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CHAPTER 1 

Literature Review 

1.1 Introduction 

In this chapter, a comprehensivesurvey is presented for the hydrodynamic, the thermal 

mixing and heat transfer flow in straight and complex geometries.Analytical, 

Experimental and numerical works for hydrodynamic flow are first stated. After that, the 

enhancement of thermal mixing and heat transfer are reviewed for laminar flow. Then, 

previous studiesare presented for entropy generation. 

1.2 Rheological fluid behavior  

Fluids treated in the traditional hypothesis of fluid mechanics are the Newtonian fluid. 

The former is completely frictionless, so that shear stress has a linear relationship between 

shear stress and shear rate. On the other hand, the behavior of many real fluids used in 

the mechanical industries is not sufficiently described by these models. Most real fluids 

exhibit non-Newtonian behavior, which means that the apparent viscosity (shear stress 

divided by shear rate) is not constant at a given temperature and pressure but is 

dependent on flow conditions such as flow geometry, shear rate,… etc.  

Metzner [100] grouped fluids into three general classes:   

 Purely viscous fluids: Generalized Newtonian fluids: The rate of shear at any point 

of the fluid is dependent only by the current value of the shear stress. These are also 

called: “Generalized Newtonian fluids”, “time independent” or “inelastic fluids”.  

 Viscoelastic fluids: more complex materials for which the shear stress and rate of 

shear depends on the time for which the shear is applied. They are called: “time-

dependent fluids”.  

 Time-dependent fluids: Materials exhibiting properties of both viscous fluids and 

elastic solids, and showing partial elastic recovery to the original state when a deformation 

or stress is applied. These materials are called “Viscoelastic fluids” 

Qualitative flow curves on linear scales for these three types of fluid behavior are shown 

in Figure 1.1.  
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Figure 1.1: Types of time-independent flow behavior 

There are also fluids which have characteristics that are a combination of the three 

properties mentioned below. There are also materials that are either elastic solids or 

viscous fluids depending on the current conditions.  

1.2.1 Time-independent fluid behavior 

This fluid can be further subdivided into three types: Shear-thinning (pseudoplastic) 

fluids, viscoplastic fluids and shear-thickening (Dilatant) fluids: 

1.2.1.a Shear-thinning or Pseudoplastic fluids 

In Shear-thinning or pseudoplastic fluids, the viscosity decreases with increasing shear 

rate. Both at very low and at very high shear rates, most pseudoplastic fluid solutions 

exhibitNewtonian behavior, shear stress-shear rate plots become straight lines, as shown 

in Figure 1.2. 

 
Figure 1.2: Schematic representation of shear-thinning behavior 

 The power-law or Ostwald de Waele model 

The relationship between shear stress and shear for a shear-thinning fluid can be given by 

the following expression:                       𝜇𝑎𝑝𝑝 =  k γ̇n−1 (1.1) 
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Where k(Pa/s) is power-law consistency index and n is the flow behavior index of the 

fluid. 

For  n< 1 the fluid exhibits pseudoplastic characteristics. 

        n = 1 the fluid exhibits Newtonian characteristics. 

        n> 1 the fluid exhibits dilatant characteristics. 

1.2.1.bViscoplastic fluid  

These types of fluids behavior resist any deformation initially and deform only when the 

applied stress exceeds a critical value which is sometimes referred to as yield stress (tau0). 

on the contrary, such a material will deform elastically when the externally applied stress is 

smaller than the yield stress.  

Various models like the Bingham plastic model, Casson and Herschel-Bulkley Model are 

available for modeling such viscoplastic flows. 

 The Herschel-Bulkley model 

Herschel-Bulkley model is generated from the equation of the Power law model, and it is 

written as: 

𝜏𝑦𝑥 = 𝜏0 + 𝑚(�̇�𝑦𝑥)
𝑛

for|𝜏𝑦𝑥| > |𝜏0|   (1.2) 

  �̇�𝑦𝑥 = 0for |𝜏𝑦𝑥| < |𝜏0|    (1.3) 

Note that for n =1 the model becomes Bingham model  

1.2.2Time-dependent fluid behavior 

The flow behavior of many important materials cannot be described by asimple 

rheological equation like (1.1) or (1.2). Hence, apparent viscosities maydepend not only 

on the rate of shear but also on the time for which the fluid has beensubjected to 

shearing. Theirapparent viscosities gradually become less as the ‘internal’ structure of the 

material isprogressively broken down. Time-dependent fluid behavior may be further sub-

divided into two categories: thixotropyand rheopexy or negative thixotropy. 

1.3Hydrodynamic behavior in ducts 

1.3.1 Straight ducts 

The predictions of pressure drops forfluids flowing in ducts of various cross sections is 

importantin engineering systems. Therefore, wideanalytical, experimental and numerical 

studies have been carried outon such flowapplications. For laminar non-

Newtonianfluids,Wheeler et al [9] measured the Friction factor and the Poiseuille number 

for sodium Carboxy-Methyl-Cellulose fluid (CMC) flowing through a rectangular duct. 

Gervang and Larsen[10] studied the elastic effects of non-Newtonian fluid in straight 

ducts of rectangular cross section. 
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Parket al [11] investigated numerical solution of fully developed flow for a modified 

power law fluid in a rectangular duct. Their solutions was applicable to pseudoplastic 

fluids over a wide shear rate range from non-Newtonian behavior at low shear rates, 

through a transition region, to power law behavior at higher shear rates.  

Capobianchi [12] reported the pressure drop ofhydrodynamic fully developed flows of 

non-Newtonian fluids in rectangular ducts. He analyzed the Poiseuille number for both 

pseudoplastic and dilatant regions as function of fluid behavior index.  

Tazraei and Riasi [13] analyzed the laminar flow of a Carreau fluid inside rectangular 

channel. They observed that the effect of various physical parameters on velocity 

distribution with different dimensional aspects. 

Recently, Numerical investigation of non-Newtonian Carreau Model presented by Riasi et 

al[14].They discussed that the effect of time constant magnitude on the behavior of 

unsteady velocity and shear stress profiles, and pressure responses in laminar shear 

thinning flows.  

More recently, Devakar et al [15] numerically investigatedthe fully developed flow of non-

Newtonian fluids in a straight square channel through the porous medium.They 

considered the Jeffrey fluid model as working fluid. Their numerical results observed that, 

the velocity andvolume flow rate decrease with an increase in couple stress parameter, 

whilethe velocity and volume flow rate increase with an increase in pressuregradient, as 

shown in figure 1. 1. 

 
Figure 1.1: Velocity profile in 3-D for various coupled stress parameters[15]. 

1.3.2 Complex channels 

1.3.2.a Newtonian fluids 

The increasing number of experimental and numerical studies interest in complex systems 

like valves, pumps, mixers, reactor  to achieve better and more dedicated performance 

satisfyingspecific requirements in different application areas. In accordance with this 

development, Fellouah, et al [16] presented the Dean instability of Newtonian fluids in 

laminar secondary flow in 180◦ curved channels, by using CFD code. They showed the 

effects of the curvature ratio (from 5.5 to 20) and aspect ratio (from 0.5 to 12) on Dean 

instability. Their results indicated that the critical value of the Dean number decreases 

with the increasing duct curvature ratio. 



CHAPTER 1: Literature Review  

 

- 21 - 
 

A numerical study of rapid chaotic mixing of two fluids flowing in a planar serpentine 

convergent–divergent mini-channel (see figure 1.2) was presented by Kuo-Wei Lin and 

Jing-Tang Yang [17]. Their approach is to create chaotic trajectories with flow in a planar 

serpentine channel at an appropriate Dean number which determines the degree of 

induced secondary flow. They tracked the trajectories of particles using visualization 

methods, these are smooth, and exhibit little disturbance in the z-direction as seen in 

figure 1.3. Their results reveal that the pattern of the alternating convergent–divergent 

cross sections induces corner Dean cells with much increased Dean numbers; the 

stretching and folding of interfaces is hence effectively enhanced, and a superior chaotic 

mixing of two fluids was consequently achieved, see figure 1.4.  

 
Figure 1.2: Schematic diagram of the mixing channel [17]. 

 
Figure 1.3: Three views of the fluid trajectories of corner flow [17]. 

  
Figure 1.4: Fluid distribution at six analyzed cross sections of the channel [17]. 
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Tet al [18] proposed a passive mixing device of two fluids in laminar regime.They 

achieved better mixing performance under the effects of chaotic advection. They results 

showed an enhancement of mixing by adding a periodic external force working on a 

single rigid particle, which changes the trajectory of the fluid particle. 

Recently,Paulo et al [19]developed a numerical simulation using finite difference 

technique for solving the closure constitutive model in fully developed channel 

flow.Theyillustrate the effects of varying Reynolds number and the Weissenberg number 

on the resulting flow patterns.  

Saatdjian el al [20] obtained numerical solutions for mixing fluids by chaotic advection in 

three-dimensional complex geometry (as shown in figure 1. 5). They showed that the key 

mechanism of chaotic advection isstretching and folding originating from the hyperbolic 

perturbationinduced by the particles and the rotational motion of theparticles. 

 

Figure 1.5: Standard helical twisted tape inserts of the static mixer [20]. 

Mixing performance of micro-channel T-junction with wavy structure relatives to the 

conventional straight micro-channel T-junction were numerically studied by Nita Solehati 

et al [21].They numerical results suggest that the mixing quality (Md) improves 

significantly for micro-channel T-junction with wavy structure, especially at higher 

Reynolds number, see figure 1.6. 

 
Figure 1.6: Mixing performance of micro-mixer T-junction designs for (a) conventional 

straight (Md= 0.018) and (b) wavy structure (Md= 0.578) at Re = 200 [21]. 

More recently, Lasbet et al [8] studied the influence of the geometry scale on the 

kinematic behaviorof the fluid flow for C-shaped channel. The modification of the 

geometric scale presented an easy and adequate solution to increase these parameters, 

which examined for different values of the Reynolds number. Theirresults illustrate that 

the geometry with the smallest hydraulic diameter is the more favourable to increase the 

considered parameters. 

1.3.2.bNon-Newtonian fluids 

Many works are currently available on the laminar flow of shear-thinning and shear-

thickening fluids, which are frequently modelledby the simple power-law model [22-24] 
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over a curved or coil ducts. Their results presented the velocity magnitude contours, axial 

velocity profile and friction factor as function of the Reynolds number. 

Castelain and Legentilhomme[25]used Pseudoplastic fluid inside of helically coiled and 

chaotic systems toshowthe evolution of the flow fraction in the two configurations as 

function of generalized Reynolds number,(see figure 1.8). 

 
(a) 

 
(b) 

Figure 1.7:Two different systems: (a) helically coiled tube; (b) chaotic configuration [25] 

 

  

. Figure 1.8: Variation of the flow fraction as function of Reynolds number: (a) helically 

coiled configuration; (b) chaotic configuration [25]. 

Mohammed et al [26] numericallyinvestigated secondary motion of CMC solution induced 

by curved channel. They found that two steady Dean cells which developed to four-cell 

pattern when the centrifugal forces become significant,see figure 1.9. 

 
Figure 1.9:Stream function at outlet section of curved duct for non-Newtonian fluid, 

with different cross sections, (a): 𝜃 = 70°, (b): 𝜃 = 80° and (c) 𝜃 = 180°[26]. 



CHAPTER 1: Literature Review  

 

- 24 - 
 

Fellouah et al [27]experimentally and numerically investigated the detail motion of laminar 

flow of power-law and Bingham fluids in a curved channel in order to understand the 

effect of rheological fluid behavior on Dean instability. The same phenomena was 

performed for a curved square duct by Ali Salehi et al [28].  The objective of their work 

was to examine how a fluid’s non-Newtonian viscous behavior affects the onset of Dean 

instability in a curved square duct, as shown in figure 1.10. 

 
(a) 

 
(b) 

Figure1.10:The effect of power-law index, n, on the velocity vectors of curved channel: 

(a) n = 0.8, (b) n = 1.2[27]. 

HosseinHamedi et al [28] modeled a non-Newtonian fluid using Lattice Boltzmann 

Method (LBM) through complex geometries. Their solutions was validated for both 

Newtonian and the shear thinning fluids.  Their results show the pressure drop along the 

channel, axial velocity profiles and the effects of pseudo-plasticity for various power-law 

index (n = 0.5 to 1), as show in figure 1.11.  

 

 
(a) 

 
(b) 

Figure 1.11: (a) Non-Dimensional velocity and (b) Non-Dimensional pressure drop for 

the shear-thinning fluid[29]. 

Lattice Boltzmann simulations for Bingham and Casson model fluids through complex 

channels were investigated by Mitsuhiro et al [30].They considered the flow of 

viscoplastic fluids passing through rectangular obstacle as shown in figure 1.12. 
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(a) 

 
(b) 

Figure 1.12: axial-velocity profile for (a): Newtonian fluid n = 1 and (b): non-Newtonian 

fluid n = 0.5 [30]. 

The Papanastasiou (modified Bingham) model [31] and the modified Casson model was 

employed in their Lattice Boltzmann simulations. They showed numerical visualizationof 

viscosity profile and velocity field depending on the fluid type for systems (a): figure 1.14, 

and system (b): figure 1.15.  

 
Figure 1.13:Computational system for non-Newtonian fluid flows in the flow channel 

including rectangular obstacles [30]. 

