ(𝜔) =
௡(ఠ)

௖
+

ఠ

௖

ௗ௡(ఠ)

ௗఠ
                                                                                                          (2.43) 

Another example of a dispersive medium is a prism, in which the refractive index is 
different for different frequency components. Consider a white light incident on the 
prism, as shown in Fig. 2.11. Using Snell’s law for the air–glass interface on the left, 
we find 

𝜙ଶ(𝜔) = 𝑠𝑖𝑛ିଵ ቀ
௦௜௡థభ

௡మ(ఠ)
ቁ                                                                                                          (2.44) 

where 𝑛ଶ(𝜔) is the refractive index of the prism. Thus, different frequency 
components of a white light travel at different angles, as shown in Fig. 2.11. Because 
of the material dispersion of the prism, a white light is spread into a rainbow of 
colors. 
Next, let us consider the co-propagation of electromagnetic waves of different 
angular frequencies in a range [𝜔ଵ, 𝜔ଶ] with the mean angular frequency 𝜔଴ as 
shown in Fig. 2.12. The frequency components near the left edge travel at an inverse 
speed of 𝛽ଵ(𝜔ଵ). If the length of the medium is L, the frequency components 
corresponding to the left edge would arrive at L after a delay of 

𝑇ଵ =
𝐿

𝜐௚(𝜔ଵ)
= 𝛽ଵ(𝜔ଵ)𝐿 

Similarly, the frequency components corresponding to the right edge would arrive 
at L after a delay of 

𝑇ଶ = 𝛽ଵ(𝜔ଶ)𝐿 
The delay between the left-edge and the right-edge frequency components is 
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∆𝑇 = |𝑇ଵ − 𝑇ଶ| = |𝛽ଵ(𝜔ଵ) − 𝛽ଵ(𝜔ଶ)|                                                                                   (2.45) 
 

 
Figure 2.11 Decomposition of white light into its constituent colors. 

 

 
Figure 2.12 The spectrum of an electromagnetic wave. 

 

Differentiating Eq. (2.41), we obtain 
ௗ𝛽1

ௗ𝜔
=

ௗమ௞

ௗ𝜔మ ≡ 𝛽2                                                                                                                         (2.46) 

𝛽ଶ is called the group velocity dispersion parameter. When 𝛽ଶ > 0, the medium is 
said to exhibit a normal dispersion. In the normal-dispersion regime, low-frequency 
(red-shifted) components travel faster than high-frequency (blue-shifted) 
components. If 𝛽ଶ < 0, the opposite occurs and the medium is said to exhibit an 
anomalous dispersion. Any medium with 𝛽ଶ = 0 is non-dispersive. Since 
ௗ𝛽1

ௗ𝜔
= lim

Δ𝜔→0

𝛽1(𝜔1)−𝛽1(𝜔2)

𝜔1−𝜔2
= 𝛽2                                                                                                  (2.47) 

And 
 
𝛽ଵ(𝜔ଵ) − 𝛽ଵ(𝜔ଶ) ≃ 𝛽ଶΔ𝜔                                                                                                     (2.48) 
using Eq. (2.48) in Eq. (2.45), we obtain 
ΔT = L|𝛽ଶ|Δ𝜔                                                                                                                        (2.49) 
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In free space, 𝛽ଵ is independent of frequency, 𝛽ଶ = 0, and, therefore, the delay 
between left- and right-edge components is zero. This means that the pulse duration 
at the input (z = 0) and output (z = L) would be the same. However, in a dispersive 
medium such as optical fiber, the frequency components near 𝜔ଵ could arrive earlier 
(or later) than those near 𝜔ଶ, leading to pulse broadening. 

Example 2.4 
An optical signal of bandwidth 100 GHz is transmitted over a dispersive medium 
with 𝛽ଶ = 10 ps2/km. The delay between minimum and maximum frequency 
components is found to be 3.14 ps. Find the length of the medium. 
Solution: 
Δ𝜔 = 2𝜋100 𝐺𝑟𝑎𝑑 𝑠⁄ ,      Δ𝑇 = 3.14𝑝𝑠, 𝛽ଶ = 10𝑝 𝑠ଶ 𝑘𝑚⁄                                                  
(2.50) 
Substituting Eq. (2.50) in Eq. (2.49), we find L = 500 m. 

 
Figure 2.13 The x- and y-polarization components of a plane wave. The magnitude is |𝑎| =

ඥ𝑎௫
ଶ + 𝑎௬

ଶ and the angle is 𝜃 = tanିଵ൫𝑎௬ 𝑎௫⁄ ൯ 

 
2.3 Polarization of Light 
 
So far, we have assumed that the electric and magnetic fields of a plane wave are 
along the x-and y-directions, respectively. In general, an electric field can be in any 
direction in the x–y plane. This plane wave propagates in the z-direction. The electric 
field intensity can be written as 
𝑬 = 𝐴௫𝒙 + 𝐴௬𝒚                                                                                                                      (2.51) 

𝐴௫ = 𝑎௫𝑒𝑥𝑝[𝑖(𝜔𝑡 − 𝑘𝑧) + 𝑖𝜙௫]                                                                                            (2.52) 

𝐴௬ = 𝑎௬𝑒𝑥𝑝ൣ𝑖(𝜔𝑡 − 𝑘𝑧) + 𝑖𝜙௬൧                                                                                            (2.53) 

where 𝑎௫ and 𝑎௬ are amplitudes of the x- and y-polarization components, 

respectively, and 𝜙௫ and 𝜙௬ are the corresponding phases. Using Eqs. (2.52) and 

(2.53), Eq. (2.51) can be written as 



 

 
32 

𝐸 = 𝒂 𝑒𝑥𝑝[𝑖(𝜔𝑡 − 𝑘𝑧) + 𝑖𝜙௫]                                                                                               (2.54) 
𝒂 = 𝑎௫𝒙 + 𝑎௬𝑒𝑥𝑝(𝑖Δ𝜙)𝒚                                                                                                      (2.55) 

where Δ𝜙 = 𝜙௬ − 𝜙௫. Here, 𝒂 is the complex field envelope vector. If one of the 

polarization components vanishes (𝑎௬ = 0, for example), the light is said to be 

linearly polarized in the direction of the other polarization component (the x-
direction). If Δ𝜙 = 0 or 𝜋, the light wave is also linearly polarized. This is because 
the magnitude of 𝒂 in this case is 𝑎௫

ଶ + 𝑎௬
ଶ  and the direction of 𝒂 is determined by 

𝜃 = ± tanିଵ൫𝑎௬ 𝑎௫⁄ ൯ with respect to the x-axis, as shown in Fig. 2.13. The light 

wave is linearly polarized at an angle 𝜃 with respect to the x-axis. A plane wave of 
angular frequency 𝜔 is characterized completely by the complex field envelope 
vector 𝒂. It can also be written in the form of a column matrix, known as the Jones 
vector: 

𝑎 = ൤
𝑎௫

𝑎௬𝑒𝑥𝑝(𝑖∆∅)൨                                                                                                                 (2.56) 

The above form will be used for the description of polarization mode dispersion in 
optical fibers. 
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Chapter III 
Fiber Characteristic 

3.1. Introduction  
In its simplest form, an optical fiber consists of a central glass core surrounded by a 
cladding layer whose refractive index 𝑛௖ is slightly lower than the core index 𝑛ଵ. 
Such fibers are generally referred to as step-index fibers to distinguish them from 
graded-index fibers in which the refractive index of the core decreases gradually 
from center to core boundary. Figure 3.1 shows schematically the cross-section and 
refractive-index profile of a step-index fiber. Two parameters that characterize an 
optical fiber are the relative core–cladding index difference:  
 

∆=
௡భି௡೎

௡భ
                                                                                                                  (3.1) 

 
and the so-called V parameter defined as 
 

𝑉 = 𝑘଴𝑎ඥ(𝑛ଵ
ଶ − 𝑛௖

ଶ)                                                                                                       (3.2) 
 
Where 𝑘଴ = 2𝜋 𝜆⁄ , a is the core radius, and λ is the wavelength of light. 
The V parameter determines the number of modes supported by the fiber. Where it 
is shown that a step-index fiber supports a single-mode if V < 2.405. Optical fibers 
designed to satisfy this condition are 
 

 
Figure 3.1 Schematic illustration of the cross-section and the refractive-index profile  

of a step-index fiber. 
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called single-mode fibers. The main difference between the single-mode and 
multimode fiber is the core size. The core radius a is typically 25 μm for multimode 
fibers. However, single-mode fibers with ∆≈ 0.003 require a to be <5 μm. The 
numerical value of the outer radius b is less critical as long as it is large enough to 
confine the fiber modes entirely. A standard value of b = 62.5 μm is commonly used 
for both single-mode and multimode fibers. Since nonlinear effects are mostly 
studied using single-mode fibers, the term optical fiber in this text refers to single-
mode fibers (unless noted otherwise). 
3.2. Advantages of Optical Fiber 
There are several advantages of optical communication systems over electronic and 
microwave communication systems. The main advantages are summarized below. 
High Bandwidth: The information carrying capacity of a communication system is 
directly proportional to the carrier frequency of the transmitted signals. The optical 
carrier frequency is much greater than the radio waves and microwaves. Generally, 
optical fiber operates in the range of 1013–1015 Hz. This frequency band has higher 
transmission bandwidth than the microwave 
band, and the data rate ~1 Tb/s. Further increase in data rate can be achieved by 
danced WDM techniques. 
Low Transmission Loss: Due to the implementation of ultra-low loss fibers, 
dispersion shifted fiber and erbium doped silica fibers as optical amplifiers, one can 
design almost lossless transmission systems. The most modern optical 
communication systems have transmission loss of 0.002 dB/km. By using erbium 
doped silica fibers over a short length in the transmission path, one can achieve 
optical amplification with negligible distortion. This leads to the increase in repeater 
spacing >100 km. 
Dielectric Waveguide: Optical fibers are mainly produced from silica, which is 
electrical insulators. Since optical signals in fibers are free from electromagnetic 
interference and crosstalk, many fibers may be accommodated in single optical 
cable. Optical fibers are also suitable in explosive environments. 
Signal Security: The information security in optical communication is very high 
because the transmitted signal through the fibers does not radiate. The trapping of 
optical information from the fibers is practically impossible. 
Size and Weight: Optical fibers are developed with small diameter, and they are 
flexible, compact and lightweight. The fiber cables can be bent or twisted without 
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any damage of the individual fibers. Therefore, the storage, handling and installation 
of fiber cables are easy. 
3.3. Fiber Losses 
Signal attenuation or loss in optical fiber is caused by a number of processes like 
absorption, scattering, bending, etc. Signal loss or attenuation depends on the 
wavelength of light that propagates through the fiber. For a particular wavelength, if 
𝑃଴ is the transmitted optical power at the input of a fiber of length 𝐿 and 𝑃் is the 
received power at the other end of the fiber, then according to Beer’s law we get 
 
𝑃் = 𝑃଴𝑒𝑥𝑝(−𝛼𝐿)                                                                                                        (3.3) 
 
where the attenuation constant α is a measure of total fiber losses from all sources. 
It is customary to express α in units of dB/km using the relation 
 

𝛼ௗ஻ = −
ଵ଴

௅
𝑙𝑜𝑔 ቀ

௉೅

௉బ
ቁ = 4.343𝛼                                                                                     (3.4) 

 
where Eq. (3.4) was used to relate 𝛼ௗ஻ and 𝛼. 
As one may expect, fiber losses depend on the wavelength of light. Figure 3.2 shows 
the loss spectrum of a silica fiber made by the MCVD process. This fiber exhibits a 
minimum loss of about 0.2 dB/km near 1.55 μm. Losses are considerably higher at 
shorter wavelengths, reaching a level of a few dB/km in the visible region. 
 

 
Figure 3.2 Measured loss spectrum of a single-mode silica fiber. Dashed curve shows the 

contribution resulting from Rayleigh scattering. 

 
Note, however, that even a 10-dB/km loss corresponds to an attenuation constant of 
only α ≈ 2 × 10−5 cm−1, an incredibly low value compared to that of most other 
materials. Several factors contribute to the loss spectrum of Figure 3.2, with material 
absorption and Rayleigh scattering contributing dominantly. Silica glass has 
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electronic resonances in the ultraviolet region, and vibrational resonances in the far-
infrared region beyond 2 μm, but it absorbs little light in the wavelength region 
extending from 0.5 to 2 μm. However, even a relatively small number of impurities 
can lead to significant absorption in that wavelength window. From a practical point 
of view, the most important impurity affecting fiber loss is the OH ion, which has a 
fundamental vibrational absorption peak at ≈ 2.73 μm. The overtones of this OH-
absorption peak are responsible for the dominant peak seen in Figure 3.2 near 1.4 
μm and a smaller peak near 1.23 μm. Special precautions are taken during the fiber-
fabrication process to ensure an OH-ion level of less than one part in one hundred 
million. In state of- the-art fibers, the peak near 1.4 μm can be reduced to below the 
0.5-dB level. It virtually disappears in the so-called “dry” fibers. Such fibers with 
low losses in the entire 1.3–1.6 μm spectral region are useful for fiber-optic 
communications and were available commercially by the year 2000. 
Rayleigh scattering is a fundamental loss mechanism arising from density 
fluctuations frozen into the fused silica during manufacture. Resulting local 
fluctuations in the refractive index scatter light in all directions. The Rayleigh-
scattering loss varies as λ-4 and is dominant at short wavelengths. As this loss is 
intrinsic to the fiber, it sets the ultimate limit on fiber loss. The intrinsic loss level 
(shown by a dashed line in Figure 3.2) is estimated to be (dB/km) 
 
𝛼ோ = 𝐶ோ 𝜆ସ⁄                                                                                                                    (3.5) 
 
where the constant 𝐶ோ is in the range 0.7–0.9 dB/(km μm4) depending on the 
constituents of the fiber core. As 𝛼ோ is in the range of 0.12–0.15 dB/km near λ = 
1.55 μm, losses in silica fibers are dominated by Rayleigh scattering. In some 
glasses, 𝛼ோ can be reduced to a level near 0.05 dB/km. Such glasses may be useful 
for fabricating ultralow-loss fibers. Among other factors that may contribute to 
losses are bending of the fiber and scattering of light at the core–cladding interface. 
Modern fibers exhibit a loss of ≈ 0.2 dB/km near 1.55 μm. Total loss of fiber cables 
used in optical communication systems is slightly larger because of splice and 
cabling losses. 
 
