APPENDIX

I. Operations On Type-2 Sets

Consider two fuzzy sets of type- $2, \widetilde{A}$ and \widetilde{B}, in a universe X. Let $\mu_{\widetilde{A}}$ and $\mu_{\widetilde{B}}$ be the membership grades (fuzzy sets in $\mathrm{J}_{\mathrm{x}} \in[0,1]$) of these two sets, represented, for each x , as $\mu_{\widetilde{A}}=\int_{u} f_{x}(u) / u$ and $\mu_{\widetilde{B}}=\int_{w} g_{x}(w) / w$, respectively, where $u, w \in J_{x}$ indicate the primary memberships of x and $\mathrm{f}_{\mathrm{x}}(\mathrm{u}), \mathrm{g}_{\mathrm{x}}(\mathrm{w}) \in[0,1]$ indicate the secondary memberships (grades) of x . Using Zadeh's Extension Principle [15,54,55], the membership grades for union, intersection and complement of type-2 fuzzy sets, \widetilde{A} and \widetilde{B} have been defined as follows [56]:

- Union

$$
\begin{equation*}
\tilde{A} \cup \tilde{B} \Leftrightarrow \mu_{\tilde{A} \cup \tilde{B}}(x)=\mu_{\tilde{A}} \sqcup \mu_{\tilde{B}}=\int_{u} l \int_{w}\left(f_{x}(u) \star g_{x}(w)\right) /(u \vee w) \tag{1}
\end{equation*}
$$

- Intersection

$$
\begin{equation*}
\tilde{A} \cap \tilde{B} \Leftrightarrow \mu_{\tilde{A} \cup \tilde{B}}(x)=\mu_{\tilde{A}} \sqcap \mu_{\tilde{B}}=\int_{u} l \int_{w}\left(f_{x}(u) \star g_{x}(w)\right) /(u \star w) \tag{2}
\end{equation*}
$$

- Complement

$$
\begin{equation*}
\bar{A} \Leftrightarrow \mu_{\bar{A}}=\neg \mu_{\tilde{A}}=\int_{u} f_{x}(u) /(u-1) \tag{3}
\end{equation*}
$$

Where v represents the max t-conorm and \star represents a t-norm. The integrals indicate logical union. In the sequel, we adhere to these definitions, and, as in [56], we refer to the operations \sqcup, \sqcap and \neg as join, meet and negation, respectively.[57]

II. Membership Functions Creation

Triangular and trapezoidal membership functions retained in this work are defined using 4 linear functions, completely described by 5 points (a, b, c, d and e) as defined in Equations 1, 2 and 3, and illustrated in Figure 1. Triangular MFs are a particular case of trapezoidal MFs where $b=c$ as illustrated in Figure 2.

$$
\begin{equation*}
\operatorname{Trapezzoid}(x, a, b, c, d, e)=\max \left(0, \min \left(y_{1}, y_{2}, e\right)\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y_{1}(x, a, b, c)=e \frac{x-a}{b-a} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y_{2}(x, c, d, e)=e \frac{d-x}{d-c} \tag{3}
\end{equation*}
$$

Fig 1 Trapezoidal MF example

$$
a=-0: 8 ; b=-0: 4 ; c=0: 2 ; d=0: 6 ; e=0: 8
$$

Fig 2 Triangular MF example

$$
a=-0: 5 ; b=c=0 ; d=0: 5 ; e=1
$$

KM Algorithm for Computing y_{L} :

KM Algorithm for Computing y_{r} :

Start

Inisialisation of f^{n} :

$$
f^{n}=\frac{f^{n}+\bar{f}^{n}}{2} n=1,2, \ldots, N
$$

Find the value of k where $1 \leq k \leq N-1$ and

$$
\bar{y}^{k} \leq y \leq \bar{y}^{k+1}
$$

Replace

$$
\begin{gathered}
f^{n}=\underline{f}^{n}, n \leq k \text { and } \\
f^{n}=\bar{f}^{n}, n>k, \\
\mathrm{y}^{\prime}=\frac{\sum_{n=1}^{N} \bar{y}^{\mathrm{n}} \mathrm{f}^{\mathrm{n}}}{\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{f}^{\mathrm{n}}}
\end{gathered}
$$

$$
y=y^{\prime}
$$

Calculate

$$
\mathrm{y}^{\prime}=y_{r}
$$

FUZZY PID STRUCTURES

we present some different FUZZY PID structures.[24][21] :
where e is error,$\Delta \mathrm{e}$ is change of error and $\Delta^{2} \mathrm{e}$ rate of change of error.

Fig 3 Three-input fuzzy PID (coupled rules)

Fig 4 Three-input fuzzy PID (decoupled rules)

Fig 5 Two-input fuzzy PID (coupled rules)

Fig 6
Two-input fuzzy PID (decoupled rules)

Fig 7 One-input fuzzy PID (coupled rules)

Fig $8 \quad$ One-input fuzzy PID (decoupled rules)