 
Figure 1.14:Viscosity profile and velocity field for viscoplastic fluids flowing through the 

flow channel with 3-square obstacles under the condition of Re = 1.0, Bn= 10 (left) and 

Re = 100, Bn= 0.1 (right)[30]. 
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They results showed that the viscosity for both the viscoplastic fluids was largely 

decreased around solid obstacles when the fluids flowed around solid obstacles, therefore, 

the Bingham model fluid exhibited more rapid fall in the viscosity at high shear-rate 

regions than the Casson model.  

 
Figure 1.15Viscosity profile and velocity field for viscoplastic fluids flowing through the 

complicated flow channel under the condition of Re = 1.0, Bn= 20 (left) and Re = 100, 

Bn= 0.2 (right) [30]. 

Ching-Chang Cho et al [32] performed numerically the flow characteristics of non-

Newtonian fluids in rough microchannels with a complex-wavy surface. They presented 

the effect of flow behavior index of the non-Newtonian transported fluids on the local 

velocity profiles as shown in figure 1.16, and the effects of the wave amplitude on the 

flow field characteristics. 

  

Figure 1.16:Non-dimensional u-velocity profiles in (a) wave crest and (b) wave trough 

regions of wavy-surface for various wave amplitudes and flow behavior index [32]. 
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Arshad Afzal et al [33] numerically analyzed the mixing flow of non-Newtonian fluids in 

straight and serpentine microchannels using ANSYS CFX©software. They used the 

Carreau-Yasuda and Casson non-Newtonian blood viscosity models to capture the non-

Newtonian characteristics.  

 
Figure 1.17:Mixing index as function of flow rate at the outlet section of T-junction 

straight channel for Newtonian fluid (water) and non-Newtonian fluid (Carreau-Yasuda 

model) [33]. 

Their results showed that for low mass flow rate, the mixing performances of both the 

fluids were found to be nearly equivalent, and decreased with flow rate, as shown in 

figure1.17. Then, they compared the mixing flow between the T-shaped channel and the 

serpentine channel for blood and water fluids, as shown in figure 1.18. Moreover, they 

showed a flow visualization comparison of volume fraction at the outlet section between 

the straight T-junction and serpentine channels, see figure 1.19.  

 
Figure 1.18:Mixing index as function of flow rate at the outlet section for T-channel and 

serpentine channel for non-Newtonian fluid (Carreau-Yasuda model) [34]. 
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(a) 

 
 

(b) 

Figure 1.19:Volume fraction of non-Newtonian blood model for T-junction and 

serpentine channels, (a): longitudinal section and (b): outlet cross-section [33]. 

Vinit Khandelwal et al [34] presented numerical results for laminar flow of shear-thinning 

fluids in a T-channel. The flow fields have been explained by streamline contours for all 

cases of shear thinking fluid, see figure 1.20. 

 
Figure 1.20:Stream function contours in a T-channel at different values of Reynolds 

number [34]. 

They results showed that for a particular n, length of recirculation zone increases in the 

side branch with increasing Reynolds number. 

 
Figure 1.21: Variation of dimensionless recirculation length (Lr/D) with Reynolds 

number at different values of power-law index [34]. 

1.4Thermal behavior 

1.4.1Straight ducts 
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1.4.1.a Newtonian fluids 

Many researchers have studied the heat transfer phenomena of Newtonian fluid flows in 

straight ducts. Some studies reviewed by Shah and London [35] [36] and Shah and Bhatti 

[37] for laminar flow. They used the finite differencemethod to obtain numerical solutions 

for fullydeveloped conditions. 

Sehyun et al [38] numerically studied the laminar heat transfer withtemperature dependent 

fluid viscosity in a 2:l rectangular duct.  The H1 thermal boundary condition 

corresponding to axially constant heat flux was adopted for the configuration. They 

proposed a new correlation for local Nusselt numbers in the straight duct, which covers 

boththermally developing and thermally fully developed regions. 

Effect of viscous dissipation on laminar mixed convection in a vertical channelwas 

analyzedby Barletta [39]in the fully developed region. The temperature, velocity field and 

the Nusselt numbers were obtained for Brinkman numbers. Then, the same work was 

investigated for the reversal flow with one or more isotherm walls [40].The author 

analytically discussed the velocity, temperature profiles and friction factor witch 

dependent on the ratio between the Grashof number and the Reynolds number. After 

that, Barletta [41] [42] obtained the Nusselt number and Poiseuille under the effect of wall 

heat flux on vertical rectangular duct, while the effect of the choice of the reference fluid 

temperature was considered.  They found that the choice of the reference temperature 

affects both the velocity profiles and the axial change of the difference between the 

pressure and the hydrostatic pressure. 

Muzychka and Yovanovich [43] investigated the laminar forced convection in the 

combined for fully developed flow of straight ducts. They developed a new model for 

predicting Nusselt numbers for both isothermal and wall flux boundary conditions.  The 

agreement between the proposed modeland numerical data is within 15%.  

An exact analytical solution for heat transfer characteristics in straight ducts with 

rectangular cross-sections wasdevelopedby Mohammad and Mahmoud [44], which 

validated for both H1 and H2 boundary conditions. The authors obtained the local and 

mean Nusselt numbers asfunctions of the aspect ratio. 

Recently, Sphaier and Barletta [45] analyzed the unstablemixed convection in a horizontal 

heated duct for laminar flow of Newtonian fluid. Their analysis confirmed that 

longitudinal rollsindeed lead to most unstable situations, for different the Rayleigh 

numbers. 

1.4.1.b Non-Newtonian fluids 

Non-Newtonian flows and heat transfer were studied in early years by Seppo[46], and Ray 

and Misra [47] who showed that the effects of fluid behavior index on laminar forced 

convection in straight channels. James and Milivoje [48] investigated the heat transfer of 

Newtonian and non-Newtonian fluidsin rectangular ducts. 
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Sayed-Ahmed and Kishk [49] used the finite differencemethod to investigate laminar flow 

and heattransfer non-Newtonian fluids in a rectangular duct. They considered two 

thermal boundary conditions (T and H2)and the effects of the aspect ratio, the Prandtl 

number, velocity, and pressure on the temperature and the Nusselt number. 

Sayed-Ahmed and Karem [50] presented a numerical solution for combined laminar fluid 

flow and heat transfer of Herschel–Bulkley fluid in a rectangular duct. The authors 

studied the problem in the entrance region of a rectangular duct. 

Numerical investigation on performance comparison of non- Newtonian fluid flow in 

vertical heat exchangers combined helical baffle with elliptic and circular tubes (figure 

1.22) was performed by Zhenbin He el al [51].Their found that the thermal performance 

factor enhances by 30–35%, which demonstrates that the elliptic tube can effectively 

improve the heat transfer performance of non-Newtonian fluid flowing in the helical 

baffle heat exchanger when compared to the circular tube.  

 
Figure 1.22:Layout pattern of tubes: Elliptic tubes [51]. 

Two new correlations, for the friction factor and the Nusselt number of the heat 

exchanger, were proposed: 

Nu0 = 0.089Re0
0.6992 Pr0

1/3 (R2 = 0.9993) 

f0 = 0.5989 Re0
-0.1574 (R2 = 0.9994) 

Gharraei et al [52]numerically investigated the power-law non-Newtonian flow and heat 

transfer characteristics of multiple impinging square jets. Their results reveal that jet-to-

plate spacing have important effects on the flow structure and local Nusselt number 

(Figures 1.23 and 1.24). The size of peripheral vortices was increased by increasing the 

power-law index. By decreasing the jet-to-plate spacing, the effect of walls becomes 

considerable, therefore the size of peripheral entrainment vortices decreases. On the other 

hand, by increasing the power-law index, the wall Nusselt number increased which was 

the result of higher inlet velocity for fluids with higher power-law indices. 
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Figure 1.23:Streamlines for Reynolds number Re =100, and power-law index (a) n = 0.4, 

(b) n= 1 and (c) n = 1.6 [52]. 

 
(a) 

 
(b) 

 
(c) 

Figure 1.24: Distribution of local Nusselt number for Reynolds number Re= 100, and 

power-law index (a) n = 0.4, (b) n= 1 and (c) n = 1.6 [52]. 

1.4.2 Complex channels 

1.4.1.a Newtonian fluids 

In complex channel structures or chaotic geometries, laminar flow of Newtonian fluids 

has been the subject of many investigations for different configurations such as planar 

serpentine, chaotic channels [53] [6] and zigzag channels [56] and helical ducts [54]. Their 

heat performance was considerably improved compared to that when the flow is regular 

(straight channel). 

Convective heat transfer in chaotic configuration (coiled tube with bends) of laminar flow 

regime at different values of Dean number with constant wall flux was investigated by 

Vimal Kumar [53]. The effects of Dean number on the development of average friction 

factor and Nusselt number were presented in figure 1.25. The results show that the 

chaotic configuration shows a 25–36% enhancement in the heat transfer due to chaotic 

mixing while relative pressure drop is 5–6% compared to the coiled tube.  
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Figure 1.25:(a) Friction factor variation and (b) Nusselt number variation in coiled tube 

and chaotic configuration [53]. 

Lasbet el al [5] [6] considered four chaotic geometries (square-wave mixer geometry, C-

shaped, V-shaped, and B-shaped geometries) to enhance the heat transfer and mixing 

fluids in laminar Newtonian flow. They found that the C- channel geometry significantly 

improves convective heat transfer over that ofregular straight or square-wave mixer 

channels, see table1.1. 

Table 1.1: Comparison of the average Nusselt number, average Poiseuillenumber, and the 

Po/Nu ratio for the considered geometries [6]. 

 Average Nusselt 
number 

Average Poiseuille 
number 

Ratio (Po/Nu) 

Straight channel 3.0 62 20.7 
Square wave mixer 11.0 126 11.5 
C-shaped  20.0 160 8 
B-shaped 13.0 93 7.2 
V-shaped 13.1 89 6.8 

Jung et al. [54] studied the friction factor and the heat transfer of a helical heat exchanger. 

The heat exchanger is composed of a helical tube with rectangular cross section and two 

cover plates. In the experiment part, the radial flow was air and the helical flow was water. 

The Reynolds numbers were in the range 307– 2547. They results indicate that the Darcy 

friction factor of the radial flow increases with the channel spacing and decreases with an 

increase of the Re, and Nusselt number increases with the Reynolds number and the 

channel spacing.  

Charbel Habchi  et al [55] carried out the influence of several arrays of vortex generators 

mounted inside a complex geometry on mixing flow of two fluids which heated by 

different temperature (300 and 320). Two flow configurations are considered in which the 

arrays are in-line and rotated periodically by an angle of 90°,see figure 1.26. Each vortex 

generator creates a pair of stream-wise vortices, which enhances the mixing performance 

in the flow cross section.  
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Figure 1.26: Isometric views of the (a) in-line and (b) alternate configurations and (c) of 

one tab with the main rotation angles. The flow is in the z axisdirection [55]. 

Their results showed that the alternate configuration, in which the vortex generators are 

rotated periodically by an angle of 90°, enhances the mixing process relative to the in-line 

one due to the generation of chaotic advection flow, while in the in-line configuration the 

flow is regular and the mixing process is only caused by the convective motion of the 

longitudinal vortices. By exploring the Poincaré sections and the Lagrangian trajectories 

projections of different passive tracers, it is found that chaotic advection takes place in 

the alternated configuration while the flow in the in-line configuration stays regular, as 

shown in figure 1.27 and figure1.28, respectevley. Then, the authors found  that the 

thermal mixing flow clearly enhanced by the fact that the chaotic advection is better 

distributed at the flow cross section, as shown in figure 1.29. 

 
Figure 1.27:Poincaré section for (left) in-line and (right) alternate configurations for 

initial 5000 particles injected at (x0= 5 mm, y0= 0 mm)[55]. 

 
Figure 1.28: Projections of the Lagrangian trajectories for different initial positions for 

the (left) in-line and (right) alternate configurations [55] 
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Figure 1.29: Scalar T contours on different cross sections for (top) in-line and (bottom) 

alternate configurations [55]. 

ZhanyingZheng et al [56] studied the laminar flow and heat transfer for Periodic Zigzag 

channel with square cross-sections, considering the effect of chaotic advection. They used 

the Poincare section, for Re = 150, to present the stretching and folding of the tracer 

particle. Then, they showed, for Re = 400 (Figure 1.30), the tracer particles witch almost 

covered the entire area of the cross-section. Also, They presented a streaklines, and 

secondary flow vectors, axial velocity fields (d and e), see figure 1.31. 

 

 
Figure 1.30: Poincaré sections at locations Lz(half unit), 2Lz and 6Lz downstream of the 

initial plane for Reynolds numbers of 150 (a–c), 200 (d–f) and 400 (g–i) [56]. 
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Figure 1.31:Streaklines (a), secondary flow vectors (b and c), axial velocity fields (d and e) 

and non-dimensional temperature fields (f and g) in a fully-developed periodic flow unit 

at Re = 200 [56]. 

The red color indicates regions of high velocity or non-dimensional temperature and the 

blue color indicates regions of low velocity or non-dimensional temperature. The yellow 

dotted line demarcates the region of reverse flow [56]. 

Tohidi et al [57] have numerically investigated the effects of chaotic mixing on heat 

transfer through modifications in the geometry of helical heat exchangers, see figure 1.32.  