3.4. Chromatic Dispersion 
When an electromagnetic wave interacts with the bound electrons of a dielectric, the 
medium response, in general, depends on the optical frequency ω. This property, 
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referred to as chromatic dispersion, manifests through the frequency dependence of 
the refractive index n(ω). On a fundamental level, the origin of chromatic dispersion 
is related to the characteristic resonance frequencies at which the medium absorbs 
the electromagnetic radiation through oscillations of bound electrons. Far from the 
medium resonances, the refractive index is well approximated by the Sellmeier 
equation 
 

𝑛ଶ(𝜔) = 1 + ∑
஻ೕఠೕ

మ

ఠೕ
మିఠమ

௠
௝ୀଵ                                                                                                  (3.6) 

 
where 𝜔௝ is the resonance frequency and 𝐵௝ is the strength of jth resonance. The sum 

in Eq. (3.6) extends over all material resonances that contribute to the frequency 
range of interest. In the case of optical fibers, the parameters 𝐵௝ and ωj are obtained 

experimentally by fitting the measured dispersion curves to Eq. (3.6) with m = 3 and 
they are dependant on the core constituents. For bulk-fused silica, these parameters 
are found to be 𝐵ଵ= 0.6961663, 𝐵ଶ = 0.4079426, 𝐵ଷ = 0.8974794, 𝜆ଵ = 0.0684043 
μm, 𝜆ଶ = 0.1162414 μm, and 𝜆ଷ = 9.896161 μm, where 𝜆௃ = 2𝜋𝑐 𝜔௝⁄  and c is the 

speed of light in a vacuum. Figure 3.3 displays how n varies with wavelength for 
fused silica. As seen there, n has a value of about 1.46 in the visible region, and this 
value decreases by 1% in the wavelength region near 1.5 μm. Fiber dispersion plays 
a critical role in the propagation of short optical pulses because different spectral 
components associated with the pulse travel at different speeds given by c/n(ω). 
Even when the nonlinear effects are not important, dispersion- induced pulse 
broadening can be detrimental for optical communication systems. In the nonlinear 
regime, the combination of dispersion and nonlinearity can result in a qualitatively 
different behavior. Mathematically, the effects of fiber dispersion are accounted for 
by expanding the mode-propagation 
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Figure 3.3 Variation of refractive index n and group index 𝑛௚ with wavelength for fused silica. 

 
constant β in a Taylor series about the frequency 𝜔଴ at which the pulse spectrum is 
centered: 
 

𝛽(𝜔) = 𝑛(𝜔)
ఠ

௖
= 𝛽଴ + 𝛽ଵ(𝜔 − 𝜔଴) +

ଵ

ଶ
𝛽ଶ(𝜔 − 𝜔଴)ଶ + ⋯                             (3.7) 

Where 

𝛽௠ = ቀ
ௗ೘ఉ

ௗఠ೘ቁ
ఠୀఠబ

  (𝑚 = 0, 1,3 … . . )                                                                  (3.8) 

 
The parameters 𝛽ଵ and 𝛽ଶ are related to the refractive index n(ω) and its derivatives 
through the relations 
 

𝛽ଵ =
ଵ

ఔ೒
=

௡೒

௖
=

ଵ

௖
ቀ𝑛 + 𝜔

ௗ௡

ௗఠ
ቁ                                                                                          (3.9) 

𝛽ଶ =
ଵ

௖
ቀ2

ௗ௡

ௗఠ
+ 𝜔

ௗమ௡

ௗఠమቁ                                                                                                      (3.10) 

 
where ng is the group index and 𝜈௚ is the group velocity. Figure 3.3 shows the group 

index 𝑛௚ changes with wavelength for fused silica. The group velocity can be found 

using 𝜈௚ = 𝑐/𝑛௚. Physically speaking, the envelope of an optical pulse moves at the 

group velocity, while the parameter 𝛽ଶ represents dispersion of the group velocity 
and is responsible for pulse broadening. This phenomenon is known as the group 
velocity dispersion (GVD), and 𝛽ଶ is the GVD parameter. The dispersion parameter 
D, defined as d𝛽ଵ/dλ, is also used in practice. It is related to 𝛽ଶ and n as 
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𝐷 =
ௗఉభ

ௗఒ
= −

ଶగ

ఒమ
𝛽ଶ = −

ఒௗమ௡

௖ௗఒమ
                                                                                           (3.11) 

 
Figure 3.4 shows how 𝛽ଶ and D vary with wavelength λ for fused silica using Eqs 
(3.6) and (3.10). The most notable feature is that both 𝛽ଶ and D vanish at a 
wavelength of about 1.27 μm and change sign for longer wavelengths. This 
wavelength is referred to as the zero-dispersion wavelength and is denoted as λD. 
However, the dispersive effects do not disappear completely at λ = λD. Pulse 
propagation near this wavelength requires the inclusion of the cubic term in Eq. 
(3.7). The coefficient 𝛽ଷ appearing in that term is called the third-order dispersion 
(TOD) parameter. Higher order dispersive effects can distort ultrashort optical 
pulses both in the linear and nonlinear regimes. Their inclusion is necessary for 
ultrashort optical pulses, or when the input wavelength λ approaches λD to within a 
few nanometers. The curves shown in Figures 3.3 and 3.4 are for bulk-fused silica. 
The dispersive behavior of actual glass fibers deviates from that shown in these 
figures for the following two reasons. First, the fiber core may have small amounts 
of dopants such as GeO2 and P2O5. Equation (3.6) in that case should be used with 
parameters appropriate to the number of doping levels. Second, because of dielectric 
waveguiding, the effective mode index is slightly lower than the material index n(ω) 
of the core, reduction itself being ω dependent. 
 

 
Figure 3.4 Variation of 𝛽ଶ, D, and 𝑑ଵଶ with the wavelength for fused silica. Both 𝛽ଶ and D 

vanish at the zero-dispersion wavelength occurring near 1.27 μm. 
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Figure 3.5 Measured variation of the dispersion parameter D with the wavelength  

for a single-mode fiber.  

 
This results in a waveguide contribution that must be added to the material 
contribution to obtain the total dispersion. Generally, the waveguide contribution to 
𝛽ଶ is relatively small except near the zero-dispersion wavelength λD where the two 
become comparable. The main effect of the waveguide contribution is to shift λD 
slightly toward longer wavelengths; λD ≈ 1.31 μm for standard fibers. Figure 3.5 
shows the measured total dispersion of a single-mode fiber. The quantity plotted is 
the dispersion parameter D related to 𝛽ଶ by the relationship given in Eq. (3.11). An 
interesting feature of the waveguide dispersion is that its contribution to D (or 𝛽ଶ) 
depends on fiber-design parameters such as core radius a and core–cladding index 
difference _. This feature can be used to shift the zero-dispersion wavelength λD in 
to the vicinity of 1.55 μm where the fiber loss is at a minimum. Such dispersion- 
shifted fibers have found applications in optical communication systems. They are 
available commercially and are known by trade names such as True Wave (OFS), 
LEAF (Corning), and TeraLight (Draka), depending on at what wavelength D 
becomes zero in the 1.5 μm spectral region. The fibers in which GVD is shifted to 
the wavelength region beyond 1.6 μm exhibit a large positive value of 𝛽ଶ. They are 
called dispersion compensating fibers (DCFs). The slope of the curve in Figure 3.5 
(called the dispersion slope) is related to the TOD parameter 𝛽ଷ. Fibers with reduced 
slope have been developed in recent years for wavelength-division-multiplexing 
(WDM) applications. It is possible to design dispersion-flattened optical fibers 
having low dispersion over a relatively large wavelength range of 1.3–1.6 μm. This 
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is achieved by using multiple cladding layers. Figure 3.6 shows the measured 
dispersion spectra for two such multiple-clad fibers having two (double-clad) and 
four (quadruple-clad) cladding layers around the core applications. For comparison, 
dispersion of a single-clad fiber is also shown by a dashed line. The quadruply clad 
fiber has low dispersion (|D| ∼ 1 ps/km-nm) over a wide wavelength range extending 
from 1.25 to 1.65 μm. Waveguide dispersion can also be used to make fibers for 
which D varies along the fiber length. An example is provided by dispersion-
decreasing fibers made by tapering the core diameter along the fiber length. 

 
Figure 3.6 Variation of dispersion parameter D with wavelengths for three kinds of fibers. 

Labels SC, DC, and QC stand for single-clad, double-clad, and quadruple-clad fibers, 
respectively. 

 
3.5. Nonlinear effects 
Nonlinear effects in optical fibers can manifest qualitatively different behaviors 
depending on the sign of the GVD parameter. For wavelengths such that λ < λD, the 
fiber is said to exhibit normal dispersion as 𝛽ଶ > 0 (see Figure 3.4). In the normal 
dispersion regime, high-frequency (blue-shifted) components of an optical pulse 
travel slower than low-frequency (red-shifted) components of the same pulse. By 
contrast, the opposite occurs in the anomalous-dispersion regime in which 𝛽ଶ < 0. 
As seen in Figure 3.4, silica fibers exhibit anomalous dispersion when the light 
wavelength exceeds the zero-dispersion wavelength (λ > 𝜆஽). The anomalous-
dispersion regime is of considerable interest for the study of nonlinear effects 
because it is in this regime that optical fibers support solitons through a balance 
between the dispersive and nonlinear effects. 
An important feature of chromatic dispersion is that pulses at different wavelengths 
propagate at different speeds inside a fiber because of a mismatch in their group 
velocities. This feature leads to a walk-off effect that plays an important role in the 
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description of the nonlinear phenomena involving two or more closely spaced 
optical pulses. More specifically, the nonlinear interaction between two optical 
pulses ceases to occur when the faster moving pulse completely walks through the 
slower moving pulse. This feature is governed by the walk-off parameter d12 defined 
as 
 
𝑑ଵଶ = 𝛽ଵ(𝜆ଵ) − 𝛽ଵ(𝜆ଶ) = 𝜈௚

ିଵ(𝜆ଵ) − 𝜈௚
ିଵ(𝜆ଶ)                                                              (3.12) 

 
where 𝜆ଵ and 𝜆ଶ are the center wavelengths of two pulses and 𝛽ଵ at these 
wavelengths is evaluated using Eq. (3.9). For pulses of width T0, one can define the 
walk-off length 𝐿ௐ by the relation 
 
𝐿ௐ = 𝑇଴ |𝑑ଵଶ|⁄                                                                                                                      (3.13) 
 
Figure 3.4 shows variation of 𝑑ଵଶ with 𝜆ଵfor fused silica using Eq. (3.12) with 𝜆ଶ =

0.8 µ𝑚. In the normal-dispersion regime (𝛽ଶ > 0), a longer-wavelength pulse travels 
faster, while the opposite occurs in the anomalous-dispersion region. For example, 
if a pulse at 𝜆ଵ = 1.3 μm copropagates with the pulse at 𝜆ଶ = 0.8µ𝑚, it will separate 
from the shorter-wavelength pulse at a rate of about 20 ps/m. This corresponds to a 
walk-off length 𝐿ௐ of only 50 cm for T0 = 10 ps. The group-velocity mismatch plays 
an important role for nonlinear effects involving cross-phase modulation. 
3.6. Polarization-Mode Dispersion 
Even a single-mode fiber is not truly single mode because it can support two 
degenerate modes that are polarized in two orthogonal directions. 
Under ideal conditions (perfect cylindrical symmetry and a stress-free fiber), a mode 
excited with its polarization in the x-direction would not couple to the mode with the 
orthogonal y-polarization state. In real fibers, small departures from cylindrical 
symmetry, occurring because of random variations in the core shape along the fiber 
length, result in a mixing of the two polarization states by breaking the mode 
degeneracy. The stress-induced anisotropy can also break this degeneracy. 
Mathematically, the mode-propagation constant β becomes slightly different for the 
modes polarized in the x- and y-directions. This property is referred to as modal 
birefringence. The strength of modal birefringence is defined by a dimensionless 
parameter 
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𝐵௠ =
หఉೣିఉ೤ห

௞బ
= ห𝑛௫ − 𝑛௬ห                                                                                     (3.14) 

 
where 𝑛௫ and 𝑛௬ are the modal refractive indices for the two orthogonally polarized 

states. For a given value of 𝐵௠, the two modes exchange their powers in a periodic 
fashion as they propagate inside the fiber with the period 
 

𝐿஻ =
ଶగ

หఉೣିఉ೤ห
=

ఒ

஻೘
                                                                                                    (3.15) 

 
The length LB is called the beat length. The axis along which the mode index is 
smaller is called the fast axis because the group velocity is larger for light 
propagating in that direction. For the same reason, the axis with the larger mode 
index is called the slow axis. In standard optical fibers, Bm is not constant along the 
fiber but changes randomly because of fluctuations in the core shape and anisotropic 
stress. As a result, light launched into the fiber with a fixed state of polarization 
changes its polarization in a random fashion. This change in polarization is typically 
harmless for continuous-wave (CW) light because most photodetectors do not 
respond to polarization changes of the incident light. It becomes an issue for optical 
communication systems when short pulses are transmitted over long lengths. If an 
input pulse excites both polarization components, the two components travel along 
the fiber at different speeds because of their different group velocities. The pulse 
becomes broader at the output end because group velocities change randomly in 
response to random changes in fiber birefringence (analogous to a random-walk 
problem). This phenomenon, referred to as polarization-mode dispersion (PMD), 
has been studied extensively because of its importance for long-haul lightwave 
systems. The extent of pulse broadening can be estimated from the time delay Δ𝑇 
occurring between the two polarization components during the propagation of an 
optical pulse. For a fiber of length L and constant birefringence 𝐵௠, ΔT is given by  
 

Δ𝑇 = ฬ
௅

ఔ೒ೣ
−

௅

ఔ೒೤
ฬ = 𝐿ห𝛽ଵ௫−𝛽ଵ௬ห = 𝐿(Δ𝛽ଵ)                                                              (3.16) 

where Δ𝛽ଵ is related to group-velocity mismatch. Eq. (3.16) cannot be used directly 
to estimate PMD for standard telecommunication fibers because of random changes 
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in birefringence occurring along the fiber. These changes tend to equalize the 
propagation times for the two polarization components. In fact, PMD is 
characterized by the root-mean-square (RMS) value of Δ𝑇 obtained after averaging 
over random perturbations. The variance of Δ𝑇 is found to be 
 
𝜎்

ଶ = 〈(Δ𝑇)ଶ〉 = 2(Δ𝛽ଵ𝑙௖)ଶ[exp(−𝐿 𝑙௖⁄ ) + 𝐿 𝑙௖ − 1⁄ ]                                              (3.17) 
 
where Δβ1 ≡ Δτ/L, Δτ represents the differential group delay along the principal 
states of polarization, and the correlation length 𝑙௖ is defined as the length over which 
two polarization components remain correlated; typical values of 𝑙௖ are of the order 
of 10 m. For L > 0.1 km, we can use 𝑙௖ ≪ L to find that 
 

𝜎் ≈ Δ𝛽ଵඥ2𝑙௖𝐿 ≡ 𝐷௉√𝐿                                                                                              (3.18) 

 
where Dp is the PMD parameter. For most fibers, values of Dp are in the range of 

0.1−1 ps/√𝑘𝑚. Because of its √𝐿 dependence, PMD-induced pulse broadening is 
relatively small compared with the GVD effects. However, PMD becomes a limiting 
factor for high-speed communication systems designed to operate over long 
distances near the zero-dispersion wavelength of the fiber. For some applications it 
is desirable that fibers transmit light without changing their state of polarization. 
Such fibers are called polarization-maintaining or polarization preserving fibers. A 
large amount of birefringence is introduced intentionally in these fibers through 
design modifications so that relatively small birefringence fluctuations are masked 
by it and do not affect the state of polarization significantly. One scheme breaks the 
cylindrical symmetry by making the fiber core elliptical in shape. The degree of 
birefringence achieved by this technique is typically ∼10−6. An alternative scheme 
makes use of stress-induced birefringence and permits Bm ∼ 10−4. In a widely 
adopted design, two rods of borosilicate glass are inserted on the opposite sides of 
the fiber core at the preform stage. The resulting birefringence depends on the 
location and the thickness of the stress-inducing elements. Figure 3.7 shows how Bm 
varies d for four shapes of stress-inducing elements located at a distance of five times 
the core radius. Values of Bm ≈ 2 × 10−4 can be realized for d in the range of 50–60 
μm. Such fibers are often named after the shape of the stress-inducing element, 
resulting in whimsical names such as “panda” and “bow-tie” fibers. The use of 
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polarization-maintaining fibers requires identification of the slow and fast axes 
before an optical signal can be launched into the fiber. Structural changes are often 
made to the fiber for this purpose. In one scheme, cladding is flattened in such a way 
that the flat surface is parallel to the slow axis of the fiber. Such a fiber is called the 
“D fiber” after the shape of the cladding and makes axes identification relatively 
easy. When the polarization direction of the linearly polarized light coincides with 
the slow or the fast axis, the state of polarization remains unchanged during 
propagation. In contrast, if the polarization direction makes an angle with these axes, 
polarization changes continuously along the fiber in a periodic manner with a period 
equal to the beat length [see Eq. (3.15)]. Figure 3.8 shows schematically the 
evolution of polarization over one beat length of a birefringent fiber. The state of 
polarization changes over one-half of the beat length from linear to elliptic, elliptic 
 

 
Figure 3.7 Variation of birefringence parameter Bm with thickness d of the stress-inducing 

element for four different polarization-maintaining fibers. Different shapes of the stress applying 

elements (shaded region) are shown in the inset. 
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Figure 3.8 Evolution of the state of polarization along a polarization-maintaining fiber when the 

input signal is linearly polarized at 45° from the slow axis. 

 
to circular, circular to elliptic, and then back to linear but is rotated by 90° from the 
incident linear polarization. The process is repeated over the remaining half of the 
beat length such that the initial state is recovered at z = LB and its multiples. The beat 
length is typically ∼1 m but can be as small as 1 cm for a strongly birefringent fiber 
with Bm ∼ 10−4. 
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Chapter IV 
Optical Fiber Modes 

 
4.1.Introduction  
An optical fiber is nominally a cylindrical dielectric waveguide that confines and 
guides light waves along its axis. Except for certain specialty fibers, basically all 
fibers used for telecommunication purposes have the same physical structure. The 
variations in the material and the size of this structure dictate how a light signal is 
transmitted along different types of fiber and also influence how the fiber responds 
to environmental perturbations, such as stress, bending, and temperature variations. 
This chapter describes various fiber structures, physical characteristics, operational 
properties, and applications. 
 
4.2. Light Propagation in Fibers 
Figure 4.1 shows the end-face cross section and a longitudinal cross section of a 
standard optical fiber, which consists of a cylindrical glass core surrounded by a 
glass cladding. The core has a refractive index 𝑛ଵ, and the cladding has a refractive 
index 𝑛ଶ. Surrounding these two layers is a polymer buffer coating that protects the 
fiber from mechanical and environmental effects. Traditionally the core radius is 
designated by the letter a. In almost all cases, for telecommunication fibers the core 
and cladding are made of silica glass (SiO2).  
 

 
Figure 4.1. End-face cross section and a longitudinal cross 

section of a standard optical fiber. 
 
The refractive index of pure silica varies with wavelength, ranging from 1.453 at 
850 nm to 1.445 at 1550 nm. By adding certain impurities such as germanium or 
boron to the silica during the fiber manufacturing process, the index can be changed 
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slightly, usually as an increase in the core index. This is done so that the refractive 
index 𝑛ଶ of the cladding is slightly smaller than the index of the core (that is, 𝑛ଶ < 
𝑛ଵ), which is the condition required for light traveling in the core to be totally 
internally reflected at the boundary with the cladding. The difference in the core and 
cladding indices also determines how light signals behave as they travel along a 
fiber. Typically, the index differences range from 0.2 to 3.0 percent depending on 
the desired behavior of the resulting fiber. 
To get an understanding of how light travels along a fiber, let us first examine the 
case when the core diameter is much larger than the wavelength of the light. For 
such a case we can consider a simple geometric optics approach using the concept 
of light rays. Figure 4.2 shows a light ray entering the fiber core from a medium of 
refractive index n, which is less than the index 𝑛ଵ of the core. The ray meets the core 
end face at an angle 𝜃଴ with respect to the fiber axis and is refracted into the core. 
Inside the core the ray strikes the core-cladding interface at a normal angle 𝜙. If the 
light ray strikes this interface at such an angle that it is totally internally reflected, 
then the ray follows a zigzag path along the fiber core.  
 

 

 
Figure 4.2. Ray optics representation of the propagation 

mechanism in an ideal step-index optical waveguide. 
 
Now suppose that the angle 𝜃଴ is the largest entrance angle for which total internal 
reflection can occur at the core-cladding interface. Then rays outside of the 
acceptance cone shown in Fig. 4.2, such as the ray given by the dashed line, will 
refract out of the core and be lost in the cladding. This condition defines a critical 
angle 𝜙௖, which is the smallest angle 𝜙  that supports total internal reflection at the 
core-cladding interface. 
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4.2.1. Critical Angle  
Referring to Fig. 4.2, from Snell’s law the minimum angle 𝜙 = 𝜙௠௜௡ that supports 
total internal reflection is given by 
 
𝜙௖ = 𝜙௠௜௡ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑛ଶ 𝑛ଵ⁄ )                                                                             (4.1) 
 
Rays striking the core-cladding interface at angles less than 𝜙௠௜௡ will refract out of 
the core and be lost in the cladding. Now suppose the medium outside of the fiber is 
air for which n = 1.00. By applying Snell’s law to the air-fiber interface boundary, 
the condition for the critical angle can be related to the maximum entrance angle 
𝜃଴,௠௔௫ through the relationship 

 

sin 𝜃଴,௠௔௫ = 𝑛ଵ sin 𝜃௖ = (𝑛ଵ
ଶ−𝑛ଶ

ଶ)ଵ ଶ⁄                                                                      (4.2) 

 
Where 𝜃௖ = 𝜋

2ൗ − 𝜙௖. Thus, those rays having entrance angles 𝜃଴ less than 𝜃଴,௠௔௫ 

will be totally internally reflected at the core-cladding interface. 
Example 
1. Suppose the core index 𝑛ଵ = 1.480 and the cladding index 𝑛ଶ =1.465. Then the 
critical angle is 𝜙௖ =arcsin (1.465/1.480) =82°, so that 𝜃௖ = 𝜋

2ൗ − 𝜙௖ =8°. 

2. With this critical angle, the maximum entrance angle is 
𝜃଴,௠௔௫ = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑛ଵ𝑠𝑖𝑛𝜃௖) = 𝑎𝑟𝑐𝑠𝑖𝑛(1.480 𝑠𝑖𝑛8ఖ) = 11.9° 

4.2.2. Optical Fiber Modes 
Although it is not directly obvious from the ray picture shown in Fig. 4.2, only a 
finite set of rays at certain discrete angles greater than or equal to the critical angle 
𝜙௖ is capable of propagating along a fiber. These angles are related to a set of 
electromagnetic wave patterns or field distributions called modes that can propagate 
along a fiber. When the fiber core diameter is on the order of 8 to 10 μm, which is 
only a few times the value of the wavelength, then only the one single fundamental 
ray that travels straight along the axis is allowed to propagate in a fiber. Such a fiber 
is referred to as a single-mode fiber. The operational characteristics of single-mode 
fibers cannot be explained by a ray picture, but instead need to be analyzed in terms 
of the fundamental mode by using the electromagnetic wave theory. Fibers with 
larger core diameters (e.g., greater than or equal to 50 μm) support many propagating 
rays or modes and are known as multimode fibers. A number of performance 
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characteristics of multimode fibers can be explained by ray theory whereas other 
attributes (such as the optical coupling concept) need to be described by wave theory.  
Figure 4.3 shows the field patterns of the three lowest-order transverse electric (TE) 
modes as seen in a cross-sectional view of an optical fiber. They are the TE0, TE1, 
and TE2 modes and illustrate three of many possible power distribution patterns in 
the fiber core. The subscript refers to the order of the mode, which is equal to the 
number of zero crossings within the guide. In single-mode fibers only the lowest-
order or fundamental mode (TE0) will be guided along the fiber core. Its 1/e2 width 
is called the mode field diameter.  
As the plots in Fig. 4.3 show, the power distributions are not confined completely to 
the core, but instead extend partially into the cladding. The fields vary harmonically 
within the core guiding region of index 𝑛ଵ and decay exponentially outside of this 
region (in the cladding). For low-order modes the fields are concentrated tightly near 
the axis of the fiber with little penetration into the cladding. On the other hand, for 
higher-order modes the fields are distributed more toward the edges of the core and 
penetrate farther into the cladding region.  

 
Figure 4.3. Electric field patterns of the three lowest-order guided modes as 

seen in a cross-sectional view of an optical fiber. 
 
4.3. Variations of Fiber Types 
Variations in the material composition of the core and the cladding give rise to the 
two basic fiber types shown in Fig. 4.4a. In the first case, the refractive index of the 
core is uniform throughout and undergoes an abrupt change (or step) at the cladding 
boundary. This is called a step-index fiber. In the second case, the core refractive 
index varies as a function of the radial distance from the center of the fiber. This 
defines a graded-index fiber. Figure 4.4b shows two of many different possible 
configurations. 
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Table 4.1 lists typical core, cladding, and buffer coating sizes of optical fibers for 
use in telecommunications, in a metropolitan-area network (MAN), or in a local-
area network (LAN). The outer diameter of the buffer coating can be either 250 or 
500 μm. Single-mode fibers are used for long-distance communication and for 
transmissions at very high data rates. The larger-core multimode fibers typically are 
used for local-area network applications in a campus environment, particularly for 
gigabit or 10-Gbit rate Ethernet links, which are known popularly as GigE and 
10GigE, respectively. Here the word campus refers to any group of buildings that 
are within reasonable walking distance of one another. 
 

 
Figure 4.4. Variations in the material composition of the core and cladding yield different fiber 

types. (a) Simple profiles define step- and graded-index fibers; (b) complex cladding-index 
profiles tailor the signal dispersion characteristics of a fiber. 
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The critical angle also defines a parameter called the numerical aperture (NA), 
which is used to describe the light acceptance or gathering capability of fibers that 
have a core size much larger than a wavelength. This parameter defines the size of 
the acceptance cone shown in Fig. 4.2. The numerical aperture is a dimensionless 
quantity which is less than unity, with values ranging from 0.14 to 0.50. 
4.3.1. Numerical Aperture  
The critical angle condition on the entrance angle defines the numerical aperture 
(NA) of a step-index fiber. This is given by 
 

𝑁𝐴 = 𝑛 sin 𝜃଴,௠௔௫ = 𝑛ଵ sin 𝜃௖ = (𝑛ଵ
ଶ−𝑛ଶ

ଶ)ଵ ଶ⁄ ≈ 𝑛ଵ√2 △                                    (4.3) 

 
where the parameter △ is called the core-cladding index difference or simply the 
index difference. It is defined through the equation 𝑛ଶ = 𝑛ଵ(1 −△). Typical values 
of △ range from 1 to 3 percent for multimode fibers and from 0.2 to 1.0 percent for 
single-mode fibers. Thus, since △ is much less than 1, the approximation on the 
right-hand side of the above equation is valid. Since the numerical aperture is related 
to the maximum acceptance angle, it is used commonly to describe the light 
acceptance or gathering capability of a multimode fiber and to calculate the source-
to-fiber optical power coupling efficiencies. 
Example A multimode step-index fiber has a core index 𝑛ଵ=1.480 and an index 

difference △= 0.01. The numerical aperture for this fiber is 𝑁𝐴 = 1.480√0.02 
=0.21. 
4.4. Single-Mode Fibers 
An important parameter for single-mode fibers is the cutoff wavelength. This is 
designated by 𝜆௖௨௧௢௙௙ and specifies the smallest wavelength for which all fiber 

modes except the fundamental mode are cut off; that is, the fiber transmits light in a 
single mode only for those wavelengths that are greater than 𝜆௖௨௧௢௙௙. The fiber can 

support more than one mode if the wavelength of the light is less than the cutoff. 
Thus, if a fiber is single-mode at 1310 nm, it is also single-mode at 1550 nm, but not 
necessarily at 850 nm.  
When a fiber is fabricated for single-mode use, the cutoff wavelength usually is 
chosen to be much less than the desired operating wavelength. For example, a fiber 
for single-mode use at 1310 nm may have a cutoff wavelength of 1275 nm. 
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4.4.1. Cutoff Wavelength  
For a fiber to start supporting only a single mode at a wavelength 𝜆௖௨௧௢௙௙, the 

following condition (derived from solutions to Maxwell’s equations for a circular 
waveguide) needs to be satisfied: 

𝜆௖௨௧௢௙௙ =
ଶగ௔

ଶ.ସ଴ହ
(𝑛ଵ

ଶ−𝑛ଶ
ଶ)ଵ ଶ⁄                                                                                      (4.4) 

where a is the radius of the fiber core, 𝑛ଵ is the core index, and 𝑛ଶ is the cladding 
index. 
Example Suppose we have a fiber with a = 4.2 μm, 𝑛ଵ = 1.480, and 𝑛ଶ =

𝑛ଵ(1 − 0.0034) = 1.475. Its cutoff wavelength then is 
 

𝜆௖௨௧௢௙௙ =
2𝜋(4.2µ𝑚)

2.405
(1.480ଶ−1.475ଶ)ଵ ଶ⁄ = 1334𝑛𝑚 

4.5. Optical Fiber Attenuation 
Light traveling in a fiber loses power over distance, mainly because of absorption 
and scattering mechanisms in the fiber. The fiber loss is referred to as signal 
attenuation or simply attenuation. Attenuation is an important property of an optical 
fiber because, together with signal distortion mechanisms, it determines the 
maximum transmission distance possible between a transmitter and a receiver (or an 
amplifier) before the signal power needs to be boosted to an appropriate level above 
the signal noise for high-fidelity reception. The degree of the attenuation depends on 
the wavelength of the light and on the fiber material. Figure 4.5 shows a typical 
attenuation versus wavelength curve for a silica fiber. The loss of power is measured 
in decibels, and the loss within a cable is described in terms of decibels per kilometer 
(dB/km).  
Example  
Suppose a fiber has an attenuation of 0.4 dB/km at a wavelength of 1310 nm. Then 
after it travels 50 km, the optical power loss in the fiber is 20 dB (a factor of 100). 
Figure 4.5 also shows that early optical fibers had a large attenuation spike between 
900 and 1200 nm due to the fourth-order absorption peak from water molecules. 
Another spike from the third-order water absorption occurs between 1350 and 1480 
nm for commonly fabricated fibers. Because of such absorption peaks, three 
transmission windows were defined initially. The first window ranges from 800 to 
900 nm, the second window is centered at 1310 nm, and the third window ranges 
from 1480 to 1600 nm. Since the attenuation of low-waterpeak fibers makes the 
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designation of these windows obsolete, the concept of operational spectral bands 
arose for the 1260- to 1675-nm region. Figure 4.6 shows the attenuation as a function 
of wavelength for a low-water-peak fiber in the region covered by the six operational 
bands. 
 