 
Figure 1.32:(a) Coil with clockwise orientation; (b) coil with counterclockwise 

orientation; (c) one period of the chaotic configuration; (d) 10 periods of the chaotic 

configuration [57]. 
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They presented the Heat transfer performance by isotherms contours in different cross-

sections, see figure 1.33. Their numerical solutions revealed that the chaotic coil 

configuration displayed heat transfer enhancement of 4-26% relative to the fully 

developed Nusselt numbers in the regular coil with only 5-8% change in the pressure 

drop. 

 
Figure 1.33:Velocity contours at different cross-sections in (a) normal coil and (b) chaotic 

coil at first pitch of coil with Re =200 [57]. 

Tian and Mostafa[58] used the chaotic advection to enhance the continuous heat-hold-

cool sterilisation process. They geometry was meshed with hexahedral cells using CFX 

14.5, as shown in Figure 1.34. The authors compared the physical model with the results 

of a numerical study of EesaandBarigou, [59].Their results indicated that the chaotic flow 

process leads to faster nearly-uniform heating and cooling. 

 
Figure 1.34: Computational mesh: [58] 

1.4.1.b Non-Newtonian fluids 

Several works can be found regarding the coupling between chaotic mixing for 

rheologically complex fluids and heat transfer (El Omari et al [61] and Lester et al [60], 

Ping Li et al [62] and Waleed et al [64]. Since most fluids involved in industrial processes 

are non-Newtonian (e.g., food or chemical products), there is a crucial need to focus on 

the application and study of chaotic advection for mixing and heat transfer for these 

fluids.  
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El Omari et al. [61] investigated numerically the enhancement of both mixing and heat 

transfer in a two-rod mixer for highly viscous non-Newtonian fluids (shear-thinning, 

shear-thickening and Newtonian fluids). Chaotic flows were obtained by imposing the 

temporal modulations of the rotational velocities of the walls. The authors confirmed that 

chaotic mixing is suitable for shear thickening fluids for which it is observed a clear 

enhancement of the thermal mixing (heat extraction and homogenization), see figure 1.36.  

 

Figure 1.35:Sketch of the two-rod mixer [61]. 

 
Figure 1.36: Temperature fields and streamlines at instants t = 120 s [61]. 

Lester et al [60] studied the asymptotic scalar transport (temperature or concentration) 

within both Newtonian and non-Newtonian fluids over the control parameter space of a 

chaotic flow, the Rotated Arc Mixer (RAM). The goal of their analyses was to utilize the 

composite spectral method to quantify and optimize heat or mass transfer within a 

chaotic configuration. 

Shear-thinning fluid and heat transfer effects for laminar flow in heat sinks with dimples 

and protrusions were numerically investigated by Ping Li et al [62]. They showed that the 

heat and mass transfer enhancement due to the behavior of non-Newtonian fluids is 

mainly because of the variation of dynamic viscosity of working substances and the 

secondary flow in the dimpled/protruded passage with flow separation.  

More Recently, Waleed et al [63] experimentallystudied the characteristics of convective 

heat transfer and fluid flow within a square cross-section serpentine channel for two types 

of polymeric fluids, shear-thinning and constant-viscosity Boger solutions. They found 

that the normalized values of non-dimensional pressure drop increase monotonically with 

increasing Weissenberg number. 

1.5 Entropy generation 

1.5.1 Straight ducts 
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1.5.1.a Newtonian fluids 

Recently, entropy generation has been used as an index for evaluating the significance of 

irreversibility related to heat transfer and fluid friction in a thermal engineering. Based on 

the concept of efficient exergy use and minimal entropy generation principal, optimal 

designs of thermodynamic systems have been widely proposed from the viewpoint of 

thermodynamic second law [64].To enhance the heat transfer efficiency of Newtonian 

fluid in ducts, the rate of entropy generation must be effectively controlled. Bejan [64] 

presented a method for calculating the entropy generation in a flow field and proposed a 

minimum entropy generation principle. 

Entropy generation and second law analysis for the laminar flow passing through straight 

duct was studied by Yilbas et al [65]. They developed the dimensionless quantities for the 

entropy generation, heat transfer and irreversibility. They found that the irreversibility 

increases with increasing Prandtl number. 

Extended performance criteria based on the augmentation entropy generation numbers 

for enhanced heat transfer surfaces for ducts with constant wall temperature was 

developed by Zimparov [66]. 

Abbassi et al. [67] reported the entropy generation in straight channel flow. They found 

that the maximum entropy generation is localized at areaswhere heat exchanged between 

the walls. In the similar manner, Nourullahi et al. [68] analyzed the entropy generation and 

Nusselt number in Poiseuille–Benard channel flow. Their result showed that the Nusselt 

number changes very slightly and it is almost constant for low values of inclination angle. 

The heat transfer entropy generation is localized at areas where heat exchanged between 

the walls and the flow has a maximum value.  

Chen et al [69] performed a numerical study of entropy production of mixed convection 

flow in a vertical channel. Their numerical results showed that the entropy generation rate 

had a minimal value near the centerline of the channel. 

Chen et al [70] studied a the heat transfer and entropy generation within a fully developed 

flow in a vertical duct. Their simulations focus specifically on the effects of the mixed 

convection dimensionless parameter, Brinkman number on the velocity distribution, 

temperature distribution, Nusselt number and entropy generation through the channel. 

Yang, and Wu [71] numerically investigated the mixed convection flow and heat transfer 

in a vertical rectangular duct under the effect of assisted buoyancy at a constant Prandtl 

number. They found that the reversal flow to occur in the entrance region when 

buoyancy parameter exceeds a certain critical value, which strongly affects the 

temperature field. Then, they presented the effect of the opposed buoyancy force on the 

global entropy generation due to heat fluid friction. 

Chen [72] studied the heat transfer performance and entropy generation characteristics of 

a mixed convection in a vertical subject to viscous dissipation effects. Their results 

showed that the presence of the magnetic field increases the Nusselt number. Moreover, 

the average entropy generation number also reduces when a magnetic field is applied. 
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1.5.1.b Non-Newtonian fluids 

Since there are many applied applications related to non-Newtonianfluids, the valuation 

of their heat transfer characteristics isvital for accomplishing successful thermal system 

designs. Mahmud and Fraser [73] [76] carried out the second-law analysis of heat transfer 

inducts for non-Newtonian fluids. They neglected the viscous dissipation term in the 

energy equation. The rationale of neglectingviscous dissipation effect in the energy 

equation (first-lawanalysis) isdubious as the fluid friction irreversibility due to frictional 

heating ofviscous dissipation plays a vital role in the second-law analysis.  

Luna et al. [74] reported a steady stateanalysis of a power law fluid in the entrance region 

of a thermallydeveloped flow with uniform heat flux. 

Entropy production due to the flowof a non-Newtonian fluid withvariable viscosity in a 

straight pipe carried out by Yilbas and Pakdemirli [75]. They presented analytical solutions 

for velocity and temperature distributions. Then, theycomputed the entropy generation 

number for different non-Newtonian parameters, viscosity parameters, and Brinkman 

numbers.  

Numerical simulations to examine wall slip effects on Newtonianand non-Newtonian 

fluid flows in microchannelswere performed by Sunarso et al [77]. They showed that the 

different vortex growth could be observed in micro scale due to theinclusion of wall slip, 

which qualitatively matched with experimentalresults. Barkhordari and Etemad [78] 

analyzed a numericalstudy on convective heat transfer in microchannels at both constant 

wall temperature and constant wall heatflux boundary conditions. Their computational 

results showed thata change in the slip coefficient decreased Poiseuille number 

whileincreasing local Nusselt number. 

Second low analyses of non-Newtonian fluids for laminar and fully developedflow in 

straight channel with viscous dissipation effects provided by Saouli and Aiboud [79]. 

Effect of Brinkman number and flow behavior index on velocity, temperature and 

entropy generation rate were discussed. They found that the entropy generation 

irreversibility dominated in Pseudoplastic fluid by the heat transfer, whereas, for dilatant 

fluid irreversibility due to fluid friction is more dominated. 

An analytical study of entropy generation for fully developed non-Newtonian flow 

through microchannels, in which the effects of viscous dissipation on the entropy 

production were investigated by Hung [80]. Their results indicated that under 

certainconditions the viscous dissipation effect on entropy generation in microchannels is 

significant and should notbe neglected. 

Ragueband Mansouri[81] proposed a numerical analysis to study the heattransfer 

characteristics of a laminar flow of a power law fluidwith viscous dissipation. They found 

that in the fully developedregion, Nusselt number increases with increase in aspect ratio. 

Chen et al. [82] studied heat transfer characteristics of non-Newtonian powerlawfluid 

flow in a straight channel and reported dimensionless temperaturedistributions and fully 
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developed Nusselt numbers for differentparameters such as flow behavior index, ratio of 

Joule heating to surface heatflux, and Brinkman number. 

Vishal [83] investigated the viscous dissipation effect on entropy generation for non-

Newtonian fluids in laminar fluid flow through a microchannels subjected to constant 

heat flux. He investigate the effect of various friction coefficients of the slip laws on 

entropy generation rate and Bejan number.  

1.5.2 Complex channels 

1.5.2.a Newtonian fluids 

As a good heat-exchanger passage, the chaotic channels should provide the most effective 

heat transfer performance so that the available energy can be utilized efficiently. However, 

the heat transfer enhancement in a thermal system is always achieved at the expense of 

the increase of friction loss. Some typical examples include: the irreversibility analysis in 

various irregular geometries for Newtonian fluids with constant wall heat flux and laminar 

flow performed by Sahin [84] [85]; the optimizing work for the helical coils or double-sine 

duct by Ko and Ting [87] [88].  

Second law of thermodynamics for laminar convection inside an inclined wavy enclosure 

was numerically performed by Shohel [86]. They presented the contours of Bejan to 

understand the development of entropy generation under the effects of inclination angle, 

see figure 1.37. 

 
  (a)                         (b)                         (c) 

 
 (d)                        (e)                          (f)  
Figure 1.37:Contours of Bejan numberatdifferent angles of inclination (a) θ = 45°, Bemax= 

1, Bemin= 0.82; (b) θ = 90°, Bemax= 1, Bemin= 0.97; (c) θ = 135◦, Bemax= 1, Bemin= 0.82; (d) θ 

= 255◦, Bemax= 1, Bemin= 0.19; (e) θ = 270◦, Bemax= 1, Bemin= 0.21; (f) θ = 315◦, Bemax= 1, 

Bemin= 0.19. [86] 

Computational Fluid Dynamics simulation of entropy generation were investigated by Ko 

and Ting [89] for incompressible laminar shear flows in heated curved rectangular duct.  

They present the effects of three important factors, including Dean number, external wall 

heat flux and cross-sectional aspect ratio, on entropy generated from frictional 

irreversibility and heat transfer irreversibility. They compared various rib arrangements 
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and discovered that mounting a single rib on the heated wall could reduce the entropy 

generation most effectively. They results reveal that the major source of entropy 

generation in the flow fields with larger Dean number and smaller wall heat flux comes 

from frictional irreversibility; whereas for the flow fields with smaller Dean number and 

larger wall heat flux the entropy generation is dominated by heat transfer irreversibility, as 

shown in figure 1.38.  

Zimparovet al [90] optimized the performance of several classes of assumed laminar and 

fully developedflow, consisting of T- and Y-shaped ducts. Maximum thermodynamic 

performance is acieved by minimization of the entropy production for each geometry.  

 
Figure 1.38:The effects of De on entropy generation induced from heat transfer (S*

T) and 

fluid friction (S*
P) [89].  

Yonghua et al [91] studied the second low thermodynamics for laminar thermal 

augmentation with conical strip inserts in horizontal circular tubes. They use horizontal 

circular tubes fitted with non-staggered and staggered conical strip inserts as physical 

model, see figure 1.39. Comparisons of local entropy generation rates between non-

staggered alignments and staggered ones were conducted, see figure 1.40. They found that 

the tubes with non-staggered strips behave better than those with staggered ones.  

 

http://www.sciencedirect.com/science/article/pii/S0017931005006630


CHAPTER 1: Literature Review  

 

- 42 - 
 

 
Figure 1.39:Schematics of enhanced tubes with conical strip inserts. (a) Non-staggered 

alignment; (b) staggered alignment [91]. 

Mohammad et al [92] investigate the entropy generation in a helically coiled tube in 

laminar flow under a constant heat flux. Their results showed that the effect of different 

flow conditions such as mass velocity, saturation temperature, and heat flux on 

contributions of pressure drop and heat transfer in entropy generation.  

 

 
Figure 1.40: Contours of local entropy generation rate induced by viscous flow at 

longitudinal plane and cross sections for enhanced tubes with (a): staggered strips and (b): 

non-staggered strips of different geometry angles [92]. 

Recently, Jundika et al [93] numerically investigated the heat transfer and entropy 

generation of laminar flow in helical tubes with various cross sections, see figure 1.41.. 

They summarized the advantages and disadvantages of straight and coiled tubes for 

various cross-sectio8n channels, as shown in table 1.2. 



CHAPTER 1: Literature Review  

 

- 43 - 
 

Table 1.2: Advantages and disadvantages of straight and coiled tubes heat exchanger [93]. 