 
Figure 4.5. A typical attenuation versus wavelength curve for a silica 

fiber. Early fibers had a high loss spike around 1100 nm. Full-spectrum 
(low-water-content) fibers allow transmission in all spectral bands. 

 

 
Figure 4.6. Attenuation versus wavelength for a low-water-peak fiber in 

the six operational spectral bands. 
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In addition to the intrinsic absorption and scattering loss mechanisms in a fiber, light 
power can be lost as a result of fiber bending. Fibers can be subject to two types of 
bends: (1) macroscopic bends that have radii which are large compared with the 
fiber diameter, for example, those that occur when a fiber cable turns a corner, and 
(2) random microscopic bends of the fiber axis that can arise when fibers are 
incorporated into cables. Since the microscopic bending loss is determined in the 
manufacturing process, the user has little control over the degree of loss resulting 
from them. In general cable fabrication processes keep these values to a very low 
value, which is included in published cable loss specifications. For slight bends, the 
excess optical power loss due to macroscopic bending is extremely small and is 
essentially unobservable. As the radius of curvature decreases, the loss increases 
exponentially until at a certain critical bend radius the curvature loss becomes 
observable. If the bend radius is made a bit smaller once this threshold has been 
reached, the losses suddenly become extremely large. Bending losses depend on 
wavelength and are measured by winding several loops of fiber on a rod of a specific 
diameter. Table 4.2 gives typical bending loss values when three loops of a standard 
9-μm core-diameter single-mode fiber are wound on rods with radii of 1.15 and 1.80 
cm. Note the large difference in losses between operation at 1310 and 1550 nm. As 
a rule of thumb, it is best not to make the bend radius of such a fiber be less than 2.5 
cm. Since often fibers need to be bent into very tight loops within component 
packages, special fibers that are immune to bending losses have been developed for 
such applications. 
4.6. Fiber Information Capacity 
The information-carrying capacity of the fiber is limited by various distortion 
mechanisms in the fiber, such as signal dispersion factors and nonlinear effects. The 
three main dispersion categories are modal, chromatic, and polarization mode 
dispersions. These distortion mechanisms cause optical signal pulses to broaden as 



 

 
56 

they travel along a fiber. As Fig. 4.7 shows, if optical pulses travel sufficiently far 
in a fiber, they will eventually overlap with neighboring pulses, thereby creating 
errors in the output since they become indistinguishable to the receiver. Nonlinear 
effects occur when there are high power densities (optical power per cross-sectional 
area) in a fiber. Their impact on signal fidelity includes shifting of power between 
wavelength channels, appearances of spurious signals at other wavelengths, and 
decreases in signal strength. Modal dispersion arises from the different path lengths 
associated with various modes (as represented by light rays at different angles). It 
appears only in multimode fibers, since in a single-mode fiber there is only one 
mode. By looking at Fig. 4.8 it can be deduced that rays bouncing off the core-
cladding interface follow a longer path compared to the fundamental ray that travels 
straight down the fiber axis. For example, since ray 2 makes a steeper angle than ray 
1, ray 2 has a longer path length from the beginning to the end of a fiber. If all the 
rays are launched into a fiber at the same time in a given light pulse, then they will 
arrive at the fiber end at slightly different times. This causes the pulse to spread out 
and is the basis of modal dispersion. 

 
Figure 4.7. Broadening and attenuation of two adjacent pulses  

as they travel along a fiber. 
 

 
Figure 4.8. Rays that have steeper angles have 

longer path lengths. 
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ray 2 has a longer path length from the beginning to the end of a fiber. If all the rays 
are launched into a fiber at the same time in a given light pulse, then they will arrive 
at the fiber end at slightly different times. This causes the pulse to spread out and is 
the basis of modal dispersion. In a graded-index fiber, the index of refraction is lower 
near the core-cladding interface than at the center of the core. Therefore, in such a 
fiber the rays that strike this interface at a steeper angle will travel slightly faster as 
they approach the cladding than those rays arriving at a smaller angle. For example, 
this means that the light power in ray 2 shown in Fig. 4.8 will travel faster than that 
in ray 1. Thereby the various rays tend to keep up with one another to some degree. 
Consequently, the graded-index fiber exhibits less pulse spreading than a step-index 
fiber where all rays travel at the same speed. The index of refraction of silica varies 
with wavelength; for example, it ranges from 1.453 at 850 nm to 1.445 at 1550 nm. 
In addition, a light pulse from an optical source contains a certain slice of wavelength 
spectrum. For example, a laser diode source may emit pulses that have a 1-nm 
spectral width. Consequently, different wavelengths within an optical pulse travel at 
slightly different speeds through the fiber (s=c/n). Therefore, each wavelength will 
arrive at the fiber end at a slightly different time, which leads to pulse spreading. 
This factor is called chromatic dispersion, which often is referred to simply as 
dispersion. It is a fixed quantity at a specific wavelength and is measured in units of 
picoseconds per kilometer of fiber per nanometer of optical source spectral width, 
abbreviated as 𝑝𝑠/(𝑘𝑚. 𝑛𝑚). For example, a single-mode fiber might have a 
chromatic dispersion value of 𝐷஼஽ = 2𝑝𝑠/(𝑘𝑚. 𝑛𝑚) at 1550 nm. Figure 4.9 shows 
the chromatic dispersion as a function of wavelength for several different fiber types, 
which are described in Sec. 4.8. Polarization mode dispersion (PMD) results from 
the fact that light-signal energy at a given wavelength in a single-mode fiber actually 
occupies two orthogonal polarization states or modes. Figure 4.10 shows this 
condition. At the start of the fiber the two polarization states are aligned. However, 
fiber material is not perfectly uniform throughout its length. In particular, the 
refractive index is not perfectly uniform across any given cross-sectional area. This 
condition is known as the birefringence of the material. Consequently, each 
polarization mode will encounter a slightly different refractive index, so that each 
will travel at a slightly different velocity and the polarization orientation will rotate 
with distance. The resulting difference in propagation times between the two 
orthogonal polarization modes will result in pulse spreading. This is the basis of 
polarization mode dispersion. PMD is not a fixed quantity but fluctuates  
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Figure 4.9. Chromatic dispersion as a function of wavelength in various 

spectral bands for several different fiber types. 

 
Figure 4.10. Variation in the polarization states of an optical pulse as it 
passes through a fiber that has varying birefringence along its length. 

 
with time due to factors such as temperature variations and stress changes on the 
fiber. It varies as the square root of distance and thus is specified as a mean value in 

units of 𝑝𝑠 √𝑘𝑚⁄ . A typical value is 𝐷௉ெ஽ = 0.05 𝑝𝑠 √𝑘𝑚⁄ . 
4.6.1. Dispersion Calculation  
If 𝑡௠௢ௗ, 𝑡஼஽, and 𝑡௉ெ஽are the modal, chromatic, and polarization mode dispersion 
times, respectively, then the total dispersion 𝑡் can be calculated by the relationship 
 

𝑡் = ඥ(𝑡௠௢ௗ)ଶ + (𝑡஼஽)ଶ + (𝑡௉ெ஽)ଶ                                                                      (4.5) 
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Note that 𝑡௠௢ௗ = 0 for single-mode fibers. As a rule of thumb, the information 
carrying capacity over a certain length of fiber then is determined by specifying that 
the pulse spreading not be more than 10 percent of the pulse width at a designated 
data rate. 
Example Consider a single-mode fiber for which 𝐷஼஽ = 2 𝑝𝑠 (𝑘𝑚. 𝑛𝑚)⁄  and 

𝐷௉ெ஽ = 0.1 𝑝𝑠 √𝑘𝑚⁄  . If a transmission link has a length L = 500 km and uses a 
laser source with a spectral emission width of △ 𝜆 = 0.01 𝑛𝑚, then we have 𝑡௠௢ௗ =

0, 𝑡஼஽ = 𝐷஼஽ × 𝐿 ×△ 𝜆 = 10𝑝𝑠t, and 𝑡௉ெ஽ = 𝐷௉ெ஽ × √𝐿 = 2.24 𝑝𝑠. Thus 

𝑡் = ඥ(10𝑝𝑠)ଶ + (2.24𝑝𝑠)ଶ = 10.2 𝑝𝑠 
If 𝑡் can be no more than 10 percent of a pulse width, then the maximum data rate 
𝑅௠௔௫ that can be sent over this 500-km link is 𝑅௠௔௫ = 0.1 𝑡் = 9.8𝐺𝑏𝑝𝑠⁄  (gigabits 
per second). 
4.7. Optical Fiber Standards 
The International Telecommunications Union (ITU-T) and the Telecommunications 
Industry Association (TIA/EIA) are the main organizations that have published 
standards for both multimode and single-mode optical fibers used in 
telecommunications. The recommended bounds on fiber parameters (e.g., 
attenuation, cutoff wavelength, and chromatic dispersion) designated in these 
standards ensure the users of product capability and consistency. In addition, the 
standards allow fiber manufacturers to have a reasonable degree of flexibility to 
improve products and develop new ones. Multimode fibers are used widely in LAN 
environments, storage area networks, and central-office connections, where the 
distance between buildings is typically 2 km or less. The two principal multimode 
fiber types for these applications have either 50- or 62.5-μm core diameters, and both 
have 125-μm cladding diameters. To meet the demands for short-reach low-cost 
transmission of high-speed Ethernet signals, a 50-μm multimode fiber is available 
for 10-Gbps operation at 850 nm over distances up to 300 m. Table 4.3 shows the 
operating ranges of various multimode fibers for applications up to 10GigE. The 
standards document TIA/EIA-568 lists the specifications for 10GigE fiber. The ITU-
T recommendation G.651 describes other multimode fiber specifications for LAN 
applications using 850-nm optical sources. The ITU-T has published a series of 
recommendations for single-mode fibers. The characteristics of these fibers are 
given in the following listing. They are summarized in Table 4.4. 
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ITU-T G.652. This recommendation deals with the single-mode fiber that was 
installed widely in telecommunication networks in the 1990s. It has a Ge-doped 
silica core which has a diameter between 5 and 8 μm. Since early applications used 
1310-nm laser sources, this fiber was optimized to have a zero-dispersion value at 
1310 nm. Thus, it is referred to as a 1310-nm optimized fiber. With the trend toward 
operation in the lower-loss 1550-nm spectral region, the installation of this fiber has 
decreased dramatically. However, the huge base of G.652 fiber that is installed 
worldwide will still be in service for many years. If network operators want to use 
installed G.652 fiber at 1550 nm, complex dispersion compensation techniques are 
needed, as described in Chap. 15.  
ITU-T G.652.C. Low-water-peak fiber for CWDM applications is created by 
reducing the water ion concentration in order to eliminate the attenuation spike in 
the 1360- to 1460-nm E-band. The fibers have core diameters ranging from 8.6 to 
9.5 μm and an attenuation of less than 0.4 dB/km. The main use of this fiber is for 
low-cost short-reach CWDM (coarse WDM) applications in the E-band. In CWDM 
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the wavelength channels are sufficiently spaced that minimum wavelength stability 
control is needed for the optical sources, as described in Chap. 13.   
ITU-T G.653. Dispersion-shifted fiber (DSF) was developed for use with  1550-nm 
lasers. In this fiber type the zero-dispersion point is shifted to  1550 nm where the 
fiber attenuation is about one-half that at 1310 nm.  Although this fiber allows a high-
speed data stream of a single-wavelength  channel to maintain its fidelity over long 
distances, it presents dispersion  related  problems in DWDM applications where 
many wavelengths are packed  into one or more of the operational bands. As a result, 
this fiber type became obsolete with the introduction of G.655 NZDSF. 
 ITU-T G.654. This specification deals with cutoff-wavelength-shifted fiber  that is 
designed for long-distance high-power signal transmission. Since it has  a high cutoff 
wavelength of 1500 nm, this fiber is restricted to operation at  1550 nm. It typically 
is used only in submarine applications. 
 ITU-T G.655. Nonzero dispersion-shifted fiber (NZDSF) was introduced in  the mid-
1990s for WDM applications. Its principal characteristic is that it has a nonzero 
dispersion value over the entire C-band, which is the spectral  operating region for 
erbium-doped optical fiber amplifiers (see Chap. 11).  This is in contrast to G.653 
fibers in which the dispersion varies from  negative values through zero to positive 
values in this spectral range.  
ITU-T G.655b. Advanced nonzero dispersion-shifted fiber (A-NZDSF) was  
introduced in October 2000 to extend WDM applications into the S-band. Its  
principal characteristic is that it has a nonzero dispersion value over the  entire S-
band and the C-band. This is in contrast to G.655 fibers in which the  dispersion 
varies from negative values through zero to positive values in the S-band. 
4.8. Specialty Fibers 
Whereas telecommunication fibers, such as those described above, are designed to 
transmit light over long distances with minimal change in the signal, specialty fibers 
are used to manipulate the light signal. Specialty fibers interact with light and are 
custom-designed for specific applications such as optical signal amplification, 
wavelength selection, wavelength conversion, and sensing of physical parameters. 
A number of both passive and active optical devices use specialty fibers to direct, 
modify, or strengthen an optical signal as it travels through the device. Among these 
optical devices are light transmitters, optical signal modulators, optical receivers, 
wavelength multiplexers, couplers, splitters, optical amplifiers, optical switches, 



 

 
62 

wavelength add/drop modules, and light attenuators. Table 4.5 gives a summary of 
some specialty fibers and their applications. 
4.8.1. Erbium-doped fiber 
Erbium-doped optical fibers have small amounts of erbium ions added to the silica 
material and are used as a basic building block for optical fiber amplifiers. A length 
of Er-doped fiber ranging from 10 to 30m is used as a gain medium for amplifying 
optical signals in the C-band (1530 to 1560 nm). There are many variations on the 
doping level, cutoff wavelength, mode field diameter, numerical aperture, and 
cladding diameter for these fibers. 

 
 

 
 
Higher erbium concentrations allow the use of shorter fiber lengths, smaller 
claddings are useful for compact packages, and a higher numerical aperture allows 
for the fiber to be coiled tighter in small packages. Table 4.6 lists some generic 
parameter values of an erbium-doped fiber for use in the C-band. 
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4.8.2. Photosensitive fiber. A photosensitive fiber is designed so that its refractive 
index changes when it is exposed to ultraviolet light. This sensitivity may be 
provided by doping the fiber material with germanium and boron ions. The main 
application is to create a fiber Bragg grating, which is a periodic variation of the 
refractive index along the fiber axis. Applications of fiber Bragg gratings include 
light-coupling mechanisms for pump lasers used in optical amplifiers, wavelength 
add/drop modules, optical filters, and chromatic dispersion compensation modules. 
Bend-insensitive fiber. A bend-insensitive fiber has a moderately higher numerical 
aperture (NA) than that in a standard single-mode telecommunication fiber. The 
numerical aperture can be varied to adjust the mode field diameter. Increasing the 
NA reduces the sensitivity of the fiber to bending loss by confining optical power 
more tightly within the core than in conventional single-mode fibers. Bend-
insensitive fibers are available commercially in a range of core diameters to provide 
optimum performance at specific operating wavelengths, such as 820, 1310, or 1550 
nm. These fibers are offered with either an 80-μm or a 125-μm cladding diameter as 
standard products. The 80-μm reduced-cladding fiber results in a much smaller 
volume compared with a 125-μm cladding diameter when a fiber length is coiled up 
within a device package. Whereas Table 4.2 shows there is a high bending loss for 
tightly wound conventional single-mode fibers, the induced attenuation at the 
specified operating wavelength due to 100 turns of bend-insensitive fiber on a 10-
mm-radius mandrel is less than 0.5 dB. 
Attenuating fiber. These fibers have a uniform attenuation in the 1250- to 1620- 
nm band. This makes an attenuating fiber useful for WDM applications to lower the 
power level at the input of receivers or at the output of an EDFA. The fibers are 
offered commercially with attenuation levels available from 0.4 dB/cm to 
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Figure 4.11. Cross-sectional geometry of 

four different polarization-maintaining 
fibers. 

 
greater than 15 dB/cm. Fibers with an attenuation of 15 dB/cm (a loss factor of 32 
within 1 cm) may be used to terminate the end of a fiber optic link so that there are 
no return reflections, or as a high-level plug-type attenuator. 
Polarization-preserving fiber. In contrast to standard optical fibers in which the 
state of polarization fluctuates as a light signal propagates through the fiber, 
polarization-preserving fibers have a special core design that maintains the 
polarization. Applications of these fibers include light signal modulators fabricated 
from lithium niobate, optical amplifiers for polarization multiplexing, light-coupling 
fibers for pump lasers, and polarization-mode dispersion compensators. Figure 4.11 
illustrates the cross-sectional geometry of four different polarization-maintaining 
fibers. The light circles represent the cladding, and the dark areas are the core 
configurations. The goal in each design is to introduce a deliberate birefringence into 
the core so that the two polarization modes become decoupled within a very short 
distance, which leads to preservation of the individual polarization states. 
High-index fiber. These fiber types have a higher core refractive index, which 
results in a larger numerical aperture. Consequently, since a higher NA enables 
optical power to be coupled more efficiently into a core, a short (nominally 1-m) 
length of such a fiber may be attached directly to an optical source. Such a fiber 
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section is referred to as a pigtail or a flylead. The fibers can be designed specifically 
for short-wavelength or long-wavelength optical sources. In addition, they have 
applications in fused-fiber couplers and in wavelength division multiplexing. 
 

 
Figure 4.12. End-face patterns of two possible 

holey fiber structures. 
Holey fiber. A holey or photonic crystal fiber typically consists of a silica material 
which contains numerous air-filled microscopic holes. Figure 4.12 shows the end-
face patterns of two possible holey fiber structures. The tubular holes run along the 
entire length of the fiber parallel to the fiber axis. The size, position, and number of 
holes provide the fiber with specific waveguide properties. This technology is under 
development. Potential applications of holey fibers in telecommunications include 
dispersion compensation, wavelength conversion, optical switching, and high-power 
optical amplification. 
Summary 
An optical fiber is nominally a cylindrical dielectric waveguide that confines and 
guides light waves along its axis. Basically, all fibers used for telecommunication 
purposes have the same physical structure, which consists of a cylindrical glass core 
surrounded by a glass cladding. The difference in the core and cladding indices 
determines how light signals travel along a fiber. An important physical concept is 
that only a finite set of light rays that impinge on the core walls at specific angles 
may propagate along a fiber. These angles are related to a set of electromagnetic 
wave patterns called modes. For a single-mode fiber, the core diameter is around 8 
to 10 μm (several wavelengths), and only the fundamental ray is allowed to 
propagate. Multimode fibers have larger core diameters (e.g., around 50 μm) and 
support many modes. The ray theory can explain a number of fiber performance 
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characteristics, but other attributes require the wave theory. The power distribution 
of modes is not confined completely to the core, but extends partially into the 
cladding. This concept is important when we examine concepts such as optical 
power coupling. Light traveling in a fiber loses power over distance, mainly because 
of absorption and scattering mechanisms in the fiber. This attenuation is an 
important property of an optical fiber because, together with signal distortion 
mechanisms, it determines the maximum transmission distance possible. The degree 
of the attenuation depends on the wavelength of the light and on the fiber material. 
The loss of power is measured in decibels, and the loss within a cable is described 
in terms of decibels per kilometer. The information-carrying capacity of the fiber is 
limited by various distortion mechanisms in the fiber, such as signal dispersion 
factors and nonlinear effects. The three main dispersion categories are modal, 
chromatic, and polarization mode dispersions. These distortion mechanisms cause 
optical signal pulses to broaden as they travel along a fiber. The ITU-T and the 
TIA/EIA have published standards for both multimode and single-mode optical 
fibers used in telecommunications. The recommended bounds on fiber parameters 
(e.g., attenuation, cutoff wavelength, and chromatic dispersion) designated in these 
standards ensure the users of product capability and consistency. Multimode fibers 
are used in LAN environments, storage area networks, and central-office 
connections, where the distance between buildings is typically 2 km or less. The two 
principal multimode fiber types have either 50- or 62.5-μm core diameters, and both 
have 125-μm cladding diameters. For short-reach, low-cost transmission of high-
speed Ethernet signals, a 50-μm multimode fiber is available for 10-Gbps operation 
at 850 nm over distances up to 300 m. The ITU-T also has published a series of 
recommendations for single-mode fibers. Of these, two key ones for DWDM use are 
the ITU-T G.655 (nonzero dispersion-shifted fiber, or NZDSF) and the ITU-T 
G.655b (advanced nonzero dispersion-shifted fiber, or A-NZDSF). The G.655 fibers 
are designed for the C-band, and the G.655b fibers allow DWDM operation over the 
entire S-band and the C-band. In addition, the G.652.C recommendation describes 
fibers for CWDM applications. Whereas telecommunication fibers, such as those 
described above, are designed to transmit light over long distances with minimal 
change in the signal, specialty fibers are used to manipulate the light signal. 
Specialty fibers interact with light and are custom-designed for specific applications 
such as optical signal amplification, wavelength selection, wavelength conversion, 
and sensing of physical parameters. 
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Part II 
LASER 
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Chapter V 
Basic principle of LASER 

 

5.1. Introduction 
Although lasers were confined to the premises of prominent research centers such 
as the Bell laboratories, Hughes research laboratories and major academic institutes 
such as Columbia University in their early stages of development and evolution, this 
is no longer the case. Theodore Maiman demonstrated the first laser five decades 
ago in May 1960 at Hughes research laboratories. The acronym ‘laser’, Light 
Amplification by Stimulated Emission of Radiation, first used by Gould in his 
notebooks is a household name today. It was undoubtedly one of the greatest 
inventions of the second half of the 20th century along with satellites, computers and 
integrated circuits; its unlimited application potential ensures that it continues to be 
so even today. Although lasers and laser technology are generally applied in 
commercial, industrial, bio-medical, scientific and military applications, the areas of 
its usage are multiplying as are the range of applications in each of these categories. 
This chapter, the first in Laser basics, is aimed at introducing the readers to 
operational fundamentals of lasers with the necessary dose of quantum mechanics. 
The topics discussed in this chapter include: the principles of laser operation; 
concepts of population inversion, absorption, spontaneous emission and stimulated 
emission; three-level and four-level lasers; basic laser resonator; longitudinal and 
transverse modes of operation; and pumping mechanisms. 
 
5.2. Laser Operation 
The basic principle of operation of a laser device is evident from the definition of 
the acronym ‘laser’, which describes the production of light by the stimulated 
emission of radiation. In the case of ordinary light, such as that from the sun or an 
electric bulb, different photons are emitted spontaneously due to various atoms or 
molecules releasing their excess energy unprompted. In the case of stimulated 
emission, an atom or a molecule holding excess energy is stimulated by a previously 
emitted photon to release that energy in the form of a photon. As we shall see in the 
following sections, population inversion is an essential condition for the stimulated 
emission process to take place. To understand how the process of population 
inversion subsequently leads to stimulated emission and laser action, a brief 
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summary of quantum mechanics and optically allowed transitions is useful as 
background information. 
 
5.3. Rules of Quantum Mechanics 
According to the basic rules of quantum mechanics all particles, big or small, have 
discrete energy levels or states. Various discrete energy levels correspond to 
different periodic motions of its constituent nuclei and electrons. While the lowest 
allowed energy level is also referred to as the ground state, all other relatively higher-
energy levels are called excited states. As a simple illustration, consider a hydrogen 
atom. Its nucleus has a single proton and there is one electron orbiting the nucleus; 
this single electron can occupy only certain specific orbits. These orbits are assigned 
a quantum number N with the innermost orbit assigned the number 𝑁 = 1 and the 
subsequent higher orbits assigned the numbers N=2, 3, 4 . . . outwards. The energy 
associated with the innermost orbit is the lowest and therefore 𝑁 = 1 also 
corresponds to the ground state. Figure 1.1 illustrates the case of a hydrogen atom 
and the corresponding possible energy levels. The discrete energy levels that exist 
in any form of matter are not necessarily only those corresponding to the periodic 
motion of electrons. There are many types of energy levels other than the simple-to 
describe electronic levels. The nuclei of different atoms constituting the matter 
themselves have their own energy levels. Molecules have energy levels depending 
upon vibrations of different atoms within the molecule, and molecules also have 
energy levels corresponding to the rotation of the molecules. When we study 
different types of lasers, we shall see that all kinds of energy levels – electronic, 
vibrational and rotational – are instrumental in producing laser action in some of the 
very common types of lasers. Transitions between electronic energy levels of 
relevance to laser action correspond to the wavelength range from ultraviolet to near-
infrared. Lasing action in neodymium lasers (1064 nm) and argon-ion lasers (488 
nm) are some examples. Transitions between vibrational energy levels of atoms 
correspond to infrared wavelengths. The carbon dioxide laser (10600 nm) and 
hydrogen fluoride laser (2700 nm) are some examples. Transitions between 
rotational energy levels correspond to a wavelength range from 100 microns (mm) 
to 10 mm.  
In a dense medium such as a solid, liquid or high-pressure gas, atoms and molecules 
are constantly colliding with each other thus causing atoms and molecules to jump 
from one energy level to another. What is of interest to a laser scientist however is 
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an optically allowed transition. An optically allowed transition between two energy 
levels is one that involves either absorption or emission of a photon which satisfies 
the resonance condition of ∆𝐸 = ℎ𝜈, where ∆𝐸 is the difference in energy between 
the two involved energy levels, h is Planck’s constant (= 6.6260755 x10-34 J s or 
4.1356692x10-15 eV s) and 𝜈 is frequency of the photon emitted or absorbed. 
 
5.4. Absorption, Spontaneous Emission and Stimulated Emission 
Absorption and emission processes in an optically allowed transition are briefly 
mentioned in the previous section. An electron or an atom or a molecule makes a 
transition from a lower energy level to a higher energy level only if suitable 
conditions exist. These conditions include: 
1. the particle that has to make the transition should be in the lower energy level; and 
2. the incident photon should have energy (= ℎ𝜈) equal to the transition energy, 
which is the difference in energies between the two involved energy levels, that is 
 
 ∆𝐸 = ℎ𝜈                                                                                                                   (5.1) 
 
If the above conditions are satisfied, the particle may make an absorption transition 
from the lower level to the higher level (Figure 5.2a). The probability of occurrence 
of such a transition is proportional to both the population of the lower level and also 
the related Einstein coefficient. There are two types of emission processes, namely: 
spontaneous emission and stimulated emission. The emission process, as outlined 
above, involves transition from a higher excited energy level to a lower energy level. 
Spontaneous emission is the phenomenon in which an atom or molecule undergoes 
a transition from an excited higher-energy level to a lower level without any outside 
intervention or stimulation, emitting a resonance photon in the process (Figure 5.2b). 
The rate of the spontaneous emission process is proportional to the related Einstein 
coefficient. In the case of stimulated emission (Figure 5.2c), there first exists a 
photon referred to as the stimulating photon which has energy equal to the resonance 
energy (ℎ𝜈). This photon perturbs another excited species (atom or molecule) and 
causes it to drop to the lower energy level, emitting a photon of the same frequency, 
phase and polarization as that of the stimulating photon in the process. The rate of 
the stimulated emission process is proportional to the population of the higher 
excited energy level and the related Einstein coefficient. Note that, in the case of 
spontaneous emission, the rate of the emission 
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Figure 5.1 Energy levels associated with the hydrogen atom. 