Straight tube Coiled tube 

Lower heat transfer performance 
Circular < ellipse < square 

Lower pressure drop (pumping  power) 
Circular < ellipse < square 

Higher total entropy generation 
Circular < ellipse < square 

Higher entropy generation due to heat transfer 
Circular < ellipse < square 

Lower entropy generation due to viscous 
dissipation 

Circular < ellipse < square 

Higher heat transfer performance 
Circular < ellipse < square 

Higher pressure drop (pumping power) 
Circular < ellipse < square 

Lower total entropy generation 
Circular < ellipse < square 

Lower entropy generation due to heat transfer 
Circular < ellipse < square 

Higher entropy generation due to viscous 
dissipation 

Circular < ellipse < square 

 
Figure 1.41: Schematic representation of (a) helical circle, (b) helical ellipse, (c) helical 

square tubes [93]. 

1.5.2.b Non-Newtonian fluids 

Effects of temperature-dependent viscosity on entropy generation in curved square 

micro-channel for laminar flow were numerically investigated by Jiangfeng [94]. They 

demonstrated the variations of heat transfer entropy generation number with the mass 

flow rate for the cases of aniline heated and cooled, see figure 1.42. They found that 

entropy generation number due to heat transfer decreases as the mass flow rate increases.  

 
Figure 1.42: The relations of heat transfer entropy generation number with the mass flow 

rate in the cases: (a) aniline is heated and (b) aniline is cooled [94]. 
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1.6 Conclusion 

In conclusion, this literature review has illustrated some analytical, numerical and 

experimental works for laminar flow of non-Newtonian fluids as working fluids in strait, 

curved and complex geometries. Most experimental and numerical studies regards the 

effect of fluid behavior on the flow control, thermal mixing by chaotic advection, and the 

effect of external flow on the enhancement of heat transfer and second law analyses have 

been also outlined.We see that the literature is very in rich with the papers that dealing the 

behavior of the Newtonian fluids in straight and complex geometries while the papers 

which treat the behavior of the non-Newtonian fluids in complex geometry are very few. 

So our contribution in this thesis is to outline the behavior of the non-Newtonian fluids 

in complex geometry called here C-shaped geometry. 
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CHAPTER 2 

Geometries Description and Numerical  

Methodology 

2.1 Introduction  

In this chapter, theoretical bases and numerical methodology are introduced. First,   the 

considered geometries and the governing equations are discussed. Then, numerical 

methodology is described and mesh methodology is investigated. 

2.2 Description of the geometry  

Three dimensional chaotic geometry and straight channel are considered for laminar non-

Newtonianfluid. Each geometry is characterized by a square cross-section, and the 

hydraulic diameter Dh is 1.5 cm. The unfolded length of one period C-shaped geometry is 

equal to 13.5 cm.Figure 1 presents the basic elements of the two considered geometries 

called period(C-shaped and the straight channels).  

 
 

Figure 2.1: Schematic representation of the studied geometries: (a) straight channel, (b) 
C-shaped geometry. 

2.3 Governing equations  

The mass conservation and Navier–Stokes equations were numerically solved using the 

commercial CFD code Fluent© and are given by the following equations respectively 

[95]: 

 
(2.2) 

Where Vis the velocity vector. 

0Vdiv


(b) 

(a)  

 

 (b) 
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(2.3) 

Where 𝜌 is fluid density, 𝜏(Pa) is the shear stress and P is the pressure. 

 
(2.4) 

The constitutive relation between the shear stress, 𝜏, (Pa) and the shear rate,�̇�, (s−1) can be 

described by a simple power-lawexpression [96]: 

      𝜏 = 𝑘 �̇�𝑛                            (2.5) 

Where, 𝐤 (Pa.s-1) is the power-law consistency index (k=0.1Pa.s-1) and n is the power-law 

index which varies between 0.3 to 1 (Carboxymethyl cellulose (CMC) 7H4C at a mass 

concentration of 1%) [25].  

The apparent viscosity of the work fluid is given by: 

μapp = k γ̇n−1             (2.6) 

The applied boundary conditions are:  

• at the inlet section, uniform velocity profile equal to the mean velocity and the 

temperature equal to Ts = 300 k.  

• at solid walls, no–slip conditions and a uniform wall heat flux (q” = 100 k/m3).  

• at the outlet section, the pressure outlet condition is considered.  

2.4 Generalized Reynolds number 

For the case of laminar non-Newtonian power-law flow, Kozicki et al [98] has proposed a 

parametric method to generalize the Reynolds number for complex section flow. This 

method based on the generalization of Rabionwich-Mooney equation with two 

parameters geometric, including the special case of power-law fluids in arbitrary ducts 

having a constant cross section. For rectangular section, they introduced a new 

generalized Reynolds number as flow:  

Reg = 
𝜌𝑈𝑖

2−𝑛𝐷ℎ
𝑛

[8𝑛−1 (𝑏∗ +
𝑎∗

𝑛
)
𝑛

𝑘]
 

(2.7) 

Where, a* and b* equal 0.2121and 0.6771 respectively, for square channel,  𝜌 is thedensity 

of fluid (kg m−3), n is the power-law index, 𝑘is the power-law consistency index and Ui 

(m/s) is the inlet velocity. Table 2.1 presents these values for a rectangular channel as a 

function of the aspect ratio α*. 

Table 2.1:Geometric constants a* and b* for rectangular ducts [99]: 

α* a* b* α* a* b* 

1.00 0.2121 0.6771 0.45 0.2538 0.7414 

0.90 0.2129 0.6785 0.35 0.2809 0.7750 

0.80 0.2155 0.6831 0.25 0.3212 0.8183 

0.75 0.2178 0.6870 0.20 0.3475 0.8444 

0.70 0.2208 0.6921 0.15 0.3781 0.8745 

0.65 0.2248 0.6985 0.10 0.4132 0.9098 




divPVV 
 1

 .

TTVc    .
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2.5Pressure losses characteristics 

The pressure losses of both straight and C-shaped channels are characterized by the 

evolution of the friction coefficient. The hydrodynamic performance of all geometries is 

characterized by the evolution along the curvilinear coordinate s of the local friction 

coefficient f, defined as [99]: 

 

(2.8) 

Where dp/ds is the local pressure gradient along the curvilinear coordinate of the channel. 

Because this parameter depends on the generalized Reynolds number, it is preferable to 

follow the evolution of the local Poiseuille number: 

 
(2.9) 

The mean Poiseuille number is calculated as: 

 

 

(2.10) 

Where L is the total length of the geometry and s is the axial coordinate. 

On the other hand, Wheeler and Wissler [9] investigated an analytical expression of 

Poiseuille number for the fully developed laminar flow of a non-Newtonian power-law 

fluid (0.4 < n < 1.) through a square straight duct: 

 

 

(2.11) 

2.6 Convective heat transfer characteristics 

Heat transfer coefficient,ℎ, for wall heat flux boundary condition is given as: 

ℎ =
𝑞"

(𝑇𝑏 − 𝑇𝑤)
 

(2.12) 

Where, q” (w/m2) is the wall heat flux, Tb(k) is the mean bulk temperature fluid over the 

cross-sectional area and Tw(k) is perimeter average wall temperature. 

These two temperatures are defined as: 

𝑇𝑤(𝑠) =
1

𝑃
∫ 𝑇𝑤
𝑃

𝑑𝑝 (2.13) 

𝑇𝑏(𝑠) =
1

𝐴𝑈𝑖

∬ �⃗� . �⃗� 𝑇. 𝑑𝐴

𝐴

 
(2.14) 

The mean heat transfer coefficient,ℎ𝑚𝑒𝑎𝑛, defined as: 

2

2

i

h

U

D
ds

dp

f
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ℎ𝑚𝑒𝑎𝑛 =
1

𝐿
∫ℎ(𝑠)𝑑𝑠

𝐿

0

 

(2.15) 

The local Nusselt number given by the following equation: 

𝑁𝑢𝑙𝑜𝑐𝑎𝑙 = ℎ(𝑠)
𝐷ℎ

𝜆
 

(2.16) 

Where, 𝜆is the thermal conductivity of the fluid(𝜆 = 0.614𝑊. 𝑠−1. 𝐾−1). 

And the mean Nusselt number is defined by: 

 

(2.17) 

2.7 Thermal Mixing efficiency  

2.7.1 Probability density function PDF (T) 

The probability density function PDF (T) is the probability (in %) of the scalar 

temperature T to be present between two values; the PDF (T) in an interval [Ta, Tb] at the 

outlet is equal to the number of mesh cells in which T values are within [Ta, Tb] divided 

by the total number of cells on the outlet cross section.  

2.7.2 Mixing degree (Md) 

Mixing degree (𝑀𝑑)of two fluids (hot and cold), given in the following equation is an 

efficient parameter for quantifying scalar mixing: 

𝑀𝑑 = 1 −

√
1

𝑁
∑ (𝑇𝑖 − �̅�)2𝑁

𝑖=1

𝜎0

 

(2.18) 

Where N is thenumberofpointsontheplane, 𝑇𝑖is temperature at the node i, 𝑇 ̅is the mean 

temperature at the cross section and 𝜎0is the standard deviation at the inlet section. The 

values of 𝑀𝑑range from zero for the no mixture case, to 1for fully mixed flows. 

2.7.3 Ratio of mixing  

A second criterion to quantify the thermal mixing by the calculation of the ratio over flow 

cross-section (and calculated from the entry section). Therefore, we proposed the 

normalized ration (R):  

R = (

Tmin
Tmax

−R0

1−R0
)                                                  (2.19) 

WhereR0 is the ration at the inlet section.For a fully mixed flow, R = 1. The uniformity of 

mixing in flow cross-sections is qualified by examining of the temperature contours.  

2.8 Numerical methodology 

The conservation equations for mass, momentum and energy were solved by using 

computational fluid dynamics (CFD) code, ANSYS Fluent®. The standard scheme is 



L

localmean dsNu
L

Nu
0

1
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used for pressure discretization, and the SIMPLE scheme is employed for pressure-

velocity coupling. The momentum and energy equations are solved with second-order up-

wind scheme. The computations were considered to be converged once all the scaled 

residuals are less than 10-7 and the global imbalances, representing overall conservation 

don’t exceed 10-5. 

2.8.1 Grid mesh sensibility 

To perform grid independence studies, four grids were used for simulations of non-

Newtonian fluid flow in the C-shaped geometry considering a steady laminar flow and 

forced convection, at a given generalized Reynolds number Reg = 200and power-law 

index n = 0.5. All the structured elements used were quadrilateral for a three-dimensional 

chaotic geometry, as shown in figure 2.2.  

The grids are ranging from 30 to 60 nodes in the x and y direction, and from 30 to 60in 

the z direction. The Nusselt number, the Poiseuille number, velocity and temperature 

profiles were assessed for increasing mesh densities.  

Figures 2.3 and 2.4 show the evolutions of static temperature and the axial velocity versus 

x and y coordinates for various grids at the center line of the outflow section. It can be 

seen that the temperature profiles in both x and y directions are superimposed for all 

mesh densities. This illustrates that the temperature profiles are not affected by the grid 

mesh. However, it can be observed that the velocity profiles are sensitive to the grid mesh 

except for the mesh densities (50x50x50) and (60x60x60) where no significant difference 

is seen. As consequence, the (50x50x50) grid is chosen as the optimal grid mesh for the 

computation. 

Table 2.2 presents the mean values of the Poiseuille number between inlet and outlet 

sections of the C-shaped geometry and the values of the local Nusselt number at the 

outlet section for all grid densities. It shows that the differences between the two grids 

mesh (50*50*50) and (60*60*60) of the Poiseuille and the Nusselt numbers change by 

less than 0.24% and 1.4% respectively. This presents another argument to select the 

(50*50*50) grid mesh as the optimal mesh density for the rest of the computations. 

  

Figure 2.2a:Inside view of the grid on the 
wall chaotic geometry. 

Figure 2.2b:  Grid of the model 
geometry cross-section. 
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(a) 

 
(b) 

Figure 2.3: Temperature profiles for different mesh densities for n = 0.5 and Reg = 200 at 

the outlet section of the C-shaped channel, (a) X-Coordinate (b) Y-coordinate. 

 
(a) (b) 

 

Figure 2.4: Axial velocity profiles for different mesh densities for n = 0.5 and Reg = 

200 at the outlet section of the C-shaped channel, (a) X-Coordinate (b) Y-coordinate. 

Table 2.2:Mean Poiseuille number and local Nusselt number for different mesh densities 

for n = 0.5 and Reg = 200 in the C-shaped channel. 

Mesh Po mean Error/ 60 Nu local Error/ 60 

30x30x30 218.270 0.13% 41.741 13.56% 

40*40*40 219.270 - 0.32% 45.8307 5.09% 

50*50*50 219.099 - 0.24% 47.6098 1.41% 

60*60*60 218.561 0.00% 48.2904 0.00% 

2.9 Conclusion 

In this chapter, geometrical description and the governing equations are presented. Then, 

numerical methodology and the gridmesh sensibility are discussed for hydrodynamic and 

the heat transfer characteristics of C-shaped channel for non-Newtonian laminar flow. 
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CHAPTER 3 

Hydrodynamic, heat transfer,  

and thermal mixing performances 

3.1 Introduction  

In this chapter, flow and thermal performances for power-law non-Newtonian fluid are 

studiedin detail for the straight and the C-shaped geometries. These performances are 

investigated as function of generalized Reynolds number ranging from 50 to 200 and 

different power-law index (n ≤ 1).  

3.2 Validation 

In order to check the reliability and the precision of the CFD computation, a comparison 

with other results provided in the literature is carried out for hydrodynamic and thermal 

flow cases.  