 

 
 

Figure 5.2 Absorption and emission processes: (a) absorption; (b) spontaneous emission; and (c) 
stimulated emission. 
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process does not depend upon the population of the energy state from where the 
transition has to take place, as is the case in absorption and stimulated emission 
processes. According to the rules of quantum mechanics, absorption and stimulated 
emission are analogous processes and can be treated similarly. We have seen that 
absorption, spontaneous emission and stimulated emission are all optically allowed 
transitions. Stimulated emission is the basis for photon multiplication and the 
fundamental mechanism underlying all laser action. In order to arrive at the 
necessary and favorable conditions for stimulated emission and set the criteria for 
laser action, it is therefore important to analyze the rates at which these processes 
are likely to occur. The credit for defining the relative rates of these processes goes 
to Einstein, who determined the well-known ‘𝐴’ and ‘𝐵’ constants known as 
Einstein’s coefficients. The ‘𝐴’ coefficient relates to the spontaneous emission 
probability and the ‘𝐵’ coefficient relates to the probability of stimulated emission 
and absorption. Remember that absorption and stimulated emission processes are 
analogous phenomenon. The rates of absorption and stimulated emission processes 
also depend upon the populations of the lower and upper energy levels, respectively. 
For the purposes of illustration, consider a two-level system with a lower energy 
level 1 and an upper excited energy level 2 having populations of 𝑁ଵ and 𝑁ଶ, 
respectively, as shown in Figure 5.3a. Einstein’s coefficients for the three processes 
are 𝐵ଵଶ (absorption), 𝐴ଶଵ (spontaneous emission) and 𝐵ଶଵ (stimulated emission). 
The subscripts of the Einstein coefficients here represent the direction of transition. 
For instance, 𝐵ଵଶ is the Einstein coefficient for transition from level 1 to level 2. 
Also, since absorption and stimulated emission processes are analogous according 
to laws of quantum mechanics, 𝐵ଵଶ = 𝐵ଶଵ. According to Boltzmann statistical 
thermodynamics, under normal conditions of thermal equilibrium atoms and 
molecules tend to be at their lowest possible energy level, with the result that 
population decreases as the energy level increases. If 𝐸ଵ and 𝐸ଶ are the energy levels 
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Figure 5.3 Absorption, spontaneous emission and stimulated emission. 

 
associated with level 1 and level 2, respectively, then the populations of these two 
levels can be expressed by Equation 5.2: 
ேమ

ேభ
= exp[− (𝐸ଶ − 𝐸ଵ) 𝑘𝑇⁄ ]                                                                                       (5.2) 

Where 
𝑘 = Boltzmann constant=1.38 × 10ିଶଷ𝐽𝐾ିଵ or 8.6 × 10ିଶଷ𝑒𝑉𝐾ିଵ 
𝑇= absolute temperature in degrees Kelvin 
Under normal conditions, 𝑁ଵ is greater than 𝑁ଶ. When a resonance photon (∆𝐸 =

ℎ𝜈) passes through the species of this two-level system, it may interact with a particle 
in level 1 and become absorbed, in the process raising it to level 2. The probability 
of occurrence of this is given by 𝐵ଵଶ × 𝑁ଵ  (Figure 5.3b). Alternatively, it may 
interact with a particle already in level 2, leading to emission of a photon with the 
same frequency, phase and polarization. The probability of occurrence of this 
process, known as stimulated emission, is given by 𝐵ଶଵ × 𝑁ଶ (Figure 5.3d). Yet 
another possibility is that a particle in the excited level 2 may drop to level 1 without 
any outside intervention, emitting a photon in the process. The probability of this 
spontaneous emission is 𝐴ଶଵ (Figure 5.3c). The spontaneously emitted photons have 
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the same frequency but have random phase, propagation direction and polarization. 
If we analyze the competition between the three processes, it is clear that if 𝑁ଶ > 𝑁ଵ 
(which is not the case under the normal conditions of thermal equilibrium), there is 
the possibility of an overall photon amplification due to enhanced stimulated 
emission. This condition of 𝑁ଶ > 𝑁ଵ is known as population inversion since 𝑁ଵ >

𝑁ଶ under normal conditions. We shall explain in the following sections why 
population inversion is essential for a sustained stimulated emission and hence laser 
action. 
Example 5.1 
Refer to Figure 1.4. It shows the energy level diagram of a typical neodymium laser. 
If this laser is to be pumped by flash lamp with emission spectral bands of 475–525 
nm, 575–625 nm, 750–800 nm and 820–850 nm, determine the range of emission 
wavelengths that would be absorbed by the active medium of this laser and also the 
wavelength of the laser emission. 
Solution 
1. Referring to the energy level diagram of Figure 1.4, two edges of the absorption 
band correspond to energy levels of 12500 𝑐𝑚ିଵ and 13330 𝑐𝑚ିଵ. Corresponding 
wavelengths (of photons) that would have these energy levels are computed as: 
Wavelength corresponding to 12500 𝑐𝑚ିଵ = (1 12500⁄ )𝑐𝑚 =

(10଻ 12500⁄ )𝑛𝑚 = 800 𝑛𝑚 
Wavelength corresponding to 13330 𝑐𝑚ିଵ = (1 13330⁄ )𝑐𝑚 =

(10଻ 13330⁄ )𝑛𝑚 = 750.19 𝑛𝑚 ≅ 750 𝑛𝑚 

 
Fig 5.4: Energy level diagram. 
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2. The absorption band of the active medium is therefore 750–800 nm. This is the 
band of wavelengths that would be absorbed by the active medium. 
3. Lasing action takes place between metastable energy level 11935 𝑐𝑚ିଵ  and the 
lower energy level 2500 𝑐𝑚ିଵ. The difference between two energy levels is 
11935 − 2500 𝑐𝑚ିଵ = 9435 𝑐𝑚ିଵ. 
4. This energy corresponds to a wavelength of (1 9435⁄ )𝑐𝑚 = (10଻ 9435⁄ )𝑛𝑚 =

1059.88 𝑛𝑚 ≅ 1060 𝑛𝑚. 
5. The emitted laser wavelength is therefore = 1060 nm. 
 
Example 5.2 
Figure 5.5 shows the energy level diagram of a popular type of a gas laser. Determine 
the possible emission wavelengths. 
Solution 
1. The emission wavelength is such that the corresponding energy value equals the 
energy difference between the involved lasing levels. 
2. For emission 1, the energy difference (from Figure 5.5) = 0.117 eV. 
If 𝜆ଵ is the emission wavelength, then ℎ𝑐 𝜆ଵ⁄ = 0.117 𝑒𝑉 where 
ℎ = Planck’s constant =  6.6260755 × 10ିଷ J s or 4.1356692 × 10ିଵହeV s  
𝑐 = 3 × 10ଵ଴ 𝑐𝑚𝑠ିଵ  
Substituting these values, 𝜆ଵ =

(4.1356692 × 10ିଵହ  × 3 × 10ଵ଴) 0.117 𝑐𝑚 = 106.04⁄ × 10ିହ 𝑐𝑚 =

10604 𝑛𝑚. 
3. For emission 2, the energy difference (from Figure 5.5) = 0.129 eV 
If 𝜆ଵ is the emission wavelength, then ℎ𝑐 𝜆ଵ⁄ = 0.129 𝑒𝑉. Substituting these values, 
𝜆ଵ = (4.1356692 × 10ିଵହ  × 3 × 10ଵ଴) 0.129 𝑐𝑚 = 96.178⁄ × 10ିହ 𝑐𝑚 =

9617.8 𝑛𝑚. 
4. The energy level diagram shown in Figure 5.5 is that of carbon dioxide laser, 
which is also evident from the results obtained for the two emission wavelengths. 



 

 
76 

  
Fig 5.5: Energy level diagram. 

 
Example 5.3 
We know that absorption and emission between two involved energy levels takes 
place when the photon energy corresponding to the absorbed or emitted wavelength 
equals the energy difference between the two energy levels. If ∆𝐸 is energy 
difference in eV, prove that the absorbed or emitted wavelength (in nm) 
approximately equals (1240/∆𝐸). 
Solution 
1. Emitted or absorbed wavelength 𝜆 = ℎ𝑐 ∆𝐸⁄  
2. In the above expression, if we substitute the value of ℎ in eV s, 𝑐 in nm 𝑠ିଵ and 
∆𝐸 in eV, we obtain 𝜆 in nm. 
3. Now, ℎ = 4.1356692 × 10ିଵହeV s and 𝑐 = 3 × 10଼ 𝑚𝑠ିଵ = 𝑐 = 3 ×

10ଵ଻ 𝑛𝑚𝑠ିଵ  _1¼3_1017 nms_1 
Therefore, 𝜆 (𝑖𝑛 𝑛𝑚) = 4.1356692 × 10ିଵହ × 3 × 10ଵ଻/∆𝐸 ≅ 1240/∆𝐸. 
 
Conclusion  
Lasers were undoubtedly one of the greatest inventions of the second half of 20th 
century – along with satellites, computers and integrated circuits – and continue to 
be so today due to their unlimited application potential. The basic principle of 
operation of a laser device is based on stimulated emission of radiation. In the case 
of ordinary light, such as that from the sun or an electric bulb, different photons are 
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emitted spontaneously due to various atoms or molecules releasing their excess 
energy. In the case of stimulated emission, an atom or a molecule holding excess 
energy is stimulated by another previously emitted photon to release that energy in 
the form of a photon. A laser scientist is interested in an optically allowed transition 
between two energy levels, which involves either absorption or emission of a photon 
satisfying the resonance condition of ∆𝐸 = ℎ𝜈 where ∆𝐸 is the difference in energy 
between the two involved energy levels, h is Planck’s constant = 6.6260755 ×

10ିଷ J s or 4.1356692 × 10ିଵ eV s) and n is the frequency of the photon emitted 
or absorbed. There are two types of emission processes: spontaneous emission and 
stimulated emission. The emission process involves transition from a higher excited 
energy level to a lower energy level. Spontaneous emission is the phenomenon in 
which an atom or molecule undergoes a transition from an excited higher energy 
level to a lower level without any outside intervention or stimulation, emitting a 
resonance photon in the process. 
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Chapter VI 
Population Inversion 

 

6.1. Introduction 
We shall illustrate the concept of population inversion with the help of the same two-
level system considered above. If we compute the desired transition energy for an 
optically allowed transition, let us say at a wavelength of 1064 nm corresponding to 
the output wavelength of a neodymium-doped yttrium aluminum garnet (Nd:YAG) 
laser, it turns out to be about 1 eV (transition energy ∆𝐸 = ℎ𝜈). For a transition 
energy of 1 eV, we can now determine the population 𝑁ଶ of level 2, which is the 
upper excited level here, for a known population 𝑁ଵ of the lower level at room 
temperature of 300 K from Equation 5.2. The final relationship is 𝑁ଶ =

1.5 × 10ିଵ଻𝑁ଵ. This implies that practically all atoms or molecules are in the lower 
level under thermodynamic equilibrium conditions. Let us not go that far and instead 
consider a situation where the population of the lower level is only ten times that of 
the excited upper level. We shall now examine what happens when there is a 
spontaneously emitted photon. Now there are two possibilities: either this photon 
stimulates another excited species in the upper level to cause emission of another 
photon of identical character, or it would hit an atom or molecule in the lower level 
and be absorbed. Since there are 10 atoms or molecules in the lower level for every 
excited species in the upper level, we can say that 10 out of every 11 spontaneously 
emitted photons hit the atoms or molecules in the lower level and become absorbed. 
Only 9% (1 out of every 11) of the photons can cause stimulated emission. The 
photons emitted by the stimulated process will also become absorbed successively 
due to the scarcity of excited species in the upper level. Another way of expressing 
this is that when the population of the lower level is much larger than the population 
of the excited upper level, the probability of each spontaneously emitted photon 
hitting an atom or molecule in the lower level and becoming absorbed is also much 
higher than the same stimulating another excited atom or molecule in the upper level. 
The same concept underlies the expressions for the probability of absorption, 
spontaneous emission and stimulated emission previously outlined in Section 1.4: 
Probability of absorption = 𝐵ଵଶ × 𝑁ଵ 
Probability of spontaneous emission = 𝐴ଵଶ 
Probability of stimulated emission = 𝐵ଶଵ × 𝑁ଶ 
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If we want the stimulated emission to dominate over absorption and spontaneous 
emission, we must have a greater number of excited species in the upper level than 
the population of the lower level. Such a situation is known as population inversion 
since under normal circumstances the population of the lower level is much greater 
than the population of the upper level. Population inversion is therefore an essential 
condition for laser action. The next obvious question is that of the desired extent of 
population inversion. Spontaneous emission depletes the excited upper-level 
population (𝑁ଶ in the present case) at a rate proportional to 𝐴ଶଵ producing undesired 
photons with random phase, direction of propagation and polarization. Due to this 
loss and other losses associated with laser cavity (discussed in Section 1.7), each 
laser has a certain minimum value of 𝑁ଶ − 𝑁ଵ for the production of laser output. 
This condition of population inversion is known as the inversion threshold of the 
laser. Lasing threshold is an analogous term. 
Next, we shall discuss how we can produce population inversion. 
6.2. Producing Population Inversion 
That population inversion is an essential condition for laser action is demonstrated 
above. Population inversion ensures that there are more emitters than absorbers with 
the result that stimulated emission dominates over spontaneous emission and 
absorption processes. There are two possible ways to produce population inversion. 
One is to populate the upper level by exciting extra atoms or molecules to the upper 
level. The other is to depopulate the lower laser level involved in the laser action. In 
fact, for a sustained laser action, it is important to both populate the upper level and 
depopulate the lower level. Two commonly used pumping or excitation mechanisms 
include optical pumping and electrical pumping. Both electrons and photons have 
been successfully used to create population inversion in different laser media. While 
optical pumping is ideally suited to solid-state lasers such as ruby, Nd:YAG and 
neodymium-doped glass (Nd:Glass) lasers, electrical discharge is the common mode 
of excitation in gas lasers such as helium-neon and carbon dioxide lasers. The 
excitation input, optical or electrical, usually raises the atoms or molecules to a level 
higher than the upper laser level from where it rapidly drops to the upper laser level. 
In some cases, the excitation input excites atoms other than the active species. The 
excited atoms then transfer their energy to the active species to cause population 
inversion. A helium-neon laser is a typical example of this kind where the excitation 
input gives its energy to helium atoms, which subsequently transfer the energy to 
neon atoms to raise them to the upper laser level. The other important concept 
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essential for laser action is the existence of a metastable state as the upper laser level. 
For stimulated emission, the excited state needs to have a relatively longer lifetime 
of the order of a few microseconds to a millisecond or so. The excited species need 
to stay in the excited upper laser level for a longer time in order to allow interaction 
between photons and excited species, which is necessary for efficient stimulated 
emission. If the upper laser level had a lifetime of a few nanoseconds, most of the 
excited species would drop to the lower level as spontaneous emission. The crux is 
that, for efficient laser action, the population build-up of the upper laser level should 
be faster than its decay. A longer upper laser level lifetime helps to achieve this 
situation. 
6.3. Two, Three and Four Level Laser Systems 
Another important feature that has a bearing on the laser action is the energy level 
structure of the laser medium. As we shall see in the following sections, energy level 
structure, particularly the energy levels involved in the population inversion process 
and the laser action, significantly affect the performance of the laser. 
 
6.3.1. Two-Level Laser System 
In a two-level laser system, there are only two levels involved in the total process. 
The atoms or molecules in the lower level, which is also the lower level of the laser 
transition, are excited to the upper level by the pumping or excitation mechanism. 
The upper level is also the upper laser level. Once the population inversion is 
achieved and its extent is above the inversion threshold, the laser action can take 
place. Figure 6.1 shows the arrangement of energy levels in a two-level system. A 
two-level system is, however, a theoretical concept only as far as lasers are 
concerned. No laser has ever been made to work as a two-level system. 
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Figure 6.1 Two-level laser system. 

 
6.3.2. Three-Level Laser System 
In a three-level laser system, the lower level of laser transition is the ground state 
(the lowermost energy level). The atoms or molecules are excited to an upper level 
higher than the upper level of the laser transition (Figure 6.2). The upper level to 
which atoms or molecules are excited from the ground state has a relatively much 
shorter lifetime than that of the upper laser level, which is a metastable level. As a 
result, the excited species rapidly drop to the metastable level. A relatively much 
longer lifetime for the metastable level ensures a population inversion between the 
metastable level and the ground state provided that more than half of the atoms or 
molecules in the ground state have been excited to the uppermost short-lived energy 
level. The laser action occurs between the metastable level and the ground state. A 
ruby laser is a classic example of a three-level laser. Figure 6.3 shows the energy 
level structure for this laser. One of the major shortcomings of this laser and other 
three-level lasers is due to the lower laser level being the ground state. Under 
thermodynamic equilibrium conditions, almost all atoms or molecules are in the 
ground state and so it requires more than half of this number to be excited out of the 
ground state to achieve laser action. This implies that a much larger pumping input 
would be required to exceed population inversion threshold. This makes it very 
difficult to sustain population inversion on a continuous basis in three-level lasers. 
That is why a ruby laser cannot be operated in continuous-wave (CW) mode. 
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Fig 6.2 Three-level laser system. 
 

   
Fig 6.3 Energy level diagram of ruby laser. 

 
An ideal situation would be if the lower laser level were not the ground state so that 
it had much fewer atoms or molecules in the thermodynamic equilibrium condition, 
solving the problem encountered in three-level laser systems. Such a desirable 
situation is possible in four-level laser systems in which the lower laser level is above 
the ground state, as shown in Figure 6.4. 
 

  
Figure 6.4 Four-level laser system. 
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6.3.3. Four-Level Laser System 
In a four-level laser system, the atoms or molecules are excited out of the ground 
state to an upper highly excited short-lived energy level. Remember that the lower 
laser level here is not the ground state. In this case, the number of atoms or molecules 
required to be excited to the upper level would depend upon the population of the 
lower laser level, which is much smaller than the population of the ground state. 
Also if the upper level to which the atoms or molecules are initially excited and the 
lower laser level have a shorter lifetime and the upper laser level (metastable level) 
a longer lifetime, it would be much easier to achieve and sustain population 
inversion. This is achievable due to two major features of a four-level laser. One is 
rapid population of the upper laser level, which is a result of an extremely rapid 
dropping of the excited species from the upper excited level where they find 
themselves with excitation input to the upper laser level accompanied by the longer 
lifetime of the upper laser level. The second occurrence is the depopulation of the 
lower laser level due to its shorter lifetime. Once it is simpler to sustain population 
inversion, it becomes easier to operate the laser in the continuous-wave (CW) mode. 
This is one of the major reasons that a four level laser such as an Nd:YAG laser or a 
helium-neon laser can be operated in the continuous mode while a three-level laser 
such as a ruby laser can only be operated as a pulsed laser. 
Nd:YAG, helium-neon and carbon dioxide lasers are some of the very popular lasers 
with a four-level energy structure. Figure 6.5 shows the energy level structure of a 
Nd:YAG laser. The pumping or excitation input raises the atoms or molecules to the 
uppermost energy level, which in fact is not a single level but instead a band of 
energy levels. This is a highly desirable feature, the reason for which is discussed 
more fully in Section 1.11 on pumping mechanisms. The excited species rapidly fall 
to the upper laser level (metastable level). This decay time is about 100 ns. The 
metastable level has a 
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Fig 6.5 Energy level diagram of Nd:YAG laser. 

 
metastable lifetime of about 1 ms and the lower laser level has a decay time of 30 
ns. If we compare the four-level energy level structure of a Nd:YAG laser with that 
of a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser, another solid-state 
laser with a four-level structure, we find that there is a striking difference in the 
lifetime of the metastable level. Nd:YLF has a higher metastable lifetime (typically 
a few milliseconds) as compared to 1 ms of Nd:YAG. This gives the former a higher 
storage capacity for the excited species in the metastable level. In other words, this 
means that a Nd:YLF rod could be pumped harder to extract more laser energy than 
a Nd:YAG rod of the same size. 
6.4. Energy Level Structures of Practical Lasers 
In the case of real lasers, the active media do not have the simple three- or four-level 
energy level structures as described above, but are far more complex. For instance, 
the short-lived uppermost energy level, to which the atoms or molecules are excited 
out of the ground state and from where they drop rapidly to the metastable level, is 
not a single energy level. It is in fact a band of energy levels, a desirable feature as 
it makes the pumping more efficient and a larger part of the pumping input is 
converted into a useful output to produce population inversion. The energy levels 
involved in producing laser output are not necessarily single levels in all lasers. 
There could be multiple levels in the metastable state, in the lower energy state of 
the laser transition or in both states. This means that the laser has the ability to 
produce stimulated emission at more than one wavelength. Helium-neon and carbon 
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dioxide lasers are typical examples of this phenomenon. Figure 6.6 shows the energy 
level structure of a helium-neon laser. 
Another important point worth mentioning here is that it is not always the active 
species alone that constitute the laser medium or laser material. Atoms or molecules 
of other elements are sometimes added with specific objectives. In some cases, such 
as in a helium-neon laser, the active species producing laser transition is the neon 
atoms. Free electrons in the discharge plasma produced as a result of electrical 
pumping input excite the helium atoms first as that can be done very efficiently. 
When the excited helium atoms collide with neon atoms, they transfer their energy 
to them. As another example, in a carbon dioxide laser the laser gas mixture mainly 
consists of carbon dioxide, nitrogen and helium. While 

  
Fig 6.6 Energy level diagram of He-Ne laser. 

 
Conclusion  
Under thermodynamic equilibrium conditions, practically all atoms or molecules are 
in the lower level. A condition of population inversion is said to be achieved when 
the population 𝑁ଶ of a higher energy level is greater than the population 𝑁ଵ of a 
lower energy level. Population inversion is an essential condition for the laser action. 
There are two possible ways to produce population inversion. One is to populate the 
upper level by exciting extra atoms or molecules to the upper level. The other is to 
depopulate the lower laser level involved in the laser action. In fact, for a sustained 
laser action, it is important to both populate the upper level and depopulate the lower 
level. Energy level structure of the laser medium has an important bearing on the 
laser action and associated characteristics. All lasers operate as either three-level 
(e.g. ruby laser) or four-level lasers (e.g. Nd: YAG, He-Ne, CO2). The transverse 
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modes basically tell us about the irradiance distribution of the laser output in the 
plane perpendicular to the direction of propagation or, in other words, along the 
orthogonal axes perpendicular to the laser axis. Commonly employed pumping 
mechanisms include optical pumping and electrical pumping. Other pumping 
mechanisms include by chemical reactions and electron beams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Chapter VII 
Laser Resonator and pumping mechanisms 

 

7.1. Introduction  
An optical resonator is an arrangement of mirrors that forms a standing wave in the 
cavity resonator for light waves. It is surrounding the gain medium and providing 
feedback of the laser light. Light confined in the cavity reflects multiple times 
producing standing waves for certain resonance frequencies. The standing wave 
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patterns produced are called modes; longitudinal modes differ only in frequency 
while transverse modes differ for different frequencies and have different intensity 
patterns across the cross-section of the beam. 
7.2. Gain of Laser Medium 
When we talk about the gain of the laser medium, we are basically referring to the 
extent to which this medium can produce stimulated emission. The gain of the 
medium is defined more appropriately as a gain coefficient, which is the gain 
expressed as a percentage per unit length of the active medium. When we say that 
the gain of a certain laser medium is 10% per centimeter, it implies that 100 photons 
with the same transition energy as that of an excited laser medium become 110 
photons after travelling 1 cm of the medium length. The amplification or the photon 
multiplication offered by the medium is expressed as a function of the gain of the 
medium and the length of the medium, as described in Equation 1.2: 
 
𝐺஺ = 𝑒ఈ௫                                                                                                                      (7.1) 
 
𝐺஺ = amplifier gain or amplification factor 
𝛼 = gain coefficient 
𝑥 = gain length 
The above expression for gain can be re-written in the form: 
 
𝐺஺ = (𝑒ఈ)௫ = (1 + 𝛼)௫ for 𝛼 ≪ 1                                                                                (7.2) 
 
Therefore, to a reasonably good approximation, we can write 
 

Ampliϐication factor = (1 + gain coefϐicient)୪ୣ୬୥୲୦ ୭୤ ୫ୣୢ୧୳୫                                   (7.3) 
 
This implies that when the medium with a gain coefficient of 100% is excited and 
population inversion created, a single spontaneously emitted photon will become 
two photons after this spontaneously emitted photon travels 1 cm of the length of the 
medium. The two photons cause further stimulated emission as they travel through 
the medium. This amplification continues and the number of photons emitted by the 
stimulation process keeps building up just as the principal amount builds up with 
compound interest. The above relationship can be used to compute the amplification. 
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It would be interesting to note how photons multiply themselves as a function of 
length. For instance, although 10 photons become 11 photons after travelling 1 cm 
for a gain coefficient of 10% per centimeter, the number reaches about 26 for 10 cm 
and 1173 after travelling gain length of 50 cm, as long as there are enough excited 
species in the metastable state to ensure that stimulated emission dominates over 
absorption and spontaneous emission. On the other hand, it is also true that, for a 
given pump input, there is a certain quantum of excited species in the upper laser 
level. As the stimulated emission initially triggered by one spontaneously emitted 
photon picks up, the upper laser level is successively depleted of the desired excited 
species and the population inversion is adversely affected. This leads to a reduction 
in the growth of stimulated emission and eventually saturation sets in; this is referred 
to as gain saturation. Another aspect that we need to look into is whether the typical 
gain coefficient values that the majority of the active media used in lasers have been 
really good enough for building practical systems. Let us do a small calculation. If a 
5 mW CW helium-neon laser were to operate for just 1 s, it would mean an 
equivalent energy of 5 mJ. Each photon of He-Ne laser output at 632.8 nm would 
have energy of approximately 3 × 10ିଵଽ J, which further implies that the above laser 
output would necessitate generation of about 1.7 × 10ଵ଺ photons. With the kind of 
gain coefficient which the helium-neon laser plasma has, the required gain length 
can be calculated for the purpose. For any useful laser output, the solution therefore 
lies in having a very large effective gain length, if not a physically large gain length. 
If we enclose the laser medium within a closed path bounded by two mirrors, as 
shown in Figure 7.1, we can effectively increase the interaction length of the active 
medium by making the 
 

  
Figure 7.1 Lasing medium bounded by mirrors. 

 
photons emitted by stimulated emission process back and forth. One of the mirrors 
in the arrangement is fully reflecting and the other has a small amount of 
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transmission. This small transmission, which also constitutes the useful laser output, 
adds to the loss component. This is true because the fraction of the stimulated 
emission of photons taken as the useful laser output is no longer available for 
interaction with the excited species in the upper laser level. The maximum power 
that can be coupled out of the system obviously must not exceed the total amount of 
losses within the closed path. For instance, if the gain of the full length of the active 
medium is 5% and the other losses such as those due to absorption in the active 
medium, spontaneous emission, losses in the fully reflecting mirror (which will not 
have an ideal reflectance of 100%) and so on are 3%, the other mirror can have at 
the most a transmission of 2%. In a closed system like this, the power inside the 
system is going to be much larger than the power available as useful output. For 
instance, for 1% transmission and assuming other losses to be negligible, if the 
output power is 1 mW the power inside the system would be 100 mW. 
 