3.2.1 Hydrodynamic flow problem 

Fully developing laminar steady flow of shear thinning fluid in straight channel is 

considered. Figure 3.1 presentsanumerical profiles of laminar flow in straight circular tube 

witch compared with the analytical profile for different power-law index (n = 1 and 1/3). 

The numerical profile tends towards a theoretical value. The comparison is quite good for 

both cases of power-law index. 

 
Figure 3.1: Axial velocity profiles for n = 1 and 1/3. 

Moreover, another numerical study for validation of results have been performed for the 

case of fully developed laminar flow in straight square channel, and found to agree quite 

well number, as shown in Table 3.1. 

Tables 4.1 presents a comparison of the values of the Poiseuille number obtained in the 

present study and those provided in the literature for large range of a power-law index 
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(n= 0.3-1).The numerical values barely differ from the case of the theoretical values 

where the maximum difference is less than 0.5%. These values are in fair agreement and 

the comparison is satisfactory and reveals a very good concordance. 

Table 3.1: Poiseuille number, Po, of fully developed laminar flow in square straight 

channel for different power-law index (n = 0.3-1). 

n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 

Present work 56.90 47.47 39.32 33.00 27.52 22.90 18.99 15.66 

Wheeler and Wissler [9] 56.92 47.53 39.67 33.07 27.54 22.89 18.97 15.65 

Seppo [46] 56.90 47.52 39.65 33.06 27.53 22.88 18.96 15.64 

Simsoo et al [11] 56.90 47.89 40.29 33.89 28.49 23.91 20.01 - 

Kozicki et al [98] 56.91 47.88 40.26 33.82 28.37 23.75 19.82 - 

Sayed-Ahmed [50] 56.90 - - - - 22.88 - - 

Ray [47] 56.90 - - - - - - - 

Shah [36] 56.90 - - - - - - - 

Error (%)/ [9] 0.007 0.09 0.82 0.17 0.05 -0.06 -0.14 -0.14 

3.2.2 Thermal flow problem 

The numerical solution procedure of heat transfer characteristics has been reported 

andvalidated thoroughly by comparing the present results with the results of Cotta [103] 

and Wheeler and Wissler [9], for fully developed laminar flow of Newtonian and non-

Newtonian fluids in straight square ducts, subjected to wall heat flux. Where the 

comparison regarding the local Nusselt number (Nu) for straight circular duct, as shown 

in figure 4.2 and mean Nusselt number for straight square duct, as shown in table 4.2 for 

different power-law index with the corresponding results available in the literature.  

An excellent agreement is seen to exist between the present numerical values and the 

literature values of Nusseltnumber. Based on these comparisons, it is perhaps reasonable 

to conclude that the present results are reliable to within ±0.4%.  Deviations of this order 

are not at all uncommon in numerical studies and arise due to the differences in the flow 

schematics, problem formulations, grid and/or domain sizes, discretization schemes, 

numerical methods, etc. 

 
Figure 3.2: Local Nusselt number of fully developed laminar flow in circular straight 

channel for n = 1/3. 
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Table 3.2: Mean Nusselt number of fully developed laminar flow in square straight 

channel for different power-law degree (n = 0.5-1). 

N   1  0.9    0.8  0.7   0.6   0.5 

Present work 3.0704  3.1140 3.1463  3.1832 3.228  3.2818 

Wheeler and Wissler [9] 3.0950 3.106 3.135 3.171 3.216 3.274 

Error (%)/[9] 0.2407 - 0.258 - 0.360 - 0.386 - 0.373 - 0.238 

3.3 Behavior of the Local Physical Process of the velocity field   

The velocity field depends greatly to the velocity gradient components (∂U i)/(∂xj ). 

Consequently, these components contribute to the fluid kinematic flow such as vorticity 

rate, deformation rate, rotation rate and stretching/compression of the vorticity. It should 

be noted that these parameters either they do not exist or they are very small in the 

straight channel because the flow is laminar and establishment. The main phenomena that 

can occur in the Straight channel, where the regime is established and laminar, are the 

shear stress and/or rotation of the particle around itself. This weakens the level of heat 

transfer in the fluid because the transfer mode is limited to the heat conduction way.  

3.3.1 Stretching /compression of the vorticity 

The transport equation of the vorticity is given by: 

𝜕Ω⃗⃗ /𝜕𝑡 + �⃗� . ∇̿Ω⃗⃗ = Ω⃗⃗ . ∇̿�⃗� + 𝜈𝛥Ω⃗⃗  (3.1) 

The term Ω⃗⃗ . ∇̿V⃗⃗  induces formation of vortex structures in the flow with different sizes by 

generating the stretching and compression (folding) vortex in the flow [100], see figure 

3.3. The stretching and compression phenomena act simultaneously on the vortex 

dimensions. At a given time, the stretching operation, increases the vortex length and 

decreases its cross section, while the compression decreases the vortex length and 

increases its cross section. These phenomena are generated as a consequence of the 

conservations of the mass and angular momentum.  

 

 

 

 

 

Figure 3.3: Illustration of the stretching and compression operations 

The appearance of the stretching and folding in the flow often gives rise to chaotic 

behavior. Stretching results in nearby points diverging, folding results in distant points 

being mixed together. These operations in the flow destroy the thermal and dynamic 

Compression 

Stretching 
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boundary layers and prevent its reformation. The boundary layer being a barrier against 

the parietal thermal transfer, its destruction enhances considerably the heat transfer [61]. 

On the other hand, these operations increase the contact area between fluids to be mixed 

even in the existence of the interfacial barrier as surface tension [55]. To characterize this 

behavior in the flow, the stretching and compression coefficients of the vortex  𝛼was 

estimated. It is defined by the following expression: 

𝛼 =
�⃗� . �̿�. �⃗� 

𝛺2
 

(3.2) 

Where �̿� is the deformation tensor and �⃗�  is the vorticity vector. At any location where 

𝛼 > 0 , the vortex stretching prevails on vortex compression [100].𝛼+ presents the 

arithmetic average of the positive values of the stretching coefficient and 𝛼− presents the 

arithmetic average of the negative values of the compression coefficient. 

Figures 3.4 and 3.5, present respectively the evolutions of vortex stretching coefficient 

(𝛼+) and compression coefficient (𝛼−) as function of generalized Reynolds number Reg 

for different power-law index n ranging from 0.5 to 1.  

 
Figure 3.4: Evolutions of the vortex stretching in the fluid flow with generalized 

Reynolds number in the C-shaped channel for varying n. 

 
Figure 3.5: Evolution of the vortex compression in the fluid flow with generalized 

Reynolds number in the C-shaped channel for varying n values. 
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These coefficients increase constantly with the increase of the generalized Reynolds 

number. While going towards the great values of n, the stretching and folding processes 

become very important. Because when the n values are small the fluid is more viscous and 

the fluid needs an additional energy to create a significant agitation in the fluid. At low 

generalized Reynolds number values, the chaotic behavior is not yet active and so these 

phenomena are identical for all values of n.   

3.3.2 Deformation (Strain rate) and rotation  

Both mechanisms (deformation and rotation) are complementary in the mixing 

operations. The rotation process gives rise to three-dimensional movements of the fluid 

particles and it can transport the fluid particles to regions of high shear rates. The rotation 

process realizes a good macroscopic mixing while the deformation process achieves a 

good quality of mixing by molecular diffusion. For this aim, the chaotic geometry can be a 

potential solution for increasing the deformation and rotation rates at once. An 

examination of the fluid behavior index effect on the deformation and rotation rates is 

performed. Evolutions of the mean deformation and rotation rates (Dmean 𝑎𝑛𝑑 Ωmean) 

in the C-shaped channel as function of the generalized Reynolds number ranging from 50 

to 200 are presented in figure 3.6 and 3.7. The two parameters, rotation and deformation, 

are defined by the following equations [101]: 

𝐷 = [2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
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𝜕𝑦
)
2

+ 2(
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2
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+
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+
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     (3.3) 

𝐷mean =
1

℧
∫𝑆𝑑℧                                                         (3.4) 
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]
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2

                               (3.5) 

𝛺mean =
1

℧
∫𝛺𝑑℧                                                       (3.6) 

Where ℧ represents the total volume of the fluid in the channel. 

Figure 3.6 shows the evolutions of the deformation rate for different generalized 

Reynolds number (Reg = 200 to 50) in C-shaped channels. As can be seen from this 

figure, the deformation increases by an increase in generalized Reynolds number, where 

the deformation rate is maximum for the Newtonian case (n = 1). This explains that this 

behavior is kinematic and is accentuated by the fluid behavior index. 

As the power-law index increases, the deformation rate becomes larger inside the 

geometry. Therefore, the deformation rate is higher for the Newtonian case (n = 1). 

Evolutions of the mean rotation rate (𝛺mean) in the C-shaped channel as function of the 

generalized Reynolds number ranging from 50 to 200 are presented in figure 3.7.  

As it can be observed, when the power-law index increases, these parameters are more 

vigorous, and the flow becomes more agitated and sheared. Besides, the flow in the 

Newtonian case (n = 1) exhibits very high rates of rotation compared to the other non-

Newtonian cases (n = 0.5 to 0.9). At high values of generalized Reynolds number, the 
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rotation rates are more important in Newtonian case compared to the other fluid. The 

cases of low values of Reg and n have qualitatively the same behavior in terms of 

deformation and rotation rates. The difference becomes noticeable when the Reynolds 

number exceeds the value of 50. 

 
Figure 3.6: Evolution of the deformation rate with different generalized Reynolds 

number in C-shaped channel. 

 
Figure 3.7: Evolution of the rotation rate in the fluid flow with generalized Reynolds 

number for different power-law index. 

3.3.3 Vortex intensity 

When the fluid passes through the geometrical perturbation in the considered channel, a 

secondary flow is created by the presence of a centrifugal force. The secondary flow is 

more intense for the disturbance having a complex shape. In order to estimate the 

secondary flow, the vortex intensity was calculated at the exits of the C-shaped channel as 

defined by [101]: 

Ωaverage =
1

𝑆
∫|𝛺𝑧|𝑑𝑆                                                 (3.7) 

S is the cross section area and Ω𝑧 is the vorticity at the flow cross section. Due to the 

secondary flow effect, the transversal movements of the particles increases and the axial 

dispersion decreases, which consequently enhanced the heat transfer [101]. 
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In order to show the effect of power-law index and generalized Reynolds number Reg (n) 

on the vortex intensity, the figure 3.6 presents the evolutions of the vortex intensity for 

different generalized Reynolds numbers with power-law index ranging from 0.5 to 1. It is 

noticed that the vortex intensity increases with the growth of the generalized Reynolds 

number. For the cases of n = 0.5 and n = 0.6, the change of the maximum absolute of 

vortex intensity is changed with generalized Reynolds number by about 23%. Therefore, 

the maximum vorticity are given at high power-law index (Newtonian case). However, the 

existence of much great secondary flows in Newtonian fluid case compared to those 

exhibited in the cases of non-Newtonian fluid. For low generalized Reynolds number and 

low power-law index, the evolutions are very close to each other.  Therefore, the 

magnitude of the vortex intensity has less effects of secondary flow, and the fluid can 

easily flow inside the geometry and thus a vortex is not created. 

 
Figure 3.8 :Variations of the vortex intensity with generalized Reynolds number for the 

different power-law index at the outlet section. 

3.3.4 Helicity 

The Helicity, defined as the inner product of velocity and vorticity, characterizes the 
helical motions. Non zero-Helicity declares that the fluid particles move along their axis 
of rotation and the flow might be expected to be less complex than flows withzero 
Helicity. 

𝐻 =
�⃗� . �⃗� 

𝑉𝛺
 

  
(3.8) 

Dimensionless Helicity is used in the present work to describe the nature of the 

secondary flows (chaotic or regular), which occur at the exit of each perturbation area 

(middle and outflow sections).  The dimensionless Helicity value is bounded between -1 

and +1. For both limit values -1 and +1, the fluid flow is considered fully chaotic. Figures 

3.9 shows the dimensionless Helicity contours of the C–shaped channel, for various 

generalized Reynolds numbers with different values of power-law index (n = 0.5 and 1).  
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Figure 3.9: Helicity contours, (a) middle cross section (b) outlet section. 

3.4 Flow characteristics 

In this section, the effects of power-law index (n) and generalized Reynolds number (Reg) 

on velocity field for each cross section within straight and C-shaped channels are 

investigated.  

3.4.1 Influence of power-law index on axial velocity  

To discuss the velocity field, contour maps of the axial velocity distributions of different 

cross sections are presented, for given generalized Reynolds number Reg = 100 and 

power-law index (n = 0.5 to 1) is increases as fluid behavior index.  

Figure 3.10 presents the axial velocity contours for generalized Reynolds number Reg = 

100 and power-law index ranging from 0.5 to 1, in outlet cross section of the straight 

duct. 
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It can be seen clearly that, there is no secondary flows appeared in the outlet cross 

section. So, the momentum transfer is limited only to the molecular diffusion mode for all 

cases of the power-law index (n). 

n = 1 n = 0.9 n =0.8 

   

n = 0.7 n = 0.6 n =0.5 

   

Figure 3.10: Axial velocity contours at the outlet section of the straight channel for 

generalized Reynolds number Reg = 100, with n = 0.5 to 1. 

 

Figure 3.11 shows the axial velocity contours of C-shaped channel  for generalized 

Reynolds number Reg = 100 and power-law index ranging from 0.5 to 1, in three different 

cross sections (S1: inlet, S2: middle and S3: out flow sections). For all cases of different 

power-law index, the bulk induced fluid flow throughout the middle sections and two 

small cells is formed at the top wall and the opposite one, where the flow pattern is 

changed drastically in out flow section.  

The fluid particles in outlet section have larger centrifugal force than other regions due to 

the chaotic advection. The intensity of secondary flow increases with increase in the value 

of n. It is evident from the figure that as the secondary flow becomes more skewed 

toward the wall of the geometry. These changes in pattern for different power-law index 

and their physical implications are discussed in the next section. 

Figure 3.11 shows the secondary flow vectors of fluid particles from central to near wall 

regions in the outflow section for the straight andthe C-shaped channels at given 

generalized Reynolds number (Reg = 100) with diffferent power-law index (n = 0.5 and 

1). Figure 3.12 displays that there is no secondary flows appeared in the outlet cross 

section. So, the momentum transfer is limited only to the molecular diffusion. The 

recirculation observed in C-shaped geometry is related to the sudden change of the 

direction due to the specific geometrical feature of the chaotic channel. Hence, the 

principal direction of the vectors is transformed through 90° in a short distance. 

Meanwhile, the vectors are seen to cross over each other, indicating the fluid particles are 

being mixed in the tangential direction and a significant secondary flow is formed, which 
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is able to provide an extra advantage to heat transfer perfarmance and mixing flow 

compared with flow in a straight channel, as shown in the next parts. 
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Figure 3.11 : Axial velocity countours of C-shaped channel for generalized Reynolds 

number Reg = 100 with power-law index n = 0.5 to 1. 
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Figure 3.12 :Secondary flow vectorsat a cross section of the C-shaped channel for Reg 

= 200 with n = 0.5 and 1. 

Figure 3.13 and figure 3.14 show the evolutions of the axial velocity profiles with x and y 

coordinates at the center line of the straight channel outlet section for power-law non-

Newtonian fluid for two generalized Reynolds number 50 and 150, respectively. The 

power-law-index varies from 0.5 to 1. The profiles of the velocity are symmetric and 

parabolic. The maximum velocity is located in the center of the cross section and it 

increases considerably with the increase of the power-law index. It can be seen clearly 

that, with this type of flows, particles trajectories are parallel resulting in no motion of the 

fluid particles in the transverse direction of the flow. So, the momentum transfer is 

limited only to the molecular diffusion mode. 

Figure 3.15 and figure 3.16 show the evolutions of the axial velocity with x and y 

coordinate at the center line of the outlet section in the C-shaped geometry for power-law 

non-Newtonian fluid for two generalized Reynolds number 50 and 150.The velocity 

distributions within the channel highlight the flow complexity where the symmetric nature 

of the velocity profile is disrupted under the effect of the secondary flows. The velocity 

profiles in the central core region are more latter compared to that in the straight channel. 

The location of the maximum velocity point in this type of geometry is of interest. One 

can gain the general idea about the secondary flow pattern and the intensity of secondary 

flow.  
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(a) 

 
(b) 

Figure 3.13: Axial velocity profiles at the outlet section of the straight channel for Reg=50, 

with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate. 

 
(a) 

 
(b) 

Figure 3.14: Axial velocity profiles at the outlet section of the straight channel for Reg = 

150, with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate. 

 
(a) 

 
(b) 

Figure 3.15: Axial velocity profiles at the outlet section of the C-shaped channel for Reg 

= 50, with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate. 
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The results show clearly that the effect of the secondary flows is to shift the location of 

the maximum value toward the walls. In addition, the maximum value increases as the 

value of the power-law index increases. 

 
(a) 

 
(b) 

Figure 3.16: Axial velocity profiles at the outlet section of the C-shaped channel for Reg 

= 150, with n = 0.5 to 1, (a) X-Coordinate and (b) Y-Coordinate. 

3.4.2 Influence of generalized Reynolds number on axial velocity 

In this section, a different power-law index is considered and generalized Reynolds 

number is changed to plot the flow velocity profiles for each cross sectional geometry.  

Figure 3.17 present axial velocity profiles for different generalized Reynolds numbers Reg 

= 50 to 200 and power-law index n = 0.5 and 1, corresponding to pseudoplastic and 

Newtonian fluid behaviors, respectively. As can be seen in this figure, the generalized 

Reynolds number strongly affects the velocity profiles in the C-shaped channel. 

The stream lines in the case of Newtonian fluid were much more twisted compared to the 

non-Newtonian fluid, thereby indicating the development of stronger secondary motion 

in the Newtonian fluid. For high generalized Reynolds number Reg = 200, the vortex 

structure switches from a two-cell structure to a three-cell structure. The new vortex 

rotates in a direction opposite to that of their corresponding main vortices. The cells 

become larger in size by an increase in the generalized Reynolds number, Reg. This 

suggests that the level of mixing in C-shaped channel is strongly affected by the 

extensional-flow behavior of non-Newtonian fluids. 

Figure 3.18 and figure 3.19 show the axial-velocity profiles for horizontal and vertical 

centerlines at the outlet section of C-shaped channel for Newtonian and non-Newtonian 

fluids, respectively, with various values of generalized Reynolds number (Reg = 50 to 

200). The velocity profile value steadily decreases due to decreased values of generalized 

Reynolds number for both Newtonian and non-Newtonian fluids, the flow field is a bit 

unstable for Reg = 50. The velocity profiles for non-Newtonian fluid show a marked 

decrease with decreasing of generalized Reynolds number in centerline axial velocities in 
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comparison to the Newtonian fluid, due to the increasing effect of the centrifugal force in 

the flow pattern.  
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Figure 3.17 : Axial velocity countours of C-shaped channel for power-law index n = 0.5 

and 1 with generalized Reynolds number Reg = 50 to 200. 
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Figure 3.18: Axial velocity profiles at the outlet section of the C-shaped channel for Reg 

= 50 to 200, with n = 1, (a) X-Coordinate and (b) Y-Coordinate. 
 

  
Figure 3.19: Axial velocity profiles at the outlet section of the C-shaped channel for Reg 

= 50 to 200, with n = 0.5, (a) X-Coordinate and (b) Y-Coordinate. 

3.4.3 Periodic flow 

Axial Velocity profiles of in three periods of C-shaped channel are presented in figure 

3.20 and figure 3.21, respectively. For both Newtonian and non-Newtonian cases, the 

same velocity profiles are taken in the second and the third period. Therefore, the 

pressure loss is even more important that the axial velocity of the flow is low. By 

conservation of volume flow, the maximum of axial velocity profiles are reduced due to 

the formation of fluid cells, which generate an increase in the secondary flow. 
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(a) 

  
(b) 

Figure 3.20: Axial-Velocity profiles of the C-shaped channel at the middle 

section of each period, as function of (left) X-coordinate and (right) Y-coordinate 

for: (a) n = 1and (b) n = 0.5. 
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(a) 

  
(b) 

Figure 3.21: Axial-Velocity profiles in the C-shaped channel at the outlet section 

of each period, as function of (left) X-coordinate and (right) Y-coordinate for: (a) 

n = 1and (b) n = 0.5. 

3.5 Poiseuille number 

Figure 3.22 presents the evolutions of the local Poiseuille number with the curvilinear 

coordinate for a generalized Reynolds number equal to 100 and for two values of the 

power-law index 0.5 and 1 in three periods of the straight and C-shaped channels. 

Because the flow is regular in the straight channel, the local Poiseuille number decreases 

rapidly at the entrance of the channel as function of the curvilinear coordinate and it 

tends towards an asymptotic value once the flow is established. This value increases with 

the power-law index n. In the C-shaped geometry and from the second period, the 

variation of the local Poiseuille number is periodic. This is explained by the fact that the 

velocity field is itself periodic (figure 3.23). The flow is enough disrupted due to the 

existence of the geometrical perturbations, which prevents the establishment of the 

boundary layer. This phenomenon on increases strongly the pressure drop.  

0.000 0.003 0.006 0.009 0.012 0.015
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 1
st
 Period

 2
nd

 Period

 3
rd
 Period

V
z
, 

(m
/s

)

X-Coordinate, (m)

 

 

0.000 0.003 0.006 0.009 0.012 0.015
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 1
st
 Period

 2
nd

 Period

 3
rd
 Period

V
z
, 
(m

/s
)

Y-Coordinate, (m)

 

 

0.000 0.003 0.006 0.009 0.012 0.015
0.00

0.03

0.06

0.09

0.12

0.15

 1
st
 Period

 2
nd

 Period

 3
rd
 Period

  

 

 X-Coordinate, (m)

V
z
, 

(m
/s

)

0.000 0.003 0.006 0.009 0.012 0.015
0.00

0.03

0.06

0.09

0.12

0.15

 1
st
 Period

 2
nd

 Period

 3
rd
 Period

  

 

 Y-Coordinate, (m)

V
z
, 
(m

/s
)



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances 

 

- 68 - 

 

 
Figure 3.22: Evolutions of the local Poiseuille number with the curvilinear coordinate for 

the two geometries for a power-law index of 0.5 and 1 (Reg =100). 

Figure 3.16 presents the evolutions of the mean Poiseuille number with generalized 

Reynolds number for the two considered geometries and for power-law index ranging 

from 0.5 to 1.In the straight channel when the flow regime is established, the mean 

Poiseuille number keep a constant value whatever the generalized Reynolds number for a 

given value of power-law index n. This parameter (Pomean) increases with the growth of 

the power-law index. As mentioned to above, the pressure drops are influenced by the 

intense secondary flows and accentuated with the increase of the generalized number and 

the power-law index. So, the mean Poiseuille number is very significant in the C-shaped 

than that calculated in the straight channel.  

 
Figure 3.23: Evolutions of the mean Poiseuille number with generalized Reynolds 

number in straight and C-shaped channels. 
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3.6 Heat transfer characteristics 

The axial variation of the local Nusselt number with respect to power-law index n = 1 to 

0.5, is depicted in Figure 3.24. The local Nusselt number sharply decreases at the entry 

and then fluctuates for all cases of Newtonian (n = 1) and non-Newtonian (n = 0.9 to 

0.5) fluids. This observed phenomenon is different from that of straight channel, and 

these oscillations are caused by the flow pattern which is affected by the centrifugal and 

viscous forces inducing thermal boundary layer formations at the entrance, see figure 3. 

18. 

 
(a) 

 
(b) 

(c) (d) 

Figure 3.24: Evolutions of the local Nusselt number as function of the curvilinear 
coordinate (S) in the C-shaped channel for n = 0.5 to 1 with: (a) Reg = 50, (b) Reg = 100, 

(c) Reg = 150 and (d) Reg = 200. 
In the entrance length of the straight channel, the local Nusselt number decreases strongly 

to reach an asymptotic value which depends on the power-law index (Figure 4.25). 

However, in the C-shaped geometry, the chaotic behavior exhibits a marked influence on 

heat transfer distributions in the system. Due to the continuous effect of the boundary 

layer destruction, the local Nusselt number evolves periodically with the curvilinear 

coordinate, which allowed us to make the computation in one period. Consequently, the 

0.015 0.039 0.063 0.087 0.111 0.135

20

40

60

80

100

 

 

N
u

 lo
ca

l

S-Coordinate, (m)

 n = 1      n = 0.9

 n = 0.8   n = 0.7

 n = 0.6   n = 0.5

0.015 0.039 0.063 0.087 0.111 0.135

20

40

60

80

100

 

 

N
u

 lo
c
a
l

S-Coordinate, (m)

 n = 1      n = 0.9

 n = 0.8   n = 0.7

 n = 0.6   n = 0.5

0.015 0.039 0.063 0.087 0.111 0.135

40

60

80

100

 

 

N
u

 lo
c
a
l

S-Coordinate, (m)

 n = 1      n = 0.9

 n = 0.8   n = 0.7

 n = 0.6   n = 0.5

0.015 0.039 0.063 0.087 0.111 0.135

40

60

80

100

 

 

N
u

 lo
c
a
l

S-Coordinate, (m)

 n = 1      n = 0.9

 n = 0.8   n = 0.7

 n = 0.6   n = 0.5



CHAPTER 3 :Hydrodynamic, heat transfer, and thermal mixing performances 

 

- 70 - 

 

thermal boundary layer in the chaotic channel became thin and the heat transfer is very 

sensitive to temperature changes between the wall temperature and the mean bulk 

temperature. The maximum variation of the local Nusselt number is very considerable 

and it is around 40. 

 
Figure 3.25: Evolutions of the local Nusselt number with the curvilinear coordinate in 

the two geometries for two values of the power-law index 0.5 and 1 (Reg = 100). 

In order to compare the heat transfer performances between the two geometries, the 

variation of the mean Nusselt number as function of generalized Reynolds number for 

several power-law index values ranging from 0.5 to 1 is estimated (figure 3.26). 

In the straight channel, the mean Nusselt number is independent of the generalized 

Reynolds number and keeps a constant value, which increases with the power-law index 

value n. This is due to the effect of the chaotic kinematics of the fluid flow. With a view 

to examine the increase of heat transfer rate rather than the decrease of pressure drop, we 

present on the figure 3.27 the evolutions of the ratio Numean/Pomean with the generalized 

Reynolds number for the power-law index values. When this ratio is high, the 

compromise (improving heat transfer- diminution pressure losses) is the best. In the 

straight channel, this parameter has a constant value for a given power-law index and is 

lower when n = 1. 