Example 7.1 
Determine the gain coefficient in case of a helium-neon laser if a 50 cm gain length 
produces amplification by a factor of 1.1. 
Solution 
1. We have that 𝑥 = 50 𝑐𝑚 and the amplification factor 𝐺஺ = 1.1. 
2. The gain coefficient a can be computed from 𝐺஺ = 𝑒ఈ௫ or 𝛼 = (1 𝑥⁄ ) ln 𝐺஺ =

(1 50⁄ ) ln 1.1 = 0.0019 𝑐𝑚ିଵ 
7.3. Laser Resonator 
The active laser medium within the closed path bounded by two mirrors as shown in 
Figure 7.1 constitutes the basic laser resonator provided it meets certain conditions. 
Resonator structures of most practical laser sources would normally be more 
complex than the simplistic arrangement of Figure 7.1. As stated in the previous 
section, with the help of mirrors we can effectively increase the interaction length of 
the active medium by making the photons emitted by the stimulated emission 
process travel back and forth within the length of the cavity. One of the mirrors in 
the arrangement is fully reflecting and the other has a small amount of transmission. 
It is clear that if we want the photons emitted as a result of the stimulated emission 
process to continue to add to the strength of those responsible for their emission, it 
is necessary for the stimulating and stimulated photons to be in phase. The addition 
of mirrors should not disturb this condition. For example, if the wave associated with 
a given photon was at its positive peak at the time of reflection from the fully 
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reflecting mirror, it should again be at its positive peak only after it makes a round 
trip of the cavity and returns to the fully reflecting mirror again. If this happens, then 
all those photons stimulated by this photon would also satisfy this condition. This is 
possible if we satisfy the condition given in Equation 7.4: 
 
𝑅𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑙𝑒𝑛𝑔𝑡ℎ = 2𝐿 = 𝑛𝜆                                                                          (7.4) 
 
Where 
𝐿 = length of the resonator 
𝜆 = wavelength 
𝑛 = an integer 
The above expression can be rewritten as 
 

𝑓 =
௡௖

ଶ௅
                                                                                                                     (7.5) 

 
Where 
𝑐 = velocity of electromagnetic wave 
𝑓 = frequency 
7.3.1. Longitudinal and Transverse Modes 
The above expression for frequency indicates that there could be a large number of 
frequencies for different values of the integer n satisfying this resonance condition. 
Most laser transitions have gain for a wide range of wavelengths. Remember that we 
are not referring to lasers that can possibly emit at more than one wavelength (such 
as a helium-neon laser). Here, we are referring to the gain-bandwidth of one 
particular transition. We shall discuss in detail in Chapter 4 how gas lasers such as 
He-Ne and CO2 lasers have Doppler-broadened gain curves. A He-Ne laser has a 
bandwidth of about 1400 MHz for 632.8 nm transition (Figure 7.2a) and a CO2 laser 
has a bandwidth of about 60 MHz at 10600 nm (Figure 7.2b). It is therefore possible 
to have more than one resonant frequency, each of them called a longitudinal mode, 
simultaneously present unless special measures are taken to prevent this from 
happening. As is clear from Equation 7.5, the inter-mode spacing is given by 𝑐 2𝐿⁄ . 
For a He-Ne laser with a cavity length of 30 cm for example, inter-mode spacing 
would be 500 MHz which may allow three longitudinal modes to be simultaneously 
present as shown in Figure 7.3a. Interestingly, the cavity length could be reduced 



 

 
91 

 

  

  
Figure 7.2 Gain-bandwidth curves for He-Ne and CO2 lasers. 

  

  
Figure 7.3 Longitudinal modes. 

 
to a point where the inter-mode spacing exceeds the gain-bandwidth of the laser 
transition to allow only a single longitudinal mode to prevail in the cavity. For 
instance, a 10 cm cavity length leading to an intermode spacing of 1500MHz would 
allow only a single longitudinal mode (Figure 7.3b). However, there are other 
important criteria that also decide the cavity length. Another laser parameter that we 
are interested in and that is also largely influenced by the design of the laser resonator 
is the transverse mode structure of the laser output. We have already seen in the 
previous sections how the resonator length and the laser wavelength together decide 
the possible resonant frequencies called longitudinal modes, which can 
simultaneously exist. The transverse modes basically tell us about the irradiance 
distribution of the laser output in the plane perpendicular to the direction of 
propagation or, in other words, along the orthogonal axes perpendicular to the laser 
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axis. To illustrate this further, if the z axis is the laser axis, then intensity distribution 
along the x and y axes would describe the transverse mode structure. TEMmn 
describes the transverse mode structure, where m and n are integers indicating the 
order of the mode. In fact, integers m and n are the number of intensity minima or 
nodes in the spatial intensity pattern along the two orthogonal axes. Conventionally, 
m represents the electric field component and n indicates the magnetic field 
component. Those who are familiar with electromagnetic theory should not find this 
difficult at all to grasp. Remember that transverse modes must satisfy the boundary 
conditions such as having zero amplitude on the boundaries. The simplest mode, 
also known as the fundamental or the lowest order mode, is referred to as TEM00 
mode. The two subscripts here indicate that there are no minima along the two 
orthogonal axes between the boundaries. The intensity pattern in both the orthogonal 
directions has a single maximum with the intensity falling on both sides according 
to the well-known mathematical distribution referred to as the Gaussian distribution. 
The Gaussian distribution (Figure 7.4) is given by Equation 7.6: 
 
𝐼(𝑟) = 𝐼଴𝑒𝑥𝑝(−2𝑟ଶ 𝑤ଶ⁄ )                                                                                        (7.6) 
 
Where 
𝐼(𝑟) = intensity at a distance r from the centre of the beam. 
𝑤 = beam radius at 1 𝑒ଶ⁄  of peak intensity point, which is about 13.5% of the peak 
intensity. 

  
Figure 7.4 Gaussian distribution. 

 
We also have 
 

𝐼଴ =
ଶ௉

గ௪మ
                                                                                                                    (7.7) 
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Where 
𝑃 = total power in the beam 
Before we discuss the definite advantages that the operation at lowest order or 
fundamental modes 𝑇𝐸𝑀଴଴ offers, we shall have quick look at higher-order modes 
and also how different transverse mode appear in relation to their intensity 
distributions. Figure 7.5 shows the spatial intensity distribution of the laser spot for 
various transverse mode structures of the laser resonator. Going back to the 
fundamental mode, we can appreciate that this mode has the least power spreading. 
To add to this, this mode has the least divergence; it has the minimum diffraction 
loss and therefore can be focused onto the smallest possible spot. The transverse 
mode structure is also critically dependent upon parameters such as laser medium 
gain, type of laser resonator and so on. There are established resonator design 
techniques to ensure operation at the fundamental mode. Often, lasers optimized to 
produce maximum power output operate at one or more higher-order modes. Also, 
lasers with low gain and stable resonator configuration can conveniently be made to 
operate at fundamental mode. Details are beyond the scope of this book, however. 
Example 7.2 
Given that the Doppler-broadened gain curve of a helium-neon laser with a 50-cm-
long resonator emitting at 1.15 mm is 770 MHz, determine (a) inter-longitudinal 
mode spacing and (b) the number of maximum possible sustainable longitudinal 
modes. 
Solution 
Resonator length L= 50 cm. Therefore, inter-longitudinal mode spacing 
 = 𝑐 2𝐿 = 3 × 10ଵ଴ 100 = 300 𝑀𝐻𝑧⁄⁄ . 
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Figure 7.5 Spatial intensity distribution for various transverse modes. 

 

  
Figure 7.6 Diagram for Example 7.2. 

 
Width of Doppler-broadened gain curve¼770 MHz. The number of longitudinal 
modes possible within this width=3 (Figure 7.6). 
7.3.2. Types of Laser Resonators 
According to the type of end mirrors used and the inter-element separation, which 
largely dictates the extent of interaction between the emitted photons and the laser 
medium and also the immunity of the laser resonator to misalignment of end 
components, the resonators can be broadly classified as stable and unstable 
resonators. A stable resonator is one in which the photons can bounce back and forth 
between the end components indefinitely without being lost out the sides of the 
components. Due to the focusing nature of one or both components, the light flux 
remains within the cavity in such a resonator. A plane-parallel resonator (Figure 7.7) 
in which both end components are plane mirrors and are placed precisely at right 
angles to the laser axis is a stable resonator. In practice, however, this is not true. A 
slight misalignment of even one of the mirrors would ultimately lead to light flux 
escaping the laser cavity after several reflections from the two mirrors. Nevertheless, 
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such a resonator encompasses a large volume of the active medium. It is not used in 
practice, as it is highly prone to misalignment. 

  
Figure 7.7 Plane-parallel resonator. 

 
This problem can be overcome by using one plane and one curved mirror, as is the 
case for hemispherical and hemifocal resonators shown in Figure 7.8a and b, 
respectively, or two curved mirrors, as is the case for concentric and confocal 
resonators shown in Figure 7.9a and b, respectively. Although the problem of 
sensitivity of the plane-parallel resonator to misalignment of cavity mirrors is largely 
overcome by the use of different stable resonator configurations discussed above 
(Figures 7.8 and 7.9), not all of them have emitted photons interacting with a large 
volume of the excited species, which is also equally desirable. It is also true that in 
the case of low-gain media with consequent very low transmission output mirrors, 
the photons travel back and forth a large number of times within the cavity before 
their energy appears at the output. This makes the resonator alignment more critical. 
That is why a plane-parallel resonator will never be the choice for a low-gain laser 
medium. 
On the other hand, in a high-gain medium a certain amount of light flux leakage can 
be tolerated. This fact is made use of in an unstable resonator configuration, which 
otherwise achieves interaction of the emitted photons with a very large volume of 
the excited species. Figure 7.10 shows one possible type of unstable resonator. Note 
that photons escape from the sides of the mirror after one or two passes within the 
cavity. This light leakage, which also constitutes the useful laser output, is more than 
compensated for by a high-gain medium and large interaction volume. Further, since 
the photons have to make 
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Figure 7.8 (a) Hemispherical resonator and (b) hemifocal resonator. 

 

  

  
Figure 7.9 (a) Concentric resonator and (b) confocal resonator. 

 

  
Figure 7.10 Unstable resonator. 
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relatively fewer passes within the cavity as compared to a low-gain stable resonator 
configuration before drifting out, the alignment becomes much less critical. 
7.4. Pumping Mechanisms 
By pumping mechanism, we mean the mechanism employed to create population 
inversion of the lasing species. Commonly employed pumping mechanisms include: 
1. optical pumping; 
2. electrical pumping; and 
3. other mechanisms such as pumping by chemical reactions, electron beams and so 
on. 
One aspect that is common to all pumping mechanisms is that the pumping 
energy/power must be 
greater than the laser output energy/power. When applied to optical pumping, it is 
obvious that the 
optical pump wavelength must be smaller than the laser output wavelength. This has 
to be true as the 
 

  
 

Figure 7.11 Linear flash lamps. 

 
lasing species are first excited to the topmost level from where they drop to the upper 
laser level. Since the energy difference between the ground state and the topmost 
pump level is always greater than the energy difference between the two laser levels, 
the wavelength of the pump photon must be less than the wavelength of the laser 
output. Another aspect that is common to all schemes is that pumping efficiency 
largely affects the overall laser efficiency. For instance, if the energy difference for 
the pump transition is much greater than that of the laser transition, the laser 
efficiency is bound to be relatively poorer. An argon-ion laser is a typical example. 
Yet another aspect that is common to all pumping mechanisms is that the topmost 
pump level is not a single energy level but rather a band of closely spaced energy 
levels with allowed transitions to a single and, in some cases, more than one 
metastable level. When applied to optical pumping, this allows the use of optical 
sources such as flash lamps with broadband outputs. 
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7.4.1. Optical Pumping 
Optical pumping is employed for those lasers that have a transparent active medium. 
Solid-state and liquid-dye lasers are typical examples. The most commonly used 
pump sources are the flash lamp in the case of pulsed and the arc lamp in the case of 
continuous-wave solid-state lasers. Flash lamps are pulsed sources of light and are 
widely used for the pumping of pulsed solid-state lasers. These are available in a 
wide range of arc lengths (from a few centimeters to as large as more than a meter, 
although arc length of 5–10 cm is common), bore diameter (typically in the range of 
3–20 mm), wall thickness (typically 1–2 mm) and shape (linear, helical). Figures 
1.22 and 1.23 depict the constructional features of typical linear (Figure 7.11) and 
helical (Figure 7.12) flash lamps. 
Flash lamps for pumping solid-state lasers are usually filled with a noble gas such 
as xenon or krypton at a pressure of 300–400 torr. Two electrodes are sealed in the 
envelope that is usually made of quartz. An electrical discharge created between the 
electrodes leads to a very high value of pulsed current, which further produces an 
intense flash. The electrical energy to be discharged through the lamp is stored in an 
energy storage capacitor/capacitor bank. Xenon-filled lamps produce higher 
radiative output for a given electrical input as compared to krypton-filled lamps. 
Krypton however offers a better spectral match, more so with Nd:YAG. That is, the 
emission spectrum of a krypton flash lamp is better matched to the absorption 
spectrum of Nd:YAG. Emission spectra in the case of xenon- and krypton-filled 
lamps are depicted by Figures 7.13 and 7.14, respectively. The absorption spectrum 
of a Nd:YAG laser is given in Figure 7.15. 
 

  
 

Figure 7.12 Helical flash lamp. 
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Figure 7.13 Emission spectrum of xenon-filled flash lamp. 

 
Major electrical parameters include the flash lamp impedance parameter, maximum 
average power, maximum peak current, minimum trigger voltage and explosion 
energy. Impedance characteristics of a flash lamp are extremely important as they 
determine the energy transfer efficiency from energy storage capacitor, where it is 
stored, to the flash lamp. Table 1.1 gives typical values of various characteristic 
parameters of xenon-filled and krypton-filled pulsed flash lamps from Heraeus 
Noble light Ltd. The type numbers chosen for the purpose include both air-cooled 
as well as liquid-cooled flash lamps of different bore diameter and arc length. This 
assortment of flash lamps highlights the variation of the electrical parameters with 
bore diameter and arc length for a 
 

  
Figure 7.14 Emission spectrum of Krypton-filled flash lamp. 
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Figure 7.15 Absorption spectrum of Nd:YAG. 

 
Conclusion  
The gain of the medium is defined as gain coefficient, which is the gain expressed 
as a percentage per unit length of the active medium. The gain of the laser medium 
refers to the extent to which this medium can produce stimulated emission. The 
amplification or the photon multiplication offered by the medium is expressed as a 
function of the gain of the medium and the length of the medium by:  

Ampliϐication = (1 + gain coefϐicient)୪ୣ୬୥୲୦ ୭୤ ୫ୣୢ୧୳୫. A resonator is the active 
laser medium within the closed path bounded by two mirrors, providing it meets 
certain conditions. One of the mirrors in the arrangement is fully reflecting and the 
other has a small amount of transmission. A laser resonator satisfies: round trip 
length = 2𝐿 = 𝑛𝑙 where L, n and l denote length of the resonator, an integer and 
wavelength, respectively. The resonators can be broadly classified as stable and 
unstable resonators. A stable resonator is one in which the photons can bounce back 
and forth between the end components indefinitely without being lost out the sides 
of the components. In unstable resonator photons escape from the sides of the mirror 
after one or two passes within the cavity. An unstable resonator is usually chosen 
with laser media that have a very high gain, as alignment in this resonator type is 
much less critical. It is possible to have more than one resonant frequency (each 
referred to as a longitudinal mode) to be simultaneously present unless special 
measures are taken to prevent this from happening. The intermode spacing is given 
by 𝑐 2𝐿⁄ . 
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