However, in the C-shaped geometry, the ratio Numean/Pomeanbecomes higher with the 

increase of the power-law index but it decreases with the generalized Reynolds number. 

As conclusion, the compromise (improving heat transfer- diminution pressure losses) 

provided by the C-shaped is very significant in comparison with that calculated in the 

straight channel.  
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Figure 3.26: Evolutions of the mean Nusselt number with generalized Reynolds number 
in straight and C-shaped channels power-law index (n = 1 to 0.5). 

 
Figure 3.27: Evolutions of the ratio of the Poiseuille number to the Nusselt number with 

different power-law index for straight channel and C-shaped geometry. 

3.7 Thermal mixing performances 

The thermal mixing (temperature homogenization) between hot and cold non Newtonian 

fluids is considered for two injections modes (horizontally and vertically). For this, the 

inlet cross section of each geometry is divided in two parts. The hot fluid is injected in 

one part at 330K and the cold fluid is injected in the other part at 300K, see figure 3.28. 

In this paper, we estimate the mixing performances in the chaotic geometry (C-shaped 

geometry) and its performances will be compared to those of the classical geometry, 

Straight channel. 
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           (a) Horizontal injection 

 
 (b) vertical injection 

Figure 3.28: Temperature at the inlet cross section. 

3.7.1 Temperature contours 

Figures 3.29, 3.30, 3.31 and 3.32 present the temperature contours in five cross sections in 

the Straight channel for different power-law index (n = 0.5, 0.8 and 1) and for two 

generalized Reynolds numbers equal to 50 and 150 and for two injection modes, 

horizontally and vertically. In the straight channel, the trajectories are parallels for which 

there is no transfer of fluids in the transverse direction. So, the thermal mixing between 

the two fluids is located at the interface and it is achieved only by molecular diffusion 

(conduction). Because the heat transfer level in the straight channel depend to the 

residence time, the thermal mixing for generalized number equal to 50 is better than that 

obtained when generalized Reynolds number equal to 150 for both horizontal and vertical 

injections. As known, the increase of the power law index gives a significant role of a 

molecular diffusion. In other words, when the power law index n is high the fluid became 

more viscous and consequently the momentum transfer by conduction dominates.  
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Figure 3.29: Temperature contours in the Straight channel for different power-law index (n 

: 0.5, 0.8 and 1) with horizontal injection (Reg = 50) at five cross sections: S1: inlet 

section, S2: middle of the first period, S3: outlet of the first period, S4: middle of the 

second period and S5: outlet of the second period. 
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Figure 3.30: Temperature contours in the Straight channel for different power-law index (n : 0.5, 

0.8 and 1) with horizontal injection (Reg = 150) at five cross sections: S1: inlet section, S2: middle 

of the first period, S3: outlet of the first period, S4: middle of the second period and S5: outlet of 

the second period. 
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Figure 3.31: Temperature contours in the Straight channel for different power-law index 

(n : 0.5, 0.8 and 1) with vertical injection (Reg = 50) at five cross sections: S1: inlet section, 

S2: middle of the first period, S3: outlet of the first period, S4: middle of the second 

period and S5: outlet of the second period. 
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Figure 3.32: Temperature contours in the Straight channel for different power-law index 

(n : 0.5, 0.8 and 1) with horizontal injection (Reg = 150) at five cross sections: S1: inlet 

section, S2: middle of the first period, S3: outlet of the first period, S4: middle of the 

second period and S5: outlet of the second period. 

For a given value of generalized Reynolds number, if the power law index n increase, the 

velocity increase too. Contrary to the power law index n effects, the increase of the 

velocity begets the decreasing of the mixing level. So, there is a competition between the 

two effects. For example, we remark that for mixing is better for n=0.5 than that obtained 

for n=0.8 which explain that the effect of the velocity on the mixing is dominated and 

vice versa. 

Figures 3.33, 3.34, 3.35 and 3.36 present the temperature contours in five cross sections in 

the C-shaped channel for different power-law index (n = 0.5, 0.8 and 1) and for two 

generalized Reynolds numbers equal to 50 and 150 and for two injection modes 

horizontal and vertical. Unlike what is given by the Straight channel, the preview of the 

temperature contours at each cross section situated along the C-shaped geometry 

indicates that the mixing quality is not affected by the power law index n for a given 

generalized Reynolds number Reg either horizontally or vertically injections. So, the power 

law index has not any effect on the mode of momentum transfer in the flow. For a given 

value of the power law index and on the same cross section, the mixing quality is more 

vigorous when the generalized Reynolds number is more important. The increase of the 

generalized number enhances highly the dynamic of the flow and the kinematic of the 

fluid particles changes considerably and the mixing level will be improved.  
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Figure 3.33: Temperature contours in the C-shaped channel for different power-law 

index (n = 0.5- 1) with horizontal injection (Reg = 50) at five cross sections: S1: inlet 

section, S2: middle of the first period, S3: outlet of the first period, S4: middle of the 

second period and S5: outlet of the second period. 
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Figure 3.34: Temperature contours for different power-law index (n = 0.5, 0.8 and 1) 

with horizontal injection (Reg = 150) at five sections: S1: inlet section, S2: middle of the 

first period, S3: outlet of the first period, S4: middle of the second period and S5: outlet 

of the second period. 
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Figure 3.35: Temperature contours for different power-law index (n = 0.5, 0.8 and 1) 

with vertical injection (Reg = 50) at five sections: S1: inlet section, S2: middle of the first 

period, S3: outlet of the first period, S4: middle of the second period and S5: outlet of the 

second period. 
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Figure 3.36: Temperature contours for different power-law index (n = 0.5, 0.8 and 1) 

with vertical injection (Re = 150) at five sections: S1: inlet section, S2: middle of the first 

period, S3: outlet of the first period, S4: middle of the second period and S5: outlet of the 

second period. 
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3.7.2 Mixing degree 

3. 7.2.aThe evolutions of the Mixing degree with the non-dimensional residence 

Figures 3.37 and 3.38 show the evolutions of mixing degree, Md, with the non-

dimensional residence time for initial horizontal and vertical  injections, for generalized 

Reynolds numbers 50 and 150 and for power-law index n equal to 0.5 and 1 in the two 

geometries straight and C-shaped channels.  

In the straight channel, the particle trajectories are parallels and consequently the heat 

transfer is done only by conduction through the interface between the two fluids. This 

leads to a very bad thermal mixing quality for all cases taken account whatever the power 

law index values and the generalized Reynolds number and as consequently the level 

mixing does not go beyond 0.2. To have a good quality mixing level it should be take a 

very important duration. So, the straight channel is not the appropriate channel for to use 

it in the thermal mixing process. 

In the C-shape channel, the agitation is more vigorous due the chaotic kinematic of the 

trajectories and to the existence of the intense recirculation zones in the flow. This 

behavior contributes considerably to the enhancement of the mixing performances 

compared to that in the straight channel wherein the flow is regular. When the generalized 

Reynolds number increases, mixing is more vigorous, and the mixing degree evolves more 

quickly so the best quality of the thermal mixing is reached. In this type of the geometry, 

the mixing time does not exceed one second for the two values of the generalized 

numbers 50 and 150 and for the power law index n equal to 0.5 and 1. We remark that 

there are barely difference between the mixing levels obtained for the power law index n 

equal to 0.5 and 1. In addition, it is seen that the chaotic nature of the trajectories in this 

geometry cancels completely the effect of the mode injection on the thermal mixing of 

the two fluids (hot and cold).   

 
Figure 3.37: Evolution of the mixing degree VS non-dimensional residence time in the 

two geometries (Straight and C-shaped channels) for different power-law index and 

generalized Reynolds number with horizontal injection. 
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Figure 3.38: Evolution of the mixing degree VS non-dimensional residence time in the 

two geometries (Straight and C-shaped channels) for different power-law index and 

generalized Reynolds number with vertical injection. 

3.7.2.b Evolutions of the Mixing degree with the generalized Reynolds number 

Figures 3.39 and 3.40 show the evolutions of the mixing degree, Md, with generalized 

Reynolds as function of generalized Reynolds numbers and for two power-law index 

values n equal to 0.5 and 1 in the two geometries straight and C-shaped channels and for 

initial horizontal and vertical  injections as respect. 

In the straight channel, the mixing degree is very weak both in horizontal or vertical 

injections and for the two powers law index values n in the generalized Reynolds number 

range. Because the heat transfer is done only by conduction the mixing decreases as 

function of generalized number. Despite the slight superiority of the Md for the value of n 

equal to 0.5, we can see that the effect of the power law index on the mixing is almost 

negligible. 

 
Figure 3.39:  Evolutions of the mixing degree as function of generalized Reynolds 

number for two power-law index values n (0.5 and 1) and for horizontal injection at the 

outlet cross section of the 2nd period. 
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In the case of the C-shaped geometry, the flow is chaotic which leads to a great agitation. 

This behavior improves considerably the thermal mixing as function of generalized 

Reynolds number. For generalized Reynolds number equal to 200, the mixing degree is 

close to 1 and the quality mixing is perfect. The degree of mixing has an insignificant 

difference as a function of the power law index considered so, the power law index n has 

the same effect on the MD as described above. 

 

 
Figure 3.40:  Evolutions of the mixing degree as function of generalized Reynolds 

number for two power-law index values n (0.5 and 1) and for vertical injection at the 

outlet cross section of the 2nd period. 

3.7.3 Temperature distribution 

The temperature distribution is influenced by the velocity field that prevails in the two 

geometries, straight and chaotic channels. For this aim, we present in figures 3.41 and 

3.42 the probability density function at the outlet cross section of the first three periods in 

two considered geometries (Straight and C-shaped channels), for two values of power law 

index (0.5 and 1), for generalized Reynolds number equal to 100 and for two mode 

injections, horizontal and vertical, respectively. In the straight channel, the thermal mixing 

occurs only by conduction such as declared above either in horizontal or vertical 

injections. This mode of heat transfer is very slow in order to realize an acceptable 

thermal mixing level. The preview of the temperature distributions in this channel shows 

that the temperature field remains as it is released since the inlet section. Also, we can see 

that the power law index has not an effect on the mixing process and the temperature 

cartography is unchangeable in the three periods. The initial temperature values, 300K 

and 330K, have the greater percentage with a barely difference between the three periods. 

This indicates that the use of the straight channel in the mixing process of the fluids is not 

the suitable choice.       
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Figure 3.41: Temperature distribution at the outlet cross section 

in the C-shaped and straight channels for horizontal injection and for Reg = 100, (a) first 

period (b) second period (c) third period. 
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Figure 3.42: Temperature distribution at the outlet cross section 

in the C-shaped and straight channels for vertical injection and for Reg = 100, (a) first 

period (b) second period (c) third period. 
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Regarding the chaotic geometry, the temperature distribution is completely different 

compared to that obtained by the Straight channel. At the outlet cross section of the first 

period, the temperature distribution begins to disperse and the temperature values are 

distributed over all the values included between 300K and 330K. As the fluid passes 

through the geometry, the fluids are well mixed and tend to be homogenized under the 

effect of the chaotic behavior of the flow within this geometry. So, the temperature 

distribution at the outlet cross section of the third period is concentrated in a narrow 

range of the order of 2K where the peak of this distribution is corresponding to the 

desired mixing temperature, 315K regardless the power law index values 0.5 or 1. 

3.5 Conclusions 

In this chapter, we characterized the hydrodynamic, heat transfer and thermal mixing 

(temperature homogenization) in two geometries, straight and chaotic channels, for 

generalized Reynolds number ranging from 50 to 200, for power law index values 0.3to 1.  

This paper outlines the evolutions of the Nusselt number and the Poiseuille number with 

generalized Reynolds number and with the power law index ranging from 0.5 to 1.It was 

observed that the local friction factor and Nusselt number starches and folded as the axial 

distance increases. The chaotic configuration displays a heat transfer enhancement in 

terms of the mean Nusselt number compared to the straight channel, however the 

pressure drop in this geometry increases (high Poiseuille number) for all examined 

Reynolds number. The mixing quality is highlighted by two criteria as the mixing degree 

Md and the probability density function Pdf. These criteria confirmed that the capacities 

of the chaotic geometry in terms of the temperature homogenization of two pseudo 

plastic fluids (hot and cold) in the flow is more better compared to that prevails in the 

straight channel. The evaluate of the mixing degree Md outlines that the perfect mixing is 

reached rapidly in the chaotic geometry where the mixing time of the homogenization 

don’t exceed 2seconds in the worst cases but in the straight channel, the mixing time is 

very important and it exceeds several tens of minutes. In addition, it is proven by the Pdf 

function that the temperature field is well and rapidly homogenized in the chaotic 

geometry contrary to the straight channel where the temperature field very dispersed and 

it remains such that it is released at the inlet section.    

 

 



- 83 - 

 

CHAPTER 4 

Entropy Generation Due to the Heat 

Transfer and Fluid FlowIn theDucts 

4.1 Introduction  

In this chapter, we characterize the geometries in terms of entropy generation witch due 

to the heat transfer and fluid friction as function of generalized Reynolds number and 

power-law index under the effects of different wall heat fluxes. 

4.2 Quantities used for the characterization 

Based on the temperature and velocity distribution of the flow field, the local entropy 

generation due to heat transfer irreversibility (𝑆𝑇
′′′) and thefluid friction 

irreversibility(𝑆𝑃
′′′) are given for three dimensional flow as follows [88] [89]: 

𝑆𝑇
′′′ =

𝜆

𝑇2
[(
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2
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(4.1) 
 
 

(4.2) 
 

The total volumetric entropy generation in the flow field can be obtained by : 

𝑆𝑔𝑒𝑛
′′′ = 𝑆𝑇

′′′ + 𝑆𝑃
′′′ (4.3) 

The mean entropy generation rates due to the heat transfer, 𝑆𝑚𝑒𝑎𝑛,𝑇
′′′  , 𝑆𝑚𝑒𝑎𝑛,𝑃 

′′′ due to fluid 

flow and 𝑆𝑔𝑒𝑛,𝑚𝑒𝑎𝑛
′′′ the whole entropy generation field are defined by: 

𝑆𝑚𝑒𝑎𝑛,𝑇
′′′ =  

1

𝑉
∫ 𝑆𝑇

′′′𝑑𝑉 

𝑆𝑚𝑒𝑎𝑛,𝑃
′′′ =  

1

𝑉
∫ 𝑆𝑃

′′′𝑑𝑉 

𝑆𝑔𝑒𝑛,𝑚𝑒𝑎𝑛
′′′ =  

1

𝑉
∫ 𝑆𝑔𝑒𝑛

′′′ 𝑑𝑉 

(4.4) 

 

(4.5) 

 

(4.6) 

Where V is the total volume of the fluid. 

The non-dimensional entropy generation numbers are defined as follows [89]: 

𝑁𝑆 =
𝑆𝑔𝑒𝑛,𝑚𝑒𝑎𝑛

′′′

�̇� 𝑇𝑖⁄
 

(4.7) 

Where�̇� is the total heat transfer rate. 

In addition, the Bejan number is defined as the ratio of the heat transfer entropy 

generation to the global entropy generation, [88]:                        

Be =
𝑆𝑇

′′′

𝑆𝑔𝑒𝑛
′′′

 
(4.8) 

http://www.sciencedirect.com/science/article/pii/S0261306913000770
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Be=0 and Be=1 are two limiting cases representing the irreversibility is dominated by 

fluid friction and heat transfer, respectively. 

Mean Bejan number, Bemean, is defined as follows: 

Bemean =
Smean,T

′′′

𝑆𝑔𝑒𝑛,𝑚𝑒𝑎𝑛
′′′

 
(4.9) 

4.3 Effects of generalized Reynolds number on entropy generation  

4.3.1 Entropy generation due to heat transfer 

Figure 4.1 presents the local distributions of the entropy generation due to heat transfer ( 

𝑆𝑇
′′′) for the straight and C-shaped channels for wall heat flux q" = 5000 w/m2with 

different values of power-law index and generalized Reynolds number. We remark that 

the entropy generation due to heat transfer is located near the corners while in the rest of 

the cross section is zeros. This is explained by that the temperature is not homogenized 

over the cross section. This behavior depends to the velocity field where this later is 

laminar and regular. 

In C-shaped channel, the both cases of Newtonian fluid (n = 1) and non-Newtonian 

fluid(n = 0.6 and 0.8) the entropy generation due to heat transfer is very low over the 

cross section regardless the generalized Reynolds number and the power law index which 

verify that the C-shaped channel can effectively enhance the heat transfer performance 

for both Newtonian and non-Newtonian fluids. 

Figure 4.2 shows the evolutions of the entropy generation rate due to heat transfer with 

various values of generalized Reynolds numbers and for different power law index values 

in both straight and C-shaped ducts. The heat entropy generation in the C-shaped channel 

is less than in that calculated in the straight channel. The heat entropy generation 

decreases with the increase of the generalized Reynolds number. This explains that the 

amelioration of the heat transfer in ducts decreases the creation of the entropy. Also, we 

found that the heat entropy generation decreases with the increase of the power law index 

n which explain that the increase of the viscosity decreases the creation of the entropy. 

These results verify again that the chaotic flow can effectively enhance the heat transfer 

performance by increasing in generalized Reynolds number and increasing in power-law 

index. 
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Figure 4.1: Contours of local entropy generation due to heat transfer at the outlet 

cross section of: (a) straight channel and (b) C-shaped channel for different power-law 

index and various generalized Reynolds number at constant wall heat flux (q" = 5000 

w/m2). 
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(a) 

 
(b) 

Figure 4.2: Evolutions of the entropy generation rate due to heat transfer for (a): straight 

duct and (b):  C-shaped channel, with various values of generalized Reynolds number. 

4.3.2 Entropy generation due to fluid friction 

Figure 4.3 presents the local distributions of entropy generation due to fluid friction for 

various values of generalized Reynolds numbers and for different values of power law 

index in both straight and C-shaped channels. We see that the entropy generation duo to 

the friction increase as the power law index increases, which is attributed to the more 

serious fluid friction and the accompanied frictional irreversibility induced by the larger 

Reynolds number.  

Figure 4.4 illustrates the effect of generalized Reynolds number on the entropy generation 

rate due to fluid friction in both straight C-shaped channels, with various values of power 

law index. As the power law index n increases, the irreversibility of the fluid friction 

increases obviously. The reason behind this trend is the fact that the velocity gradients 

inside the flow increase. Also we see that the difference between the results of the straight 

duct and the C-shaped channel are relatively minor.  
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Figure 4.3:Contours of local entropy generation due to fluid friction on outlet cross 

section of: (a) straight channel and (b) C-shaped channel for different power-law index 

and various generalized Reynolds number at constant wall heat flux (q" = 5000 

W/m2). 
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(a) 

 
(b) 

Figure 4.4: Evolutions of the entropy generation rate due to fluid friction for (a): 

straight duct and (b):  C-shaped channel, with various values of generalized Reynolds 

number. 

Figures 5.6 presents the evolutions of the non-dimensional entropy generation for 

different values of power law index (n) and for various values of generalized Reynolds 

number. For both straight and chaotic geometries, the non-dimensional entropy 

generation decreases as the generalized Reynolds number increases. Clearly, the non-

dimensional entropy generation decrease with the increasing of the power law index, 

witch, which reveal again that the effect of the power law index on heat transfer 

performance is substantial. 

 

 
 (a)  

 
(b) 

Figure 4.6: Evolutions of global non-dimensional entropy generation rate for (a): straight 

duct and (b):  C-shaped channel, with various values of generalized Reynolds number. 
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4.3.4 Bejan number 

Figure 4.7 presents the local distributions of Bejan number in straight and C-shaped 

channels with different value of power-law index and generalized Reynolds number. The 

maximum values of Bejan number concentrates near the heated wall, indicating entropy 

generation comes from the heat transfer irreversibility. Therefore, the contribution of the 

global entropy generation is mainly due to heat transfer irreversibility while the 

contribution of fluid friction irreversibility is minor.  
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Figure 4.7:Contours of local Bejan number on outlet cross section of: (a) straight 

channel and (b) C-shaped channel for different power-law index and various 

generalized Reynolds number at constant wall heat flux (q" = 5000 w/m2). 
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Globally, the distribution of local Bejan number for straight duct larger than that obtained 

for the C-shaped channel, which indicates that the heat transfer performance is most 

serious in chaotic flow. 

Figure 4.8 illustrates the effect of generalized Reynolds number on the global Bejan 

number at a given wall heat flux (q" = 5000 w/m2). For straight channel, the values of 

Bejan number are larger than 0.5, which is a reliable result that the entropy generation is 

dominated by heat transfer irreversibility. It is also noted that in C-shaped channel, the 

Bejan number is smaller than 0.5 for n exceeds 0.8. This is because the velocity gradients 

are higher than temperature gradients. 

Generally, the fluid friction irreversibility is less prominent, leading to higher Bejan 

number in straight channel compared to the chaotic geometry. 

 
(a) 

 
(b) 

Figure 5.8: Evolutions of Bejan number for (a): straight duct and (b):  C-shaped channel, 

with various values of generalized Reynolds number. 

4.4 Effects of wall heat flux on entropy generation at given generalized Reynolds 

number (Reg = 100) 

4.4.1 Entropy generation due to heat transfer 

Figure 4.9 displays the local distributions of the entropy generation due to heat transfer 

with different value of wall heat flux in straight and the C-shaped channels. 

It can be observed that for straight channel, heat entropy generation concentrates at the 

corners, and for the C-shaped channel, the entropy generation concentrates like a thin 

layer near the heated wall, and gradually penetrates toward the central of the cross section. 

However, entropy generation due to heat transfer increases with decreasing of the power 

law index, because the temperature gradients are greater near the wall especially for the C-

shaped channel.  

Figure 5.10 shows the evolutions of the heat entropy generation in straight and C-shaped 

ducts, with various values of wall heat flux. 
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Figure 4.9:Contours of local entropy generation due to heat transfer on outlet cross section 
of: (a) straight channel and (b) C-shaped channel for different wall heat flux. 
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It can be seen, the value of heat entropy generation gradually increases as the wall heat 
flux increases for both geometries. The values of entropy generation due to heat 
transfer in C-shaped channel are generally smaller than that obtained for the straight 
duct, which indicates the trend that the chaotic flow created in the C-shaped channel 
can enhance the heat transfer and in turn to reduce heat transfer irreversibility. 
 

 
Figure 4.10: Evolutions of the heat entropy generation for (a): straight duct and (b):  C-

shaped channel, with various values of wall heat flux. 

4.4.2 Entropy generation due to fluid friction 

Figure 4.11 presents the local distributions of the entropy generation due to fluid friction 

in straight and C-shaped channels, with different value of wall heat flux and various 

power-law index. The major entropy generation due to fluid frictional irreversibility is 

found to concentrate at the wall of straight duct. In C-shaped channel, the values of 

𝑆𝑃
′′′near the bottom wall are relatively smaller than obtained for the other sides. 

Figure 4.12 shows the effect of wall heat flux on entropy generation due to fluid friction, 

for different values of power law index.  

The maximum rates of entropy generation due to fluid friction obtained for high power-

law index, and it’s increases with increasing of power law index. However, the power law 

index induces stronger influence on the fluid friction irreversibility, which is much 

dependent to the velocity gradient. 
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Figure 4.11:Contours of local entropy generation due to fluid friction on outlet cross-section of: 

(a) straight channel and (b) C-shaped channel for different wall heat flux. 
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Figure 4.12:Evolutions of the entropy generation rate due to fluid friction for (a): straight 

duct and (b):  C-shaped channel, with various values of wall heat flux. 

4.4.3 Global entropy generation 

Figure 4.13 shows the global non-dimensional entropy generation 𝑁Swith different power 

law index and various values wall heat flux. For high wall heat flux, more than 80% 

decreases in the global entropy generation rate from straight duct to C-shaped channel. 

Moreover, global entropy generation decrease with increasing of power law index because 

the entropy generation due fluid friction has dominated. 

Since the heat entropy generation is higher and the entropy generation due to the fluid 

friction is smaller, the larger non-dimensional entropy generation rates are observed, 

when the wall heat flux increases for both straight and C-shaped channel. Hence, it 

explains that the heat transfer performance increase when the power law index rises. 

 
Figure 4.13: Evolutions of the global non-dimensional entropy generation rate due to 

heat transfer for (a): straight duct and (b):  C-shaped channel, with various values of 

generalized Reynolds number. 
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4.4.4 Bejan number 

Figure 4.14 presents the evolutions of the Bejan number for various values of wall heat 

flux in straight and the C-shaped channels.  

Both straight and C-shaped channels indicate that the Bejan number increases as the wall 

heat flux augments. No remarkable change on Bejan number for high wall heat flux, that’s 

mean the entropy generation due to heat transfer, has dominated for all cases of power-

law index. Consequently, in order to minimize the heat entropy generation, higher power 

law index with lower external heat flux should be considered.  

 
(a)  

(b) 
Figure 4.14: Evolutions of the Bejan number for (a): straight duct and (b):  C-shaped 

channel, with various values of wall heat flux. 

4.5 Conclusion 

In this chapter, numerical study of entropy generation to Newtonian and non-Newtonian 

fluids flow flowing in straight and chaotic ducts is investigated. This work has been 

performed for the important parameters in the following ranges: generalized Reynolds 

number (Reg = 50 to 200), flow behavior index (n = 0.5 to 1) and wall heat flux (q" = 

5000 w/m2 to 10000 w/m2). As generalized Reynolds number increases, the entropy 

generation due to heat transfer decreases, which reveal that the effect of the generalized 

Reynolds number on heat transfer performance is substantial. These results verify that the 

C-shaped channel can enhance the heat transfer performance for different values of 

power law index. Global entropy generation rate in straight duct larger than that obtained 

for the C-shaped channel, which leads to enhance the heat transfer performances. The 

increase in the value of generalized Reynolds number causes Bejan number to declines 

and its increase significantly, as wall heat flux augments which demonstrates a jump in the 

irreversibility due to heat transfer. For all cases of power-law index, the chaotic flow can 

effectively enhance the heat transfer performance more than that obtained for the straight 

duct. 

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

straight duct

q", (w/m
2
)

B
e

 

 

 

 n = 1

 n = 0.9

 n = 0.8

 n = 0.7

 n = 0.6

 n = 0.5

0 2000 4000 6000 8000 10000
0.0

0.2

0.4

0.6

0.8

1.0

C-shaped channel

q", (w/m
2
)

B
e

 

 

 

 n = 1

 n = 0.9

 n = 0.8

 n = 0.7

 n = 0.6

 n = 0.5












